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Abstract. Under the Copernicus programme, an opera-
tional CO, Monitoring Verification and Support system
(CO2MVS) is being developed and will exploit data from
future satellites monitoring the distribution of CO, within
the atmosphere. Methods for estimating CO, emissions from
significant local emitters (hotspots; i.e. cities or power plants)
can greatly benefit from the availability of such satellite im-
ages that display the atmospheric plumes of CO;. Indeed,
local emissions are strongly correlated to the size, shape, and
concentration distribution of the corresponding plume, which
is a visible consequence of the emission. The estimation of
emissions from a given source can therefore directly bene-
fit from the detection of its associated plumes in the satellite
image.

In this study, we address the problem of plume segmen-
tation (i.e. the problem of finding all pixels in an image that
constitute a city or power plant plume). This represents a sig-
nificant challenge, as the signal from CO, plumes induced by
emissions from cities or power plants is inherently difficult to
detect, since it rarely exceeds values of a few parts per mil-
lion (ppm) and is perturbed by variable regional CO; back-
ground signals and observation errors. To address this key
issue, we investigate the potential of deep learning methods
and in particular convolutional neural networks to learn to
distinguish plume-specific spatial features from background
or instrument features. Specifically, a U-Net algorithm, an
image-to-image convolutional neural network with a state-
of-the-art encoder, is used to transform an XCO; field into an

image representing the positions of the targeted plume. Our
models are trained on hourly 1 km simulated XCO, fields in
the regions of Paris, Berlin, and several power plants in Ger-
many. Each field represents the plume of the hotspot, with
the background consisting of the signal of anthropogenic and
biogenic CO, surface fluxes near to or far from the targeted
source and the simulated satellite observation errors.

The performance of the deep learning method is there-
after evaluated and compared with a plume segmentation
technique based on thresholding in two contexts, namely (1)
where the model is trained and tested on data from the same
region and (2) where the model is trained and tested in two
different regions. In both contexts, our method outperforms
the usual segmentation technique based on thresholding and
demonstrates its ability to generalise in various cases, with
respect to city plumes, power plant plumes, and areas with
multiple plumes. Although less accurate than in the first con-
text, the ability of the algorithm to extrapolate on new geo-
graphical data is conclusive, paving the way to a promising
universal segmentation model trained on a well-chosen sam-
ple of power plants and cities and able to detect the majority
of the plumes from all of them. Finally, the highly accurate
results for segmentation suggest the significant potential of
convolutional neural networks for estimating local emissions
from spaceborne imagery.
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1 Introduction

Under the Paris Agreement on Climate Change, progress
on emission reduction efforts is monitored on the basis of
regular updates of the national greenhouse gas (GHG) in-
ventories (UNFCCC, 2015). To independently assess the
progress of countries towards their targets, objective means
of tracking anthropogenic CO; emissions and their evolution
is needed. Top-down estimates based on atmospheric mea-
surements can provide such observation-based evidence. De-
veloped through the European Earth observation programme,
Copernicus, the CO; emissions Monitoring and Verifica-
tion Support capacity (CO,MVS) will provide an operational
emissions monitoring system based on such an approach
(Janssens-Maenhout et al., 2020). It will operate in particular
on a constellation of dedicated CO;, imaging satellites, the
Copernicus CO, Monitoring (CO,M) mission, as part of the
Sentinel programme, which will be launched from the year
2026.

One aim of CO,MVS is to provide estimates of local emis-
sions from hotspots such as cities or power plants that ac-
count for a major fraction of anthropogenic CO; releases.
For this purpose, local data assimilation can be applied to in-
dividual plumes visible in satellite CO; images. A plume is
defined as an increase in CO, concentration above the back-
ground level that is caused by emissions from a hotspot. To
estimate emissions from the plume, it is essential to detect it
on satellite images. Thus, the detection of a plume, i.e. the
identification of its contour, in a satellite image is a critical
step in the evaluation of source emissions.

The detection and identification of pollutant plumes from
simulated fields or observations has been the subject of an
important amount of research. Lauvaux et al. (2022) exploit
satellite images sampled by the TROPOspheric Monitoring
Instrument (TROPOMI) to identify very large emitters of
CHy, using a thresholding technique. Finch et al. (2022) suc-
cessfully trained neural networks (NNs) on satellite images
of NO; to detect the presence of plumes. Recent threshold-
ing techniques have proven effective in detecting large CO,
plumes in satellite images, by either using the Orbital Car-
bon Observatory-2 (OCO-2; Crisp et al., 2017; Reuter et al.,
2019) or observing system simulation experiments (OSSEs;
Kuhlmann et al., 2019a).

Nevertheless, the detection and quantification of CO»
plumes in satellite images remains a challenge with vari-
ous obstacles. Conventional threshold-based methods rely
on the signal-to-noise ratio of a plume. The signal is the
CO; enhancement inside the plume above the background
field, and the noise is the variability in the measurements
due to single sounding precision of the instrument and the
interference of other anthropogenic and biospheric fluxes.
Kuhlmann et al. (2019a) showed that for the expected single
sounding precision of the CO2M (Copernicus Carbon Diox-
ide Monitoring mission) CO, product (< 0.7 ppm; 2 km res-
olution; swath width > 250 km; MRDv3), the signal-to-noise
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ratio of many cities and power plants is too small for a re-
liable detection of CO; plumes with threshold-based meth-
ods. CO2M will overcome this limitation through an addi-
tional nitrogen dioxide (NO;) instrument on the same plat-
form that, as a proxy to CO», significantly improves plume
detection capabilities (Kuhlmann et al., 2019a). CO2M will
also provide CH4 observations (https://www.eoportal.org/
satellite-missions/co2m, last access: 10 July 2023). How-
ever, not all currently planned CO, imaging satellites (such
as CO2Image; Butz et al., 2022) will have NO, observa-
tions available, which puts a limit on the capabilities of the
CO, imaging instrument to detect emission plumes using
threshold-based methods.

