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A B S T R A C T   

In the presented research, the intergranular elastic interaction and the second-order plastic incompatibility stress 
in textured ferritic and austenitic steels were investigated by means of diffraction. The lattice strains were 
measured inside the samples by the multiple reflection method using high energy X-rays diffraction during 
uniaxial in situ tensile tests. Comparing experiment with various models of intergranular interaction, it was 
found that the Eshelby-Kröner model correctly approximates the X-ray stress factors (XSFs) for different re-
flections hkl and scattering vector orientations. 

The verified XSFs were used to investigate the evolution of the first and second-order stresses in both austenitic 
and ferritic steels. It was shown that considering only the elastic anisotropy, the non-linearity of sin2ψ plots 
cannot be explained by crystallographic texture. Therefore, a more advanced method based on elastic-plastic self- 
consistent modeling (EPSC) is required for the analysis. Using such methodology the non-linearities of cos2φ 
plots were explained, and the evolutions of the first and second-order stresses were determined. It was found that 
plastic deformation of about 1–2% can completely exchange the state of second-order plastic incompatibility 
stresses.   

1. Introduction 

Knowledge of the residual stress state is essential to understanding 
the mechanical behavior of polycrystalline materials. The element may 
be damaged or strengthened when external stresses are added to this 
stress, which develops during mechanical or thermal processing. 
Therefore, the macroscopic residual stress (first-order stress) in the el-
ement’s subsurface layer is important; for instance, compressive stress 
slows crack initiation and propagation, while tensile stress typically 
speeds it up. Also, the so-called second-order residual stresses [1], 
characterizing the heterogeneity of the stresses on the scale of poly-
crystalline grains, may affect the plastic deformation process of the 
material [2,3]. These stresses, defined as the deviations of the stresses 

for individual polycrystalline grains from the mean macroscopic value 
(first-order stress), are caused by anisotropy or heterogeneity of the 
processes occurring for different grains and, as a result, lead to a 
mismatch in their shape or volume. For example, during plastic defor-
mation, second-order stresses result from the difference in activation of 
the slip system or twin phenomena occurring in grains belonging to 
different phases or having different lattice orientations [2–9]. 

In recent years, much effort has been put into studying the phe-
nomena occurring in individual grains using synchrotron diffraction 
measurements (e.g. [10–17]). These measurements make it possible to 
determine the state of stress for individual grains during the deformation 
of the sample. For example, in the work [10], the stress state in the 
grains of a titanium sample was determined using high-energy X-ray 
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diffraction microscopy. However, the tests were carried out for a limited 
number of single grains, and some dispersion of results was found. The 
first direct determination of the stress state for different grains in the 
AZ31 magnesium alloy was carried out by neutron diffraction [18]. In 
situ, measurements were made for several preferred texture orienta-
tions. Such experiments are promising due to the high statistics of the 
grains for which the measurement is performed. However, both methods 
have some limitations; direct grain stress scanning with a microscopic 
synchrotron beam can be performed for large grains with dimensions of 
several tens of μm, and due to the long measurement time and compli-
cated data processing, it can be performed for a limited number of 
specific grains. On the other hand, neutron measurements of grain 
stresses for groups of grains can only be performed for a highly textured 
sample. 

Diffraction methods based on the measurement of lattice de-
formations are commonly used to determine first-order stresses in a 
polycrystalline material, both textured and quasi-isotropic (i.e. having a 
random orientation distribution). The stress tensor can be calculated 
from the measured elastic strains only when the so-called XECs or XSFs 
(X-ray Elastic Constants or X-ray Stress Factors [19,20]) relating lattice 
elastic deformation with the first-order stresses (mean stresses for 
considered volume), are known. The values of XSFs (or XECs) are 
determined directly from the experiment or calculated from well-known 
grain interaction models [9,19,21], e.g., Reuss [22], Voigt [23], 
Eshelby-Kröner [24–26], and free-surface [9]. The concepts of the free- 
surface model are provided in [9], whereas the standard models, i.e., 
Reuss, Voigt, and Eshelby- Kröner approaches, are extensively discussed 
in the literature (e.g. [19–21,27]). 

However, a given model’s applicability is usually not well-argued, 
considering such effects as relaxation of the forces perpendicular to 
the surface, grains size, and shape. In the previous works, usually, the 
Eshelby-Kröner was regarded as the closes to the real material; however, 
it is not a general rule as was shown, for example, in the case of near- 
surface volume [28,29], in the case of textured samples [27,30] or for 
the columnar microstructure of grains in the coatings [21]. Therefore, 
the first objective of this study is to verify the accuracy of XSF’s model in 
stress analysis using representative information gained from the exper-
iment, i.e., using different hkl reflections and many orientations of the 
scattering vector. So, the Voigt, Reuss, and Eshelby-Kröner models are 
compared with experimental XSFs determined for austenitic and ferritic 
steel. A further requirement for the model’s applicability is the accuracy 
of the fit between the theoretical and measured lattice strains. 