Although mainly motivated by CO,MVS, this study fo-
cuses on CO, images in general. The objective is to cope with
the signal-to-noise ratio (SNR) problem in CO, plume detec-
tion problems, with the help of deep learning methods (Chol-
let, 2017; Zhang et al., 2022). In particular, we rely on con-
volutional neural networks (CNNs) to segment plumes more
accurately than thresholding techniques by learning and cap-
turing plume-specific spatial patterns. Plumes may indeed
have certain spatial properties or shapes that can be exploited
by an algorithm capable of extracting and learning these fea-
tures. The image dataset used to train and test the CNN model
is based on fields of column-averaged dry air mole fractions
of CO;, (XCO»), simulated in the vicinity of the targeted
sources (Grand Paris, fle-de-France (IdF), Berlin, and vari-
ous power plants). Each image is comprised of (at least) a
targeted source plume and the other nearby biogenic and an-
thropogenic fluxes, plus the instrumental noise typical of the
sensor on board CO2M. Clouds are not included in the CO»
images for simplicity. They will be addressed in a separate
publication.

A large amount of labelled data is a prerequisite for the use
of CNNs. In Sect. 2, we present the two synthetic datasets
that are used to train and evaluate the performance of the
CNNs. The plume segmentation problem is then mathemat-
ically defined in Sect. 3.1. The loss function, which defines
what the CNN should target, i.e. what a plume is accord-
ing to the deep learning model, is described in Sect. 3.2.
Next, in Sect. 3.3, the architecture and parameterisation of
the CNN are introduced and explained. Subsequently, the
trained model is applied in the following two contexts:

— acontext of geographical generalisation, where a model
trained to recognise plumes on images from the regions
of Paris, Berlin, and various power plants is evaluated
on new images from the same regions, and

— a context of geographical extrapolation, where a model
trained to recognise plumes on images from the regions
of Paris and various other power plants is evaluated on
images from the region of Berlin.

In both cases, the CNN method is compared for reference to
the thresholding plume segmentation method described by
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Kuhlmann et al. (2019a, 2021), which is available as part
of a Python package for data-driven emission quantification
(ddeq; https://gitlab.com/empaS03/remote-sensing/ddeq, last
access: 10 July 2023). Finally, conclusions on the perfor-
mances of the deep learning models in these situations are
provided.

2 Synthetic datasets
2.1 Simulation of the CO; fields

Two different atmospheric transport models are used to simu-
late the CO;, fields which provide the XCO; images. Simula-
tions in the Paris region by WRF-Chem V3.9.1 (Grell et al.,
2005) are based on the configuration of Lian et al. (2021),
while simulations in the Berlin region, including neighbour-
ing power plants, are taken from the SMARTCARB project
(Kuhlmann et al., 2019b; Brunner et al., 2019).

Paris data consist of 3-month meteorological and CO,
transport simulations on a nesting of three domains with
different spatial resolutions (25, 5, and 1km). Initial and
boundary conditions (ICBCs) are forced with ERA-5 re-
analysis fields (Hersbach et al., 2020) at a resolution of
0.75° for the meteorological simulations and Copernicus At-
mosphere Monitoring Service (CAMS) 3 h update interval
global CO; atmospheric inversion products for the CO, sim-
ulations (Chevallier, 2018). High-resolution inventories, the
TNO GHGeco v3.0 TNO-MACC_II and the VERIFY D2.1
v1.0 (Denier van der Gon et al., 2021), are used to simulate
CO; concentrations over the entire domain. Finally, biogenic
fluxes are computed with the Vegetation Photosynthesis and
Respiration Model (VPRM) model (Mahadevan et al., 2008)
coupled online with the WRF-Chem V3.9.1 model.

The SMARTCARB simulations were run with the Consor-
tium for Small-scale Modelling (COSMO)-GHG model for a
domain centred on Berlin and covering several neighbouring
power plants (Janschwalde, Lippendorf, Boxberg, and oth-
ers). The simulations were used to generate synthetic CO2M
observations (Kuhlmann et al., 2020b) and to assess differ-
ent plume detection and inversion methods (Kuhlmann et al.,
2019a, 2020a, 2021; Hakkarainen et al., 2022). The model
fields consist of hourly data over 1 year, with a spatial reso-
lution of 0.01° and 60 vertical layers from O to 24 km. Me-
teoSwiss COSMO-7 analyses are used as the meteorologi-
cal initial and boundary conditions, while the CO, boundary
conditions correspond to the fields of the ECMWF (European
Centre for Medium-Range Weather Forecasts) free-running
global CO; simulations with 137 levels (Agusti-Panareda
et al., 2014). Biogenic CO; fluxes are modelled offline with
the VPRM diagnostic biosphere model (Mahadevan et al.,
2008). Finally, the TNO-MACC III inventory (Kuenen et al.,
2014) is used for modelling anthropogenic emissions in most
of the regions. Berlin emissions, however, are modelled with
the help of a detailed inventory (Kuhlmann et al., 2019b).
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The main configuration parameters are summarised in Ta-
ble 1.

2.2 Parameterisation of the CO; field simulations

CNN segmentation models are trained and tested on fixed-
size images, and XCO; images of 160 x 160 pixels are ex-
tracted from the Paris and SMARTCARB datasets. There-
fore, the images used to train and evaluate the CNN are
not synthetic CO,M observations but a simplified dataset.
The images are extracted such that the hotspot is located
in the centre of the image, and the chosen size ensures that
most of the hotspot plume is present in the image. The na-
tive resolution of 1.1 km of the SMARTCARB data is main-
tained during this extraction phase, while the Paris data are
mapped from the original 200 pixels in longitude and 165
pixels in latitude to 160 x 160 pixels; the new image con-
centrations are calculated by cubic spline interpolation (Vir-
tanen et al., 2020), which gives images with a resolution of
1.25 x 1.03km? in IdF.

A wide variety of fields and plumes are needed to train
an efficient plume segmentation model. The dataset diversity
and size is achieved through the following:

— seasonal variability (January, March, and August for the
Paris data to cover summer and winter; a whole year for
SMARTCARB).

— geographical variability (Paris; various locations in Ger-
many).

— emission range variability across different locations and
times. In Berlin, the average emissions that are based on
the inventory is 16.8 Mtyr~!, with a standard deviation
(SD) of 7.2Mtyr~!. In Jinschwalde, the emissions av-
erage is 33.3Mtyr~!, with a SD of 7.7 Mtyr~!, while
in Boxberg, the emissions average is 19.0 Mtyr~!, with
aSD of 4.4 Mtyr~!. The Grand Paris emissions average
is 20.7Mtyr~!, with a SD of 9.5 Mtyr~!.

— plume type variability, with single power plant plumes
(a single major anthropogenic plume on the image)
with Lippendorf, multiple plumes (several major an-
thropogenic plumes in the image) with Janschwalde or
Boxberg, cities (Grand Paris and Berlin), or cities with
an extended suburb (fle-de-France (IdF), including the
Paris region). The Paris data are split into two parts to
assess the ability of the CNNss to retrieve plumes from
the Paris conurbation alone (Grand Paris) or from the
entire Paris region (IdF).

To fully account for the detectability factors affecting the
SNR, the satellite instrumental noise must be taken into ac-
count. In this study, a Gaussian random noise, without spatial
correlation, of 0.7 ppm (parts per million), typical of CO,M
(Meijer, 2020), is used and added to the simulated XCO;
fields. Considering these various factors, the generation of
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Table 1. Main set-up parameters of the transport of CO, for the Paris simulations and the SMARTCARB simulations. Note that PP stands

for power plant, and t.f.1. is for terrain-following layers.

Paris Berlin and PP
Transport model WRF-Chem V3.9.1 COSMO-GHG
Domain fle-de-France (IdF) and surroundings ~ 700 km? centred around Berlin
Output spatial resolution Nested at 25, 5, and 1 km in IdF 1.1km
Output time resolution 1h 1h

Vertical resolution
Meteorological fields (ICBCs)
CO tracers (ICBCs)

43 levels (until 50 hPa)

Anthropogenic emissions

Biogenic CO, fluxes Online VPRM

ERA-5 ECMWEF reanalysis fields at 0.75°
Global CO, atmospheric inversion products,
with update intervals from CAMS every 3 h
TNO GHGco emission inventory v3.0 (1 h, 1 km)

60 t.f.1. (from O to 24 km)

COSMO-7 analyses of MeteoSwiss

Global free-running CO; simulations, with 137
levels from ECMWF

TNO-MACC III inventory (1h, 7 km)

Berlin, with detailed inventory

Offline VPRM

a XCO; image can be summarised in three steps, namely
the simulation of the hotspot anthropogenic plume, the ad-
dition of the simulated background (biogenic and other an-
thropogenic fluxes), and the addition of the instrument noise.
This is illustrated in Fig. 1.

We provide the CNN model with full noisy images (right
panels in Fig. 1), and we design it to return the plume masks
of the hotspot plumes (left panels in Fig. 1).

Data augmentation techniques (Chollet, 2017) are ap-
plied to the training data. The training images are randomly
shifted, zoomed, sheared, flipped, and rotated variants of the
original images. Specifically, each image used for training
the CNN has been subject to the following:

— a random horizontal and vertical shift of 0% to 20 %
(the border values are then used to fill the missing values
of the new image, as shown in Fig. 2);

— arandom zoom of 0 % to 20 %;

— a potential horizontal or vertical flip, with a probability
of 0.5;

— arandom rotation of 0 to 180°; and

— arandom shear, i.e. a distortion along an axis (while the
other axis is fixed) of 0 to 45°.

Data augmentation is meant to (i) raise the performance of
the CNN model, where data augmentation artificially and
substantially increase the number of training data, thus re-
ducing the risk of overfitting, and (ii) raise the representa-
tiveness of our plume database through the enforcement of
geometrical invariance.

Figure 2 shows two examples of data-augmented fields
and associated plumes.

The selection of the data augmentation techniques used
and their characteristics was based on experimentation. The
extrapolation or distortion of the plumes due to data augmen-
tation can lead to non-physical plumes. Yet, we empirically
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found that the use of such plumes improves the ability of the
CNN model to segment real plumes.

3 Segmentation: methodology
3.1 Problem description

The plume segmentation problem can be defined, for a given
image, as the detection of all pixels composing the plume.

This problem can be seen as an image-to-image prob-
lem, where the goal is to translate the original image into
a Boolean map in which pixels are assigned to categories of
either “true” (part of a hotspot plume) or “false” (not part
of a hotspot plume), as shown in Fig. 3. Many algorithms
can be designed to perform such a translation. However, in
this study, we dispose of a labelled dataset as both the in-
put XCO, field and the corresponding targeted plume are
available. In this context of supervised learning, for image
processing, CNNs are particularly effective (Chollet, 2017;
Zhang et al., 2022).

These algorithms are based on learning specific patterns
of increasing complexity using smaller and simpler patterns
(the filters). The larger and more complex patterns are spe-
cific to the learned targets (here, the plumes from the targeted
sources). The filters are optimised to allow the learning of
these complex target-specific features. This optimisation is
done automatically, unlike most algorithms, where the filters
would have to be chosen manually (feature engineering).

The CNN decomposes as a training step (which includes
validation) and a test step. In the training step, the selected
CNN model, described in Sect. 3.3, is trained with XCO;
field and Boolean map pairs. The Boolean map is composed
of pixels equal to 1 if the pixel has a positive XCO, concen-
tration corresponding to the simulated anthropogenic plume
or 0 if the pixel does not. For a given XCO; field, the CNN
model knows the target Boolean plume and learns to out-
put a probability map that best matches it (supervised learn-
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[ppmv]

Point source plume

Berlin

Ile-de-France

Janschwalde

0.0

Background add.

4001

Instrument noise add.  [ppmv]

[ppmv]

Figure 1. Examples for the construction of three simulated XCO, satellite images. Each row shows the generation of a sample XCO, image,
and three hotspots are considered at random times and days. Berlin (a—c). Paris (d—f). Janschwalde (g-i) is located near other power plants,
which explains the presence of multiple plumes. The left column displays the anthropogenic hotspot plumes with the concentrations in parts
per million by volume (ppmv) indicated on the colour bars. In the middle column, the addition of background (biogenic and anthropogenic
fluxes) is shown. Finally, in the right column, the full simulated image used as input to the CNN model with the addition of satellite instrument

noise is revealed.

ing). The shapes of the input and output are equal, and each
pixel in the output represents the probability that the pixel in
the input belongs to the anthropogenic plume. In the testing
step, the CNN model is applied to new input images, none of
which has been seen during the learning phase, to assess its
ability to generalise to new data.