The important aim of the present study is to apply the verified XSFs 
to study the development of the first- and the second-order stress in 
textured austenitic and ferritic steel subjected to a uniaxial tensile test. 
The stress was determined using the multireflection method [3,31–33]. 
Second-order plastic incompatibility stresses are the fluctuation around 
mean stress resulting from differences in plastic deformation of crystals 
having different orientations. Their effect may be observed as non- 
linearities or changes in the slope of the < a(ψ,φ)>hkl vs. sin2ψ for 
different orientations of the scattering vector (where ψ angle is between 
scattering vector and normal to the surface and φ is a rotation angle 
about the normal, c.f. [30] measured for polycrystalline samples sub-
jected to elastoplastic deformation [34–36]. The elastic anisotropy of 
the crystallites within textured samples would be the first cause of the 
non-linearities; however, in many cases, the effect of the second-order 
stresses can be even more significant [8,9,31]. The elastic anisotropy 
can be incorporated in stress analysis if the XSF values are known from 
the experiment or computed using the suitable grain interaction model, 
as has been done in this work. The calculations of XSFs, based on the 
crystallographic texture and single crystal elastic constants, allow for the 
prediction of the character of sin2ψ plots for a sample under applied or 
residual macrostresses. Nonetheless, the interpretation of non-linearities 
based solely on elastic anisotropy is typically insufficient. Therefore, the 
first- and second-order plastic incompatibility stresses analysis requires 

a more advanced method based on modeling the plastic deformation 
process [9,25,37–41]. It is worth noting that in many works, the pres-
ence of the second-order plastic incompatibility stresses was observed as 
the changes in the tendency of the lattice strains dependence vs. 
macroscopic stress, measured in the direction of applied load and 
transverse direction (the experimental lattice strains were compared 
with elastic-plastic self-consistent model) [40,42]. However, the distri-
bution of these stresses in Euler space or their mean amplitude was not 
determined. Previously, we determined the mean von Mises second- 
order plastic incompatibility stresses using multiple reflection methods 
during tensile for duplex steel [3] and pearlitic steel [32]. A similar 
analysis is done in this study, but additionally the distribution of second- 
order stresses in Euler space for single-phase austenitic and ferritic steels 
is determined and presented. The methodology presented below was 
applied to in situ measurements of lattice strains during a tensile test. 
The diffraction experiment was performed in transmission mode using 
high-energy synchrotron radiation for austenitic and ferritic steel. The 
XSFs were calculated using the Eshelby-Kröner model, accounting for 
texture [21], and the model values were verified in this experiment 
during the unloading of the sample. Hence, the complete stress state 
analysis has been done using correctly determined XSFs and including 
the second-order stresses. 

The basic equation relating the first-order stresses σI
ij with corre-

sponding elastic lattice strain < ε(ψ,φ)>e
hkl can be written in the 

following form: 

< d
(
ψ,φ

)
>σ

hkl − d0
hkl

d0
hkl

=< ε
(

ψ,φ

)

>e
hkl = Fij(hkl,ψ,φ, f )σI

ij (1)  

where: < d(ψ,φ)>σ
hkl is the values of interplanar spacings measured 

using hkl reflection in a direction characterized by angles ψ and φ 
[19,30] for a material subjected to the first-order stress σI

ij, d0
hkl is the 

stress free interplanar spacing, Fij(hkl,ψ,φ, f) are the XSFs and f denotes 
ODF (Orientation Distribution Function) characterizing crystallographic 
texture. 

This equation represents an elastic response of the lattice to the re-
sidual or applied stress σI

ij and it can be used to determine the values of 
XSFs experimentally. For example, if a known increment of uniaxial 
stress ΔΣ11 = Σ(2)

11 − Σ(1)
11 applied to the sample during the tensile test, the 

factor F11(hkl,ψ,φ, f) can be calculated from the corresponding lattice 
strain, measured as the change in the interplanar spacings: 

F11(hkl,ψ,φ, f ) =
< ε
(
ψ,φ

)
>e

hkl

ΔΣ11
=

< d
(
ψ,φ

)
>Σ2

hkl− < d
(
ψ,φ

)
>Σ1

hkl

< d(ψ,φ)>Σ1
hkl ΔΣ11

(2)  

where: < d(ψ,φ)>Σ2
hkl and < d(ψ,φ)>Σ1

hkl correspond respectively to the 
interplanar spacings measured under uniaxial loads Σ(2)

11 and Σ(1)
11 applied 

to the sample. 
The above formula enables the determination of the XFSs from 

measured in situ changes in interplanar spacings using appropriate 
experimental techniques for the increments of the stresses ΔΣ11 in the 
elastic range of sample loading or unloading. Then, the model calculated 
XSFs Fmod

11 (hkl,ψ,φ, f) can be compared with the experimental ones 
Fexp

11 (hkl,ψ,φ, f). It should be emphasized that in this incremental 
method, the influence of the residual stresses on the experimentally 
determined XSFs is avoided because the lattice strains corresponding to 
these stresses are canceled when the differences < d(ψ,φ)>Σ2

hkl− <

d(ψ,φ)>Σ1
hkl are calculated [28,43]. 

Verification of the XSFs, presented in our previous work [28], can be 
done by analyzing the results of residual stress measurements. In such a 
case, the accuracy of fitting theoretical lattice parameter values to 
measured ones is evaluated for several XSFs models. Assuming that the 
effect of the σI

ij on the measured < a(ψ,φ)>σ
hkl is dominating (i.e., the 

plastic incompatibility is not significant, and the influence of stacking 
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faults is negligible), the values of the first-order stresses σI
ij and value of 

strain-free parameter a0 can be determined using least square method 
based on the well-known equation: 

< a
(

ψ,φ
)
>σ

hkl = Fij(hkl,ψ,φ, f )σI
ija0 + a0 (3)  

where the values < a(ψ,φ)>σ
hkl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + k2 + l2

√
< d(ψ,φ)>σ

hkl are 
determined experimentally for cubic lattice. 