3.2 Loss function

The loss function is a measure of the discrepancy between
the truth (the Boolean map representing the real plume) and
the prediction (a probability map). Many loss functions can
be used, with each of them defining what the CNN model
should learn from the data, what the priorities are, and which

https://doi.org/10.5194/gmd-16-3997-2023

differences can be overlooked (Jadon, 2020). The definition
of a plume, according to the CNN model, is embedded in the
characterisation of the loss function. A classical loss function
used for segmentation problems is the binary cross-entropy
(BCE) between a scalar prediction p and a target y, which is
defined as

BCE(p,y) £ —(ylnp+(1—y)In(1 — p)), (D

where 0 < p < 1, and y is a Boolean value. In our case, the
total loss, the discrepancy between a predicted probability
map P = (p; ;) and a targeted Boolean map Y = (y; ;), is

Geosci. Model Dev., 16, 3997-4016, 2023
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0.0

Figure 2. Examples of augmented XCO, fields (a—c; without instrumental noise) and corresponding plumes (d—f). The left column corre-
sponds to the original XCO, field and plume. The middle and right columns correspond to the same XCO; fields, after shearing, flipping,
rotating, and translating operations are complete. These are typical examples of what is used as input to the CNN model.

XCO2 [ppmv]

412.5
410.0
407.5 —>

405.0

402.5

Image-to-image
CNN model

[boolean]

1

0

Figure 3. Illustrating the principle of plume segmentation. An image-to-image model (here, a CNN) is used to extract the anthropogenic

plumes from a XCO, field for one or several hotspots.

written as follows:

160

LEPY)== > (vijlnpij+1—y Il =p; ). 2
i,j=1

which is the sum of the pixel-wise BCE between p; ; and
Yi,j-

!I‘his definition uses the plume Boolean map as the target
(truth or label) and gives an equal weight to pixels with a
high plume concentration and to pixels with a low plume
concentration, which is questionable. Two Boolean plumes
are shown in Fig. 4, where the middle row images represent
the transformation of the top row plumes into Boolean tar-
gets, leading to images of 0 and 1, depending on whether the
plume concentration of the pixel is greater than the threshold
7 = 0.05 ppmv (parts per million by volume).

Geosci. Model Dev., 16, 3997-4016, 2023

These Boolean targets are visually far from representative
of the plumes; the bulk of the signal, the mass of CO», is con-
tained in a much narrower area. In practice, this choice hin-
ders the convergence and deeply degrades the performance
of the CNN, since many pixels with low plume concentration
are difficult to detect. A threshold could be used to generate
more representative Boolean targets, but due to the diversity
of plume types, no universal threshold exists.

To overcome this problem, the pixel loss is weighted by a
function proportional to the plume concentration of the pixel.
The weight function, depending on the plume concentration
in the pixel, is linear and is defined by

1 if ¢ < Ymin,
w(c) = | Wmin + H(C = Ymin) i Ymin < € < Ymax, (3)
Wmax if ¢ > ymax,

https://doi.org/10.5194/gmd-16-3997-2023
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Original plume [ppmv]

Example 1

Example 2

Segmented plume [bool.]
1

Weight. seg. [weight. bool.]

Figure 4. Examples of XCO, plumes (a, d), corresponding Boolean maps representing plume positions (b, e), and weighted Boolean maps
representing the plume positions (¢, f). The weighting is calculated according to Eq. (3).

where ¢ > 0 is the plume concentration of the pixel, ypyin =
0.05 ppm. Furthermore, we choose to set ymax as the 99th
percentile of the plume concentrations, instead of the max-
imum, to avoid outliers. With this weighting, the loss on a
prediction field p; ; becomes

LPY) ==Y (w(cj)yijlnp;;
iJj
+ (1 =y, HIn(1 = pi ), “)

where ¢; ; is the true plume concentration at pixel (i, j), and
¥i,j is a Boolean indicating whether a pixel is part of the
plume or not. After preliminary sensitivity experiments (not
illustrated here), wmin and wmyay are set as 0.01 and 4. With
these values, the model response is weighted as follows:

— Itis heavily penalised if it makes an error in a pixel with
a high plume concentration.

— It is penalised very little (even insignificantly) if it
makes an error in a pixel associated with a low plume
concentration.

— It is moderately penalised if it makes an error in a non-
plume pixel.

The result of this weighting can be observed in the right
column of Fig. 4 because each pixel is still a Boolean but
weighted depending on the plume concentration of the pixel.

The new loss function is differentiable, which is a nec-
essary condition for the application of the gradient de-
scent backpropagation algorithm. Moreover, the weighting
is carried out independently for each field and plume pair

https://doi.org/10.5194/gmd-16-3997-2023

and not uniformly for the whole dataset. This latter choice
would have penalised low-emission hotspots and favoured
high-emission ones. This loss function is referred to as the
weighted binary cross-entropy (WBCE) in the following.

In practice, during the training phase, the plumes un-
dergo a two-step transformation process. First, they are trans-
formed using the weight function described in Eq. (3). Sub-
sequently, they undergo further transformation using the data
augmentation techniques specified in Sect. 2.2. The resulting
transformed plumes are subjected to the loss function defined
in Eq. (4) during training.

3.3 U-Net model

The deep learning model chosen to address this image-
to-image problem follows the U-Net architecture, a CNN
encoder—decoder originally developed for biomedical image
segmentation (Ronneberger et al., 2015) but later succes-
sively applied in many domains. This architecture is com-
posed of (i) a downsampling or encoder phase, where the
resolution of the input image decreases and the number of
feature channels increases, and (ii) of an upsampling or de-
coder phase, where the resolution is increased to its original
shape, while the number of feature channels decreases sym-
metrically to the downsampling phase. The encoder captures
and learns aggregated information locally, progressing until
it captures close to the entire image. The encoder works in
the same way as, for example, a classification model and can
be built with any conventional CNN classifier. The decoder
use the encoded information to build the output. The particu-
larity of the U-Net architecture is the use of skip connections,
where encoded layers are directly carried to the decoder part.

Geosci. Model Dev., 16, 3997-4016, 2023
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In other words, the decoder part collects the high-resolution
features from the encoder part through concatenation to pre-
vent any information loss.

Many encoder and decoder architectures can be used, and
an example is illustrated in Fig. 5.

Such a U-Net algorithm is built on top of convolutional
layers that locally aggregate the information. Furthermore,
the encoder uses max-pooling layers, which decrease the res-
olution of the image, while the decoder resorts to upsampling
layers. Finally, dropout layers are used to reduce overfitting.
However, in this paper, we use a generalised architecture (not
shown for the sake of readability, since more than 270 layers
and 5 x 10° parameters are used). The encoder used is the
EfficientNetBO CNN architecture (Tan and Le, 2020), which
is built with specific convolution layers (based on depth-
wise convolutions) and a squeeze-and-excitation optimisa-
tion. Several encoders have been considered and tested, in-
cluding ResNet (He et al., 2015), DenseNet (Huang et al.,
2018), and self-made alternatives. The decoder phase is a
repetition of the convolution and upsampling layers.

A dropout rate of 0.2 is used in the encoder part. The ac-
tivation layers in the encoder part are swish functions (Ra-
machandran et al., 2017), whereas rectified linear activation
functions (ReLUs) are chosen for the decoder part. The nor-
mal kernels are chosen to initialise the convolutional lay-
ers to avoid vanishing or exploding gradients during the first
epochs. To obtain a probability map, the final output is acti-
vated by a sigmoid function. We use an initial learning rate of
1073 with an Adam optimiser and a reduce-on-plateau strat-
egy after considering different configurations. The batch size
is set to 32 samples, and the number of epochs is set to 500,
which ensures the convergence of learning. The final model
weights are the best-performing weights on the validation
dataset.

3.4 Training, validation, and test datasets

The complete dataset is divided into training, validation, and
test subsets. Since a plume at a certain time strongly resem-
bles the plume of the next hour, the validation and test sets
consist of subsets of plumes on 2 consecutive days. For a
given month, the test dataset always consists of the plumes
of the 4th, 5th, 15th, and 16th days of the month. The train-
ing, validation, and test datasets are used to train the model,
to tune its hyperparameter, and to test the optimal model, re-
spectively.

The amounts of data for training, validation, and test differ
for each test case. In the last case (extrapolation to Berlin),
there are about 23 000 images in the training dataset, 4000
in the validation dataset, and 7000 in the test dataset. It is
worth mentioning that data augmentation techniques enable
us to use a significantly greater number of training images in
practice.

The input XCO, fields are standardised using the mean
and variance over all pixels of all images of the training
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dataset. All the results in the following Sect. 4 were ob-
tained on the test dataset, which was unobserved until the
final evaluation. Furthermore, the results are obtained on
a non-augmented test dataset, since the WBCE metrics of
the model on augmented or non-augmented test datasets are
similar, and we are primarily interested in segmenting non-
augmented images.

4 Applications

To evaluate the performances of the CNN plume segmen-
tation, two alternative segmentations to compare the per-
formances to (hereafter called references) are described in
Sect. 4.1. Then, the U-Net algorithm is trained and tested in
two configurations.

In Sect. 4.2, the first configuration, we investigate the abil-
ity of the U-Net algorithm to generalise to new data from the
same region. The U-Net algorithm is trained and tested on
pairs of XCO» and plume images in Grand Paris, IdF, Berlin,
Lippendorf, and in plume clusters centred at Jinschwalde or
Boxberg. Several training set-ups are considered, where the
CNN is trained either on all available data or only on data
from one location.

In Sect. 4.3, the second configuration, we investigate the
ability of the U-Net algorithm to extrapolate on unseen data
from another area. The U-Net algorithm is trained on pairs of
XCO; and plume images in Grand Paris, IdF, Janschwalde,
Lippendorf, and Boxberg and tested on Berlin images.

4.1 Alternative segmentations for comparison
4.1.1 Neutral reference

Two references are considered to assess the quality of the
CNN segmentation through their WBCE scores. First, we
use a constant probability map as a first reference, which is
in practice equivalent to a prediction of non-segmentation of
the plume. Since the WBCE metric only deals with proba-
bilities (rather than Boolean values), this constant value is
a probability and must be chosen. For each hotspot dataset,
this probability is found to be the one minimising the WBCE
over all images of that hotspot with a differential evolution
algorithm (Virtanen et al., 2020; Storn and Price, 1997). In
practice, for each hotspot, the calculated probability is close
to 0.15-0.2. This first segmentation reference output is called
the neutral reference in the following. Figure 6 shows the his-
tograms of the WBCE computed on the plume cluster centred
at Boxberg and the Berlin plume with respect to the neutral
reference.

Large variations can be observed because the neutral
WBCE score for the Berlin images varies between 0.25 and
1. This means that the score associated with a segmentation
is very dependent on the image considered; for one image, a
score of 0.25 corresponds to a good segmentation, and for
another image, such a score is equal to the neutral score
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Figure 6. Histograms of the WBCE scores over all images in Berlin
and Boxberg obtained with the neutral reference.

and therefore equivalent to the absence of plume detection.
Therefore, in the following, to make the segmentation scores
more consistent over the samples, the WBCE of an image is
systematically divided by its WBCE obtained with the neu-
tral reference segmentation. This new metric is called the
NWBCE (normalised weighted binary cross-entropy metric),
and a score of 1 means that the resulting segmentation is no
better than having no detection.
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4.1.2 A segmentation technique based on thresholding:
ddeq

The second reference to be compared with our segmen-
tation method is the detection algorithm implemented in
the Python package for data-driven emission quantification
(ddeq; https://gitlab.com/empa503/remote-sensing/ddeq, last
access: 10 July 2023)). This algorithm can be described as
a thresholding method because it first detects the signal en-
hancements that are significant in relation to instrument noise
and background variability and then identifies plumes as co-
herent structures (Kuhlmann et al., 2019a, 2021). Since the
algorithm returns a Boolean map, the identified non-plume
and plume pixels (0 and 1) are mapped to two values, which
are defined independently for each hotspot. These two values
are chosen so as to minimise the WBCE over all images from
the hotspot. Figure 7 shows four applications of the ddeq al-
gorithm to the CO; images (two plume clusters centred in
Boxberg and two in Berlin).