The verified XSFs can be used to determine residual or imposed 
sample stresses. In this work, the Eshelby-Kröner XSF model is applied to 
study the variation of the stress state within the austenitic and ferritic 
sample during elastic-plastic deformation. The diffraction measure-
ments of the lattice strains were done inside the sample (transmission 
method) during a tensile test. 

In a plastically deformed material, the lattice strains < ε(ψ,φ)>hkl 
can be expressed as a superposition of strains induced by macrostresses 
< ε(ψ,φ)>e

hkl and the lattice strains induced by second-order in-
compatibility stresses < ε(ψ,φ)>pi

hkl: 

< ε(ψ,φ)>hkl =< ε(ψ,φ)>e
hkl + < ε(ψ,φ)>pi

hkl =
< a(ψ,φ)>hkl − a0

a0
(4)  

where: < ε(ψ,φ)>e
hkl = Fij(hkl,ψ,φ)σI

ij. 
The elastic-plastic self-consistent (EPSC) model has already been 

presented and proven to determine both types of stresses [41,44,45]. In 
this method, it is assumed that < ε(ψ,φ)>pi

hkl = q < ε̃(ψ,φ)>pi
hkl, where <

ε̃(ψ,φ)>pi
hkl can be calculated by the self-consistent model and q is a 

fitting parameter scaling the magnitude of plastic strains. 
Therefore, the experimental lattice parameters < a(ψ,φ)>hkl ob-

tained from the diffraction method can be expressed as (cf. Eq. 4) 
[3,5,8,9,46,47]: 

< a(ψ,φ)>hkl =
[
Fij(hkl,ψ,φ, f )σI

ij + q < ε∼(ψ,φ)>pi
hkl

]
a0 + a0 (5) 

In the present interpretation, both terms of Eq. 4 are considered. 
Next, using information from the EPSC model, the magnitude of the 
residual stress σII,pi

ij and its dependence on the crystal orientation may be 
determined: 

σII,pi
ij = q σ̃II,pi

ij (6)  

where σ̃II,pi
ij are the plastic incompatibility stresses calculated from the 

EPSC model. 
In the case when diffraction elastic constants are known, strains are 

theoretically predicted, and lattice spacings are measured, all other 
unknown quantities from Eq. 5 can be found using the least square 
procedure, based on minimizing the merit function called χ2, which is 
defined as: 

χ2 =
1

N − M
∑N

n=1

(
< a(ψ,φ)>σ,exp

hkl − < a(ψ,φ)>σ,cal
hkl

δn

)2

(7)  

where < a(ψ,φ)>σ,exp
hkl and < a(ψ,φ)>σ,cal

hkl are the experimental and 
calculated lattice parameters, respectively, δn =

( 〈
a(ψ,φ)>σ,exp

hkl
)

is the 
measurement uncertainty (standard deviation) of < a(ψ,φ)>σ,exp

hkl for the 
n-th measurement, N and M are the numbers of measured lattice pa-
rameters and fitting parameters, respectively. 

The described methodology is applied in the presented study to 
simultaneously calculate first-order stresses and plastic incompatibility 
second-order stresses in the single-phase austenitic and ferritic steel 
using energy- and angle-dispersive diffraction. To predict the theoretical 
second-order stresses caused by plastic incompatibilities, the Elasto- 
Plastic Self-Consistent (EPSC) model based on the work of Berveiller 
and Lipiński [44] was used. 

In model prediction, the sample is represented by a number of grains, 

having a distribution of orientations reproducing the initial experi-
mental textures. First, the model sample is subjected to elastoplastic 
deformation; next, the external stresses are unloaded. So performed 
modeling was carried out to determine the values of ̃ε(ψ,φ), which are 
used in stress analysis using Eq. 5. 

2. Experimental 

2.1. Material 

The presented study investigated two materials, austenitic and 
ferritic stainless steel (composition given in Table 1), with high elastic 
anisotropy (Zener ratio A, given in Table 2). The single-crystal elastic 
constants (Cij) used in this work for the investigated samples are gath-
ered in Table 2. 

A dog-bone-shaped tensile specimen with the following gauge di-
mensions: 5 mm in width, 3 mm in thickness, and 33 mm in length was 
made of a hot-rolled austenitic steel sheet. In the case of a cold-rolled 
ferritic steel sheet, the dimensions of the sample having a similar 
shape were 1.5 mm in width, 1.5 mm in thickness, and 12 mm in length. 
The initial microstructure was analyzed using a Tescan Mira scanning 
electron microscope (SEM) equipped with an EDAX DigiView electron 
back-scattered diffraction (EBSD) camera. An EBSD analysis was per-
formed on two cross-sections of each specimen, perpendicular to the 
rolling direction and perpendicular to the normal direction (Fig. 1). The 
samples were prepared for microscopic observations using standard 
metallographic preparation steps. EBSD maps were collected at 25 kV, 
from 300 μm × 300 μm area with a step size of 0.25 μm. The average 
grain size, crystallographic orientation maps were analyzed using TSL 
OIM™ Analysis software. A single grain was defined as a set of at least 5 
measurement points surrounded by a continuous grain boundary 
segment with a misorientation of at least 15◦. In Fig. 1 the Inverse Pole 
Figure (IPF) maps for austenitic and ferritic samples were presented. A 
uniform microstructure with approximately equiaxed recrystallized 
grains in the austenitic sample with some recrystallization twins is seen. 
In the case of the ferritic sample, the grains show defected microstruc-
ture and more complex shapes but without significant elongation in one 
direction. Therefore in model calculations, the grains in both phases 
were approximated by spherical Eshelby inclusions, exhibiting statisti-
cally isotropic interaction with the matrix. The average grain size in 
austenitic and ferritic sample is 14.2 ± 7.5 μm and 9.3 ± 5.9 μm, 
respectively. 