The first plume cluster (centred in Boxberg) image (first
row) obtains a much better NWBCE (0.79) than the second
example (0.97) because the plume signal-to-background ra-
tio is much higher. The same is true for the Berlin plume
segmentations. Furthermore, due to the low SNR, no plume
is detected on the fourth example, and a constant probabil-
ity map is returned (which gives a score close to the neutral,
and not 1, because the mapped probability is different). The
thresholding method allows the segmentation of plumes, or
portions of plumes, associated with signals above the back-
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Figure 7. Four examples of ddeq plume segmentation algorithm applications on simulated satellite images centred at Boxberg (first two
rows) or Berlin (last two rows). The first column corresponds to XCO, simulated satellite images in ppmyv, the second column to the targeted
plumes, and the third column to the predictions of the ddeq segmentation algorithm mapped to probability images. All times given to the left

of the figures are in UTC.

ground. But if no visible signal above the background is de-
tected, then the plume is not identified.

4.2 Generalisation on new data from the same region
4.2.1 Choice of the training dataset

In this section, we investigate the performance of the U-Net
algorithm when trained and tested on data from the same re-
gion. We consider two ways to train the model, namely to
train to segment plumes on images of a given location, so
that the U-Net algorithm can either exploit only the XCO,
field and plume pairs from that specific location, or the XCO,

Geosci. Model Dev., 16, 3997-4016, 2023

field and plume pairs from all available locations. The two
approaches yield different results, as summarised in Table 2.

In the case of Berlin and IdF, the two training set-ups give
approximately the same results for the mean and median. In
the case of the Grand Paris and, to a lesser extent, Lippen-
dorf, using additional training data improves the quality of
the results. For the Paris fields, this might come from a lack
of data (only 3 months). In contrast, in the Jinschwalde and
Boxberg cases, using additional data degrades the results.
This is most likely due to the fact that these two areas are
characterised by multiple plumes (on the same image). In the
following sections, we present the predictions for the best
training configuration. In the case of Berlin, Grand Paris, IdF,
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Table 2. NWBCE mean-median over the XCO, field and plume
pairs (i.e. overall model performance) of a certain region in two
situations, where the U-Net algorithm is either trained on fields from
the same region or on all available data. The lower the score, the
better.

Test/train location Same region All data
Mean Median Mean Median
Berlin 0.45 0.35 0.46 0.36
IdF 0.66 0.54 0.60 0.57
Grand Paris 0.68 0.53 0.54 0.48
Lippendorf 0.66 0.58 0.61 0.52
Janschwalde 0.39 0.31 0.58 0.55
Boxberg 0.40 0.33 0.55 0.47

and Lippendorf, the U-Net algorithm trained on all available
data is used, and in the case of Jinschwalde and Boxberg, the
U-Net algorithm trained with a restricted dataset is used.

4.2.2 Score histograms

Figure 8 presents the kernel density estimates of the NWBCE
scores of the U-Net algorithm and ddeq segmentation meth-
ods, according to the origin of the XCO, field and plume
pair.

As a general rule, the lower the score, the better the seg-
mentation. As shown in the following examples, scores be-
tween 0 and 0.5 usually correspond to very good to good
segmentation and scores between 0.5 and 0.8 to 0.9 to non-
perfect but usable segmentation. A score of 1 is neutral (nei-
ther worse nor better than predicting no plume), and a score
above 1 corresponds to a worse segmentation than the neu-
tral (i.e. a segmentation of the wrong part of the image). A
number of applications with scores are presented in the fol-
lowing.

For all hotspots, our deep learning model consistently out-
performs the ddeq segmentation method on the NWBCE
metric. For example, the average NWBCE over all Berlin im-
ages is 1.0 for the neutral (by definition), 0.95 for the ddeq
method, and 0.44 for the CNN segmentation. Over all Jin-
schwalde images, the average NWBCE is 0.90 for the ddeq
method and 0.40 for the CNN method. Note, however, that
the CNN is optimised on the NWBCE metric, whereas the
ddeq segmentation method is not. The choice of a metric is
to some extent arbitrary, and the difference between the two
methods would change if another metric, and/or another def-
inition of the plume, were chosen.

The best segmentation scores are obtained for Jin-
schwalde and Boxberg, which is consistent with the fact that
these images contain several plumes of high intensity. The
histogram of the Lippendorf NWBCE metric shows overall
very good results but with a large variance and a significant
part of the scores above 1. The distribution of the Berlin fields
has a wider tail than that of the power plant fields; this can
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be explained by the shape of the city’s plumes, which are
generally more complex and therefore more difficult to seg-
ment than the straight power plant plumes. The poorer results
over Grand Paris and IdF, on average, are due to the smaller
number of available images and the low SNR of Grand Paris
plumes. The small plumes specific to IdF (outside of Grand
Paris) are almost never recovered, as shown in the IdF his-
togram, which is similar to the Grand Paris histogram but
slightly shifted to the right.

4.2.3 Berlin region predictions

In Fig. 9, we present four typical Berlin plume segmentations
with the U-Net algorithm. The XCO; images (left column)
are fed into the CNN, which yields the segmentation prob-
ability maps (right column) of the XCO; plumes. For the
classical binary cross-entropy metric, a pixel with a proba-
bility equal to 0.5 means no information on the class of the
pixel (plume or non-plume). We assume that this can be ex-
tended to the WBCE metric because all pixels with a proba-
bility greater than 0.5 can be considered to be part of a plume,
while pixels below 0.5 can be considered to be pixels that are
not part of a plume. Consequently, a divergent (at 0.5) colour
map is used to represent the CNN model predictions. The
middle images are the weighted Boolean map transforma-
tions (according to Eq. 3) of the actual plumes for compari-
son. The four images in order are illustrative of the four quar-
tiles in terms of their performances, respectively (according
to their NWBCE score).

The first and second rows show a very accurate segmenta-
tion, as the model predicts the correct direction, shape, and
thickness of the plume. The third plume is rather well re-
covered but with some inaccuracies; in particular, the tail of
the plume is reconstructed with less accuracy, which was ex-
pected since the concentrations on the tail reach very low
values. Moreover, the core of the plume is segmented with
less confidence, and the probabilities of the plume pixels are
close to 0.8. In general, the prediction confidence is posi-
tively correlated with the NWBCE score. Similarly, the un-
certainty, represented by the number of pixels close to 0.5,
and the NWBCE score are inversely correlated. To a certain
extent, this is true for all hotspots and is a measure of model
uncertainty. It can also be used in evaluations without access
to the truth to quantify how certain the predictions are. Con-
firming this correlation, the fourth row shows a very uncer-
tain prediction that still correctly finds the direction and core
of the plume. For all images, the position of the plume origin
is always accurate. This is not trivial because, in the training
set, horizontal and vertical shifts are used, which means that
the plume origin is not known in advance by the model. We
note that the plume is often masked by background variabil-
ity and instrument noise, which does not prevent its detection
by the CNN.

Geosci. Model Dev., 16, 3997-4016, 2023



4008

J. Dumont Le Brazidec et al.: Plume segmentation in XCQO, images with convolutional neural networks

Boxberg Janschwalde

Density
N

[—1 CNN U-net
ddeq

Lippendorf

Berlin IdF

Density
N

0 a

Grand Paris

0 0.5 1.0 1.5 0 0.5
Norm. weighted binary cross entropy

1.0 1.5 0 0.5 1.0 1.5
Norm. weighted binary cross entropy

Norm. weighted binary cross entropy

Figure 8. Kernel densities of the histograms of the NWBCE scores of the U-Net algorithm and ddeq segmentation techniques over all images

of the various geographical domains.

4.2.4 Plume cluster centred in Boxberg predictions

In Fig. 10, the segmentation of four images centred at
Boxberg power plant is shown. Sources are shown from the
bottom to the top of the images, featuring Turow, Boxberg,
Schwarze Pumpe, and Janschwalde. The four images in or-
der are representative of the four quartiles of their NWBCE
score, respectively.

All first three segmentations are very accurate, and the ori-
gins, thicknesses, and directions of the plumes are accurately
reconstructed. Some failures seen in are the mixing of the
two plumes in the centre of the first image, the no detec-
tion of the Schwarze Pumpe plume in the second image, or
the wrong evaluation of the direction of the Turow plume in
the third image. The fourth segmentation’s high NWBCE is
mainly due to the addition by the model, with a high prob-
ability of a ghost plume to the left of the image, and a clear
enhancement on the XCO, field at the same location explains
the U-Net error. The absence of power plants or major cities
in the area raises questions about the origin of this enhance-
ment.

4.2.5 Lippendorf predictions
In Fig. 11, we show the segmentation of four images centred
at the Lippendorf power plant. The four images from top to

bottom are illustrative of the four quartiles of their NWBCE
score.

Geosci. Model Dev., 16, 3997-4016, 2023

The first two XCO; images are well segmented, and the
origins, thicknesses, and directions of the plumes are re-
trieved by the CNN model. The third row shows a strange
behaviour of the plume which is not well anticipated by the
model (i.e. the plume returns itself). The fourth line shows
a very poor recovery, with a score of less than 1. The Lip-
pendorf plume is in fact well segmented, but the residuals
of other plumes are not, resulting in a significant error. This
problem is at the origin of a large part of the errors in the
Lippendorf images and could be solved by using a better
loss/metric that would take into account the position of the
source. A complementary study on the overall performance
of the model can be found in the Supplement.

4.2.6 Paris predictions

In Fig. 12, we present four typical IdF plume segmentations,
with or without the IdF specific plumes, using the U-Net al-
gorithm. The four images in order are representative of the
four quartiles of their NWBCE score, respectively.

The first three images show segmentations that reconstruct
the direction and origin of the plume. However, the thick-
ness is less and less well defined as the NWBCE increases.
The other potential plumes outside Paris are systematically
missed by the model because of their concentration being too
low. Moreover, as the NWBCE increases, the pixel-plume
predictions are closer and closer to 0.5, showing the hesi-
tations of the model. Finally, the plume in the last image
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Figure 9. Examples of the application of U-Net algorithm to images in the Berlin region. The first, second, and third columns correspond
to XCO, images of Berlin, weighted Boolean plumes, and CNN predictions as probability maps, respectively. The fourth column shows the
application of the detection algorithm implemented in the Python package ddeq. The first, second, third, and fourth rows are representative
of the first, second, third, and fourth quartiles of the NWBCE scores, respectively. All times given to the left of the figures are in UTC.

is completely missed, and the model makes no predictions
above 0.55, expressing its inability to find the plume.

4.3 Extrapolation on unseen data from another region

In this section, we investigate the performance of the U-
Net algorithm when trained and tested on data from differ-
ent regions. This task is more difficult than generalising on
plumes from the same region, where the training and test
sets have more similarities due to the local climatology in
terms of meteorology and pollution. To study the potential
for extrapolation, the U-Net model is trained on the Paris,
Janschwalde, Boxberg, and Lippendorf fields and tested on
the Berlin fields. Berlin is chosen because cities are a partic-
ularly complicated case, as their signal is lower and because,
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in this way, we can rely on a large set of images to validate
and test the CNN model.

Figure 13 shows the histograms of the NWBCE scores for
all Berlin test images, depending on the method used (left),
and with the CNN method, in the case of the geographical
extrapolation of all NWBCE scores for several ranges of the
Berlin emissions rate at the time of the image (right).

The mean NWBCE score of all prediction—truth pairs is
0.57, and the median is 0.49, which is higher in both cases
compared to when the model is trained on Berlin images only
(see Sect. 4.2) but still very satisfying; the model extrapo-
lates well and outperforms the ddeq segmentations accord-
ing to the NWBCE metric. In addition, the main divergence
between the generalisation and extrapolation histograms is
a shift to the right of the part of the histogram between the
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Figure 10. Examples of the application of U-Net algorithm on images centred at Boxberg. Sources are shown from bottom to top in each
image, with Turow, Boxberg, Schwarze Pumpe, and Janschwalde. The first, second, and third columns correspond to the XCO, images,
weighted Boolean plumes, and CNN predictions as probability maps, respectively. The fourth column shows the application of the detection
algorithm implemented in the Python package ddeq. The first, second, third, and fourth rows are representative of the first, second, third, and
fourth quartiles of the NWBCE scores, respectively. All times given to the left of the figures are in UTC.

scores of 0 and 0.75. It is explained later in this section that
segmentations with an NWBCE below 0.75 are generally
good enough for inversion. In other words, the switch from
generalisation to extrapolation mainly degrades highly accu-
rate segmentations to “only” accurate segmentations.

The plumes that we assess are the consequence of a vari-
ety of emissions levels. For example, Berlin emissions range
from approximately 4 to 35 Mt yr—!. In the right histogram, it
can be observed that the results, quite naturally, deteriorate in
the case of low-emission plumes. For high-emission plumes,
the density peaks at 0.25, whereas it peaks at 0.5 in the case
of low-emission plumes. The variance in the NWBCE met-
ric density for the low-emission plumes is also significantly
higher.