The crystallographic texture was characterized by the X-ray 
diffraction method using Co radiation (Empyrean XRD Diffractometer, 
Malvern Panalytical). To do this, the pole figs. 110, 200, 211 for ferrite 
and 111, 200, 220 for austenite were measured. The ODFs calculated 
from pole figures using the WIMV method [49] are shown in Fig. 2., 
where the orientation of the sample coordinate system respectively to 
the main directions of the rolling process is defined. 

2.2. Measurements 

The X-ray diffraction method was used to measure in situ lattice 
strains during the tensile test. Two separate measuring methods: energy- 
dispersive (ED) diffraction for austenitic steel and angle-dispersive (AD) 
diffraction for ferritic steel, were used to determine the lattice strains in 
situ during a tensile test. As presented in Fig. 3, an experimental setup 
contained a dog-bone-shaped specimen stretched along the transverse 
direction (TD). Then, during the tensile test, the actual deformation in 
the elastic range and for small plastic deformation was measured by a 
gauge placed on the sample. 

It should be emphasized that during deformation of austenitic 316 L 
stainless steel, a dynamic phase transitions and twinning process can 
occur. However, in the diffraction patterns collected during the entire 
experiment, only diffraction peaks corresponding to the pure austenitic 
phase were found, which means that even if transformations occurred, 
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the volume fractions of the new phases are insignificant compared to the 
austenitic phase. In addition, twinning is more likely at higher strains 
than those used in our experiment, i.e. above 5–10% [51–53]. Therefore, 
it was assumed that crystallographic slip is the dominant deformation 
process. The same assumption was made for ferritic steel, for which the 
presence of a pure ferritic phase was found in the diffractograms 
collected during the tensile test. 

2.2.1. Energy-dispersive diffraction measurements 
For austenitic steel, the stress measurements performed in situ dur-

ing the tensile test were made using synchrotron ED diffraction at BESSY 
(EDDI@BESSYII beamline, HZB, Berlin) using a white beam (wave-
length in the range λ: 0.18–0.3 Å) [54,55]. The primary beam cross- 
section was equal to 1 × 1 mm2, and a double slit system restricted 
the angular divergence in the diffracted beam with apertures of 0.1 × 5 
mm2 to Δθ ≤ 0.005◦ (Fig. 3a). 

Gathered diffraction line profiles and calculations of the lattice 
strains for various scattering vector orientations were used to determine 
the stresses. Diffractograms were collected with the steps of 0.1 vs. cos2φ 
(Fig. 3), within the range of φ = (0◦, 90◦), in symmetrical transmission 
mode for a constant 2θ = 10◦ scattering angle. Note that in the presented 
experiments, the evolution of interplanar spacings or dependence of 
Fij(hkl,ψ,φ, f) are presented versus cos2φ instead of sin2ψ , as usual. This 
is because of the specific geometry of the measurements in which the tilt 
of the scattering vector from normal to the sample direction is given by 
constant angle ψ. However, it can be easily shown that in the case of the 
quasi-isotropic sample with negligible second-order stresses, the cos2φ 
plots should be linear, and the deviations from linearity are caused by 
crystallographic texture or/and second-order stresses. In the present 
work, the measurement was carried out for the non-loaded sample 
(initial), next for specific tensile loads (characterized by Σ11) applied to 
the sample and finally during elastic unloading of the load. To do this, a 
load rig (from Walter + Bai AG) with a maximum load of 20kN mounted 
on a Newport quarter circle cradle segment was employed for the in situ 
mechanical test. During plastic deformation, diffraction data were 
collected for fixed sample strain (E11) after stabilization of the load 
applied to the sample. 

Diffraction peaks were fitted with the pseudo-Voigt function to 
determine their positions Ehkl versus energy scale. The interplanar 
spacings < d>hkl were evaluated using the following equation: 

< d>hkl =
hc

2sinθ
1

Ehkl
(8)  

where: c - speed of light and h -Planck constant. 
As a result, the interplanar spacings for many diffraction hkl lines 

were simultaneously measured for given values of cos2φ. Such mea-
surement enables to determine σI

11 component of the stress tensor in the 
direction of the applied stress Σ11. 

2.2.2. Angle-dispersive diffraction 
For ferritic steel, the in situ stress measurements were performed 

during the tensile test using AD diffraction at the ID15 synchrotron 
beamline (ESRF, Grenoble, France). The applied high-energy synchro-
tron radiation with wavelength λ = 0.14256 Å and a beam size of 100 
μm × 100 μm enabled transmission measurements in the interior of the 
samples having a square cross-section with a side length of 1.5 mm 
(Fig. 3b). A square CCD detector (Thales PIXIUM 4700) was used to 
capture two-dimensional diffraction patterns during 10-s exposures 
separated by 5-s intervals. It was possible to conduct diffraction mea-
surements in situ throughout a continuous tensile test due to the short 
data collection period. 

The Fit2D software [56] was used to handle the collected data by the 
integration of 2D sectors with an angular size equal to Δφ = 2◦ and 
converting them into the 1D ones composed of intensity dependence vs. 
2θ scattering angle. The theoretical functions were then fitted to the 1D 
diffractograms using Multifit software [57]. The positions of the 
diffraction peaks were found by adjusting the pseudo-Voigt function vs. 
2θ, and the interplanar spacings < d>hkl for different {hkl} planes were 
determined from the Bragg law: 

< d>hkl =
λ

2sinθhkl
(9) 

Similarly, as in the previous experiment (ED diffraction for austenitic 
sample) the < d>hkl spacings can be determined simultaneously for 
many reflections hkl, for given values of cos2φ (with a small step of Δφ =
2◦). Therefore, the σI

11 component of stress tensor (in the direction of the 
applied load Fig. 3b) can be determined with small increments ΔΣ11 

corresponding to 10-s exposures separated by 5-s intervals during the 
continuous tensile test. 