Geosci. Model Dev., 16, 3997-4016, 2023

In Fig. 14, we present four typical Berlin plume segmen-
tations with the U-Net algorithm. The four images from top
to bottom are illustrative of the four quartiles, respectively
(according to their NWBCE score).

The first three images show segmentations that recover the
direction and origin of the plume. The thickness of the plume
is also well reconstructed in the first two examples, but part
of the plume is missed in the third example, which gives the
largest fraction of the error; this miss is probably due to a gra-
dient in the background field. The second and third examples
also show a significant number of pixels at values around 0.5,
expressing the uncertainty in the model. In these examples,
the plume is masked by background variability and instru-
ment noise yet is still detected by the CNN. For the fourth ex-
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Figure 11. Examples of the application of U-Net algorithm on images centred at Lippendorf. The first, second, and third columns correspond
to XCO, images, weighted Boolean plumes, and CNN predictions as probability maps, respectively. The first, second, third, and fourth rows
are in the first, second, third, and fourth quartiles of the NWBCE scores, respectively. All times given to the left of the figures are in UTC.

ample, the deep learning model fails to detect the plume and
yet diagnoses higher uncertainty. Further analysis shows that
most of the last quartile’s results are difficult to use for inver-
sion because they partially or completely miss the plume or
express too much uncertainty.

5 Conclusions
The future availability of satellite images of CO, columns,
such as the Copernicus CO; Monitoring (CO;M) mis-

sion, opens up new possibilities for the assessment of lo-
cal CO; emissions. Emissions can be assessed from CO,

https://doi.org/10.5194/gmd-16-3997-2023

plumes of hotspots in the satellite images (Nassar et al.,
2017, 2022). This data-driven assessment needs to detect
plumes from satellite images, which is difficult for the thresh-
olding method due to the low SNR of the plume. Deep
learning and convolutional neural network (CNN) techniques
could provide more accurate plume detection because of their
ability to learn and capture plume-specific spatial patterns,
which do not necessarily depend on a significant concentra-
tion enhancement.

In this paper, we evaluate the ability of CNNs to accurately
detect the mask of a plume in an XCO, satellite image us-
ing simulated CO» fields. Each synthetic XCO; image is the
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to the corresponding emissions

(b).
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Figure 14. Examples of the application of the U-Net algorithm on images of Berlin. The first, second, and third columns correspond to XCO,
images of Berlin, weighted Boolean plumes, and CNN predictions as probability maps, respectively. The first, second, third, and fourth rows
are representative of the first, second, third, and fourth quartiles, respectively. All times given to the left of the figures are in UTC.

sum of the anthropogenic plume of a major hotspot (a city or
a power plant), background from other biogenic and anthro-
pogenic fluxes, and a random Gaussian noise to simulate the
satellite instrumental errors.

Our plume detection model is based on a CNN encoder—
decoder, the U-Net algorithm, with an EfficientNetBO back-
bone. It is an image-to-image model, which transforms the
full XCO, field into a map showing the positions of the
anthropogenic emission plumes. For training, we develop a
novel loss function that penalises the errors made on pix-
els associated with high plume concentrations more and thus
yields a more accurate definition of a plume than a simple

https://doi.org/10.5194/gmd-16-3997-2023

threshold value. This CNN is trained and tested in two con-
texts. First, the capacity of the model to generalise on un-
seen data from the same region is evaluated. The U-Net al-
gorithm shows very good performance, as most plumes are
precisely segmented, and the origin, thickness, and shape of
the plume are often accurately retrieved. Second, we evalu-
ate the ability of the model to extrapolate to unobserved data
from another region. Specifically, the model is trained with
simulated fields of Paris and power plants and tested with
fields in the Berlin area. The segmentations are slightly less
accurate than in the first context but are nevertheless very
satisfactory; about half of the Berlin plumes are accurately

Geosci. Model Dev., 16, 3997-4016, 2023
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segmented, with the plume shape, thickness, direction, and
origin being recovered, and 75 % of the segmentations are
accurate enough to be used for inversion.

The observed good performance of the U-Net architecture
is due to the ability of the convolution layers to capture de-
tailed spatial patterns corresponding to plumes, even when
the concentrations of these plumes are partially covered by
high satellite noise or background variability. It allows the
model to outperform the segmentations done by the thresh-
olding technique, according to the concentration-weighted
metric, whether the model trained on some data is tested on
data from the same region or not. The U-Net algorithm is ef-
fective over a wide variety of plumes (cities, power plants,
diverse regions, and several levels of hotspot emissions). Its
training time is less than 1 d, while once the model has been
trained, the evaluation of a new image is less than a second.
However, although the model performs better when trained
and tested on data from the same region, it would be too ex-
pensive to generate simulations on all the cities and power
plants whose plumes we wish to segment. Therefore, we be-
lieve that the goal is the development of a universal CNN,
which is trained only on a limited sample of cities and power
plants and highly efficient on all of them. The model in this
paper, trained on Paris and power plant data and tested on
Berlin, already shows accurate and very satisfactory segmen-
tations of the Berlin plumes, but the results need to be con-
firmed on multiple cases.

It is very likely that many other techniques could be ap-
plied to improve these segmentations, which could be based
on the following:

— more advanced and powerful NN architectures, such as
transformers, or on CNN networks with more parame-
ters; and

— an improvement of the distribution of the data by in-
creasing the number of images used or by using more
carefully chosen augmentation techniques.

For all of these reasons, CNN methods appear to be very
suitable for CO, plume segmentation problems on satellite
data. However, the model was evaluated on simulated data,
which does not take into account all the problems of plume
detectability presented by real satellite images (in particular
clouds and patterns of systematic errors) due to surface re-
flectance and the aerosol dependency of the retrievals. Con-
sequently, the method needs to be extended and validated on
full OSSEs, where fields with clouds and satellite swaths are
taken into account, and afterwards on real satellite data.

Finally, as the CO, emission rate is proportional to the
mass of the corresponding plume, accurate plume segmen-
tation should lead to an accurate emission estimate. The re-
liability and accuracy of the CNN model segmentations sug-
gest that a well-trained CNN fed by these segmented plumes
could be a very efficient hotspot estimator.
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