It should be emphasized that the performed experiments were done 
using both ED and AD techniques. This allows to verify whether the 
proposed second-order stress testing methodology can be applied to 
these techniques and to ensure that the observed phenomena are actu-
ally caused by the processes occurring in the material, and not the ar-
tefacts leading to changes in the 2θ angle in the AD method or energy 
shifts in the ED method. An important question concerning the per-
formed experiment is whether enough information about second order 
stresses can be obtained and whether the experimental data are repre-
sentative for the studied samples. To check this, the analysis of grains’ 
contribution to the diffracted beam and the obtained results was done. 
At first, the integration paths in the Euler space were found for each 
experimental point, and the contribution of the grains to diffracted beam 
intensity was calculated considering the ODF function. This procedure of 
integration path determination is the same as when the pole figures from 
ODF are calculated [50]. Then the measure of orientations’ contribution 
to the diffraction peak was determined, taking into account the ODF 
values along the determined path. The traces in Euler space were found 
for all experimental points, and the contribution measure of grains was 
summed over all measuring points. The so-obtained function of orien-
tation contribution was normalized in the same way as ODF [50] and 
presented in Fig. 4 for both studied materials. As seen in Fig. 4 a, the 
experimental information is obtained mostly for preferred orientations 
(which contribution is dominating - cf. Fig. 2a), and on the contribution 
function, irregular spots corresponding to more informative regions are 
seen. This is the effect of the distribution of integration paths in the Euler 
space. In the case of ferritic steel, the step of φ angle was very small (step 
of Δφ = 2◦), and as a result, 46 points were obtained for each <
a(ψ ,φ)>hkl vs. cos2φ plot, while in the case of austenitic sample only 11 

Table 1 
Composition of investigated stainless steals samples (wt%) (ASS: austenitic stainless steal 316 L (Z2CND17–12) and FS: ferritic steal AIPI 5 L X65.   

Fe Cr Ni Mo Mn Cu Si P S C N Co 

ASS bal. 16.63 11.14 2.03 1.31 0.35 0.52 0.022 0.025 0.02 0.03 0.18 
FS bal. 0.034 0.399 0.023 1.38 0.193 0.285 0.008 0.001 0.031 – –  

Table 2 
Single crystal elastic constants (used for XSF calculation) [48] together with the 
Zener ratio.  

Material C11 (GPa) C12 (GPa) C44 (GPa) A 

Fe-austenite 197 122 124 3.3 
Fe-ferrite 231 134.4 116.4 2.4  
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points were measured for each plot. Therefore, the orientation contri-
bution function is very smooth and it is very similar to the ODF pre-
sented in Fig. 2b; however, it is seen that the regions with a small value 
of Φ - Euler angle are more representative. It can be concluded that for 
both tested samples, the preferred orientations contribute the most to 
the experiment; however, information from weak orientations is also 
included in the results. It is also seen that the informative region is 
distributed over a large part of the Euler space; therefore, the obtained 
results are representative for the majority of grains in the studied 
samples. 

3. Results 

3.1. Validation of the XSF 

In order to perform a correct stress analysis, it is necessary to 
appropriately determine the elastic diffraction constants, especially for 
elastically anisotropic crystallites. Thus, in the first step, the theoreti-
cally predicted constants using the grain interaction models (Reuss, 
Voigt, Eshelby-Kröner) and the crystallographic texture were compared 
with the experimental results. Elastic constants of austenite and ferrite 
and anisotropy of elastoplastic deformation were verified by analyzing 

Fig. 1. The EBSD-IPF orientation maps show the microstructure of austenitic (a, c) and ferritic (b, d) steel samples. The maps were measured at two different cross 
sections: (a, b) plane determined by rolling direction (RD) and normal direction (ND); (c, d) plane determined by rolling direction (RD) and transverse direction (TD). 
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the lattice strains measured for different hkl reflections. To do this, the 
interplanar spacings were measured before and after a considerable 
change in the applied load (corresponding to increment ΔΣ11). The F11 
constants were calculated from Eq. 2. In the case of austenite, the sample 
was subjected to elastoplastic deformation up to the applied stress Σ(1)

11 =

360 MPa and then completely unloaded to Σ(2)
11 = 0 MPa (i.e. ΔΣ11 =

− 360 MPa). As shown in Fig. 2a, the texture did not change significantly 
during the tensile test; therefore, it was insignificant in the calculation of 
the XSF. The ferritic sample broke after the last diffraction measurement 
at 5% strain because, in the experiment, a stress control mode was used 
with a constant step of the applied load (due to the low hardening of the 
ferritic sample, the strain increased sharply in the last step of increasing 
load). Thus, the F11 factors were calculated based on the experimental 
data for sample loading from a small load applied to fix the sample 
Σ(1)

11 = 5 MPa up to Σ(2)
11 = 352 MPa (i.e., ΔΣ11 = 347 MPa). Model cal-

culations were performed considering the initial texture shown in 
Fig. 2b. The calculated and experimental results of F11 vs. cos2φ are 
presented in Figs. 5 and 6. 

In Figs. 5 and 6, it can be clearly seen that the values of F11 (XSF) 

calculated by the Eshelby-Kröner model fit best the experimental results 
for both samples. Therefore, the stress measured by X-ray diffraction 
was determined using the XSF derived by the Eshelby-Kröner model 
with the ODF function shown in Fig. 2. It should be noted that despite 
crystallographic texture the non-linearities of the F11 vs. vs. cos2φ curves 
are very small, at least for the chosen direction of lattice strains mea-
surement. This is confirmed both by the experimental and theoretical 
results. 

It should be emphasized that the in situ test of factors F11 performed 
with multiple hkl reflections is very rigorous because many groups of 
crystallites with different orientations are involved in the diffraction 
experiment (cf. orientation contribution functions shown in Fig. 4). It 
proves that the used single crystal elastic constants and grain in-
teractions are correctly approximated. 

It is worth noting that, in our work, the careful verification of the 
applicability of the model for calculation XSFs is necessary because to 
evaluate the effect of second-order stresses, at first the effect of the stress 
applied to the sample must be known. It is well known that for textured 
samples, the nonlinearities of the < a(ψ,φ)>hkl vs. cos2φ (or <

a(ψ ,φ)>hkl vs. sin2ψ in standard stress analysis) can be caused by non-

Fig. 2. Normalized orientation distribution function (ODF) determined using Co radiation for austenitic (a) and ferritic (b) steel. For ferritic steel, only the initial 
texture was presented as the deformation for this sample was small. The sections through Euler space with the step of 5◦ are presented along the ϕ2. The Euler angles 
are defined with respect to sample axes RD, TD and ND (as in standard presentation for rolled sheet [50]). The levels express multiples-of-random-distribution. 

Fig. 3. An experimental setup used for lattice strain measurement in the case of austenitic steel by ED diffraction (a) and ferritic steel by AD diffraction (b). In the 
case of ED method the measurements were done for positive angles φ, while the positive φ+ and negative φ− are available from AD diffraction rings recorded by 2D 
detector. The stress tensors and orientation of the scattering vector are defined with respect to X coordinates for which x1 || TD, x2 || RD and x3 || ND. 
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linearities of F11 vs. cos2φ dependence (for the uniaxial test). Thus to 
minimize such an effect, the orientation of the scattering vector was 
changed between RD and TD because, in this case, the nonlinearities on 
F11 vs. cos2φ curves were small, as shown in Figs. 5 and 6. Therefore we 
avoided the problem of overlapping the nonlinearities coming from the 
anisotropy of XSF (due to texture) and those caused by the second-order 
stresses. 

3.2. Stress evolution during elastoplastic deformation 

Next, the results of stress measurements during the controlled tensile 
test were analyzed for both samples using the verified XSF. The inter-
planar spacings (Eqs. 8 and 9) were measured in situ for each certain 
number of loads in the elastic and plastic deformation range during 
loading and unloading. As already mentioned, the ferritic sample frac-
tured during the test before the unloading step. The force was applied 
along TD for both samples. Applying Eq. 3 and the fitting procedure for 
the experimental data, the set of quantities: first-order stress component 
σI

11, a0 and the q-factor were determined from Eq. 5 using the least 
square procedure. In fitting all lattice parameters < a(ψ,φ)>σ

hkl 
measured for different hkl reflections were used simultaneously for a 
given load or unloaded sample. The σI

22, σI
33 and shear first-order stress 

components were assumed equal to zero because uniaxial stress was 
imposed during the tensile test. The measurement of the < a(ψ,φ)>σ

hkl 
for orientations of scattering vector changed between RD (x2) and TD 
(x1) is enough to determine σI

11 and a0, similarly as in standard X-ray 
measurement with the assumption of zero normal stress (σI

33 = 0). It is 
worth noting that, the adjustement of the q-factor is based on model- 
calculated lattice strains < ε̃(ψ,φ)>pi

hkl fitted to experimental non-
linearities of the < a(ψ,φ)>σ

hkl vs. cos2φ plots. The lattice strains <
ε̃(ψ,φ)>pi

hkl are caused by all stress components of second-order stresses 
σ̃II,pi

ij , and information about the variations of these components and the 
form of the stress tensor for individual grains is determined by the 

model. The factor q multiplies the magnitude of lattice strains <
ε̃(ψ,φ)>pi

hkl and can be used as the scaling factor for all components of the 
model stress tensor ̃σII,pi

ij , to find their magnitudes in the real sample σII,pi
ij 

(for all grains simultaneously). Therefore, knowing the values of the q- 
factor, the second-order stresses σII,pi

ij (full tensor) were calculated from 
Eq. 6 for each orientation of the grain lattice. 

The self-consistent model of elastoplastic deformation elaborated by 
Lipinski and Berveiller [44] was used to calculate the values <
ε̃(ψ,φ)>pi

hkl needed to interpret the experimental results and to deter-
mine the second-order stresses from Eq. 6. The input file generated for 
EPSC model, contained 10,000 spherical inclusions (representing 
grains) with equal volume fraction and distribution of orientations 
determined based on initial experimental ODF (Fig. 2). Single crystal 
elastic constants defined with respect to the crystal lattice and the re-
sidual stresses σI,res

11 measured for the initially non-loaded sample were 
assigned to each inclusion. The input files created in this way were used 
to simulate the elastic-plastic tensile deformation of ferritic and 
austenitic samples using the EPSC model. 

In calculations, the isotropic hardening matrix and the linear hard-
ening law were assumed. All slip systems in all grains (for the given 
sample) had the same initial Critical Resolved Shear Stress (CRSS). The 
parameters characterizing slip system activation (CRSS) and hardening 
(H) [44] were optimized to adjust the theoretical macroscopic stress- 
strain curves to the experimental ones. The values of optimal parame-
ters for both samples are given in Table 3, while the fitted (model) and 
experimental macroscopic mechanical (obtained during in situ tensile 
test) curves will be presented in Figs. 11 and 12, together with the plots 
obtained from diffraction. 

Previously obtained values of CRSS and H parameters optimized by 
fitting the EPSC model to an experimental mechanical stress-strain plot 
for the austenitic sample are given by Neil et al. [40], and they are not 
far from those given in Table 2, i.e., τc

0 = 93 MPa and H = 375 MPa 
(represented by θ0 in that work). Certainly, these values are not the same 

Fig. 4. The normalized orientation contribution function calculated for the integration paths corresponding to experimentally measured diffraction peaks with the 
weights given by ODFs for (a) austenitic and (b) ferritic samples. The levels express multiples-of-equal-contributions. 
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because they depend on the material microstructure, chemical compo-
sition and performed treatment. Concerning studied ferritic steel, we 
have not found analogous results, but it is well known that τc

0 is related 
to the yield stress which could be very different for different types of 
microstructure and material processing. However, a very small work 
hardening (H → 0, at the beginning of plastic deformation, c.f. Table 3) 
is characteristic for ferrite, as was found, e.g., in pearlitic steel [32]. 

In the stress analysis using the least square method, seven reflections: 
200, 220, 222, 311, 331, 400, 420, and five reflections: 110, 200, 211, 
310, 220 were considered for austenitic and ferritic steel, respectively. 
The analysis was carried out for the initial non-loaded samples and for 
the samples subjected to various uniaxial loads applied during in situ 
measurements. Finally, the stresses were determined in the unloaded 
samples. In the case of the fractured ferritic specimen, the measurements 

were performed in a different location than during the tensile test to 
avoid the effect of stress heterogeneity close to the fracture surface. 

The first example of the < a(ψ,φ)>hkl vs. cos2φ curves is shown for 
the initial (non-loaded) samples in Fig. 7. The theoretical plots are 
presented for two assumptions, i.e. when the plastic incompatibility 
stresses are not present (dashed lines, q = 0) and when their influence is 
taken into account. The q parameter is determined from Eq. 5 (contin-
uous lines). 

In the case of initial austenitic sample, the q-fitting method had no 
impact on the results. Thus the small non-linearities in the experimental 
< a(ψ,φ)>hkl vs. cos2φ data do not coincide with those simulated for the 
uniaxial tensile elastoplastic deformation. It means that the residual 
second-order stresses generated during sample preparation, cannot be 
determined for the initial sample, and only the value σI

11 of tensile 

Fig. 5. F11 vs. cos2φ curves for experimentally obtained data for austenitic steel, using ED diffraction. Six different reflecting planes were used together with the 
following grain elastic interaction models: Reuss, Voigt, and Eshelby-Kröner. The experimental points (dots) correspond to the stress increment ΔΣ11 = − 360 MPa, 
during sample unloading. 
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residual first-order stress in the measured gauge volume was found. On 
the contrary, when second-order stress is taken into account in stress 
estimation for the initial ferritic sample (with adjusted q parameter), the 
results of the least square fitting are much improved, as shown in Fig. 7 
b. This means that the residual second-order stresses in the initial state of 
the ferritic sample well coincide with those predicted by the EPSC model 
for plastic deformation occurring during tensile test. Moreover, the first- 
order compressive stress σI

11 was obtained for the measured gauge vol-
ume. This sample contains residual stresses due to the cold rolling 
procedure followed by sample preparation. 

The second example of the < a(ψ,φ)>hkl vs. cos2φ curves is shown for 
the loads applied in situ during purely elastic tensile deformation 
(Fig. 8). In this case, the slopes of the plots significantly changed, 
showing the tensile character of the first-order stresses for both studied 
samples. However, the analysis of the second-order stresses shows the 
same results as for initial samples, i.e., no correlation between model 
and experiment non-linearities in the case of the austenitic sample 
(adjustment of q parameter does not improve the quality of fitting) and 
very good correlation of non-linearities in the case of the ferritic sample, 
as shown in Fig. 8 a and 8 b, respectively. That means that the state of 

Fig. 6. F11 vs. cos2φ curves for experimentally obtained data for ferritic steel, using AD diffraction. Five different reflecting planes were used together with the 
following grain elastic interaction models: Reuss, Voigt, and Eshelby-Kröner. The experimental points (dots) correspond to the stress increment ΔΣ11 = 347.3 MPa 
during elastic loading. 
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second-order stresses did not change significantly during the elastic 
loading of both samples. 

The next example of the < a(ψ,φ)>hkl vs. cos2φ curves was chosen for 
the significant plastic deformation of both samples under applied load 
(Fig. 9). In this case, the slopes of the plots increased, indicating the 
increase of applied tensile load. Also, interesting evolution of non- 
linearities was observed in the case of the austenitic sample (Fig. 9 a). 
Indeed, the solid lines representing results with adjustment of the q 
parameter started to match the experimental points. It implies that the 
non-linearities of the < a(ψ,φ)>hkl vs. cos2φ plots predicted by the 
model more closely match those obtained from measurements. There-
fore the plastic incompatibility second-order stresses (i.e., the second- 
order stresses induced by plastic deformation) can be determined 
using Eq. 6. It can also be concluded that the stress state for the grains 
was transformed entirely due to the plastic deformation, i.e., second- 
order stresses occurring initially in the prepared sample have been 
completely replaced with stresses generated due to plastic deformation 
during the tensile test. In the case of a ferritic sample, similarly as in the 
initial sample, the non-linearities in the sample subjected to plastic 
deformation are still well reproduced by model data (the fitting of the 
solid line is unquestionably better than that of the dashed line, as shown 
in Fig. 9 b. It means that no significant modification of the second-order 
stresses occurred due to plastic deformation during the tensile test. 

Finally, the last example of the < a(ψ,φ)>hkl vs. cos2φ curves refer-
ring to the results for the unloaded austenitic sample and the fractured 
ferritic sample is presented in Fig. 10. When comparing the initial (Fig. 7 
a) and unloaded state (Fig. 10 a) for the austenitic sample, it can be seen 
that the dependence < a(ψ,φ)>hkl vs. cos2φ changed significantly. This 
proves that the state of residual second-order plastic incompatibility 
stress was changed entirely during the plastic deformation of the sample. 
The essential improvement of fitting quality for the unloaded sample, 
when the q parameter is adjusted, confirms that the analysis is carried 
out correctly when the model data from the EPSC model for the tensile 
test are used. The results obtained for the fractured ferritic sample 
(Fig. 10 b) compared with the initial state (Fig. 7 b) show that no sig-
nificant change occurred in the state of second-order stresses. 

By applying Eq. 5 and by fitting the results from the model to the 
experimental data, the values of first-order stress σI

11 and the q factor 
could be found. Then the values of second-order stress σII,pi

ij for each 
polycrystalline grain was determined using Eq. 6 in which the model 
stresses ase multiplied by q factor. Finally, the mean value of von Mises 

stress σII,pi
Mises over all grains was calculated for the initial, loaded, and 

unloaded/fractured samples (for details, see [8,9]). The so defined σII,pi
Mises 

is a good measure of mean magnitude of second-order plastic in-
compatibility stresses because the hydrostatic stress computed from σII,pl

ij 

is equal to zero for purely plastic deformation, as it was also verified 
using EPSC model. In Figs. 11 a and 12a, the so-obtained values of 

stresses σI
11 and σII,pi

Mises are presented vs. sample strain E11. To determine 
the evolution of the stress state during the loading process, the first- and 
second-order stress are presented as the function of the superposition of 

the imposed stress ( Σ11) and residual stress in the initial non-loaded 
sample (σI,res

11 ), i.e.: Σ11 + σI,res
11 (Figs. 11 b and 12 b). These graphs 

illustrate the comparison of the first-order stress evolution in the irra-
diated volume during sample loading determined in two ways: as the 
sum of the residual stress (σI,res

11 ) superposed with the imposed stress 
(Σ11) and as the stress determined directly from the diffraction experi-
ment (σI

11) for the corresponding load. Certainly, the two values should 
be equal if the sample and stress state is homogenous. The difference 
between them indicates heterogeneity of the stress distribution across 
the sample along the direction x2 (Fig. 3) caused by the material pro-
cessing and preparation of the dog-bone-shaped samples. It should be 
emphasized that due to the much smaller size of the synchrotron beam 
spot compared to the sample width (in direction x2), the local stress state 
in the center of the samples was determined in both measured initial 
samples. As mentioned before in the case of the experiment performed 
for ferritic sample (the high energy synchrotron radiation with wave-
length λ = 0.14256 Å at ESRF) the beam size of 100 μm × 100 μm 
enabled transmission measurements in the interior of the sample having 
1.5 mm in width. The primary beam cross-section for the EDDI experi-
ment using a white X-ray beam was equal to 1 × 1 mm2, and again the 
spot size was smaller than the sample’s width equal to 5 mm. 

The evolution of the second-order stresses σII,pi
Mises vs. (σI,res

11 + Σ11) are 
also shown in Figs. 11 b and 12b. In addition, in Figs. 11 and 12, the 
results of the EPSC prediction corresponding to the experimental data 
are presented (solid lines). The prediction starts from the initial small 
residual stress σI,res

11 (tensile for austenitic sample seen in Fig. 11; and 
compressive for ferritic sample seen in Fig. 12) and ends at the residual 
stresses value remained after the tensile test, so after sample unloading. 
It should be emphasized that the parameters of the model (Table 3) were 
adjusted to reproduce the dependence of the first-order stress (in the 
information volume seen by diffraction) determined as σI,res

11 + Σ11 on the 
sample strain E11 (squares shown in Figs. 11 a and 12 a). 

In order to confirm the correctness of the chosen model (Eshelby- 
Kröner) for the calculation of the stress factor F11 the experimental 
values σI,res

11 + Σ11 are compared with the first-order stress σI
11 deter-

mined by diffraction using Eshelby-Kröner, Voigt, and Reuss model 
(Figs. 11 a and12 a). An excellent agreement was obtained for the 
Eshelby-Kröner model, while the use of both other models leads to a 
significant discrepancy between the stress calculated from the applied 
load (σI,res

11 + Σ11) and that measured by diffraction (σI
11) for both 

investigated materials. It supports the choice of the Eshelby-Kröner 
model for this study, which has already been verified in section 3.1. It 
should be emphasized that the perfect agreement between σI

11 and 
σI,res

11 + Σ11 stresses were obtained for the elastic range of deformation 
(see Figs. 11 b and 12 b), where the solid red line (obtained from the 
EPSC model) illustrates the equality σI

11 = σI,res
11 + Σ11. Slight deviations 

of the diffraction results from the solid red line are observed for the 
plastic deformation range, especially for the austenitic sample. This ef-
fect can be explained by a modification of the first-order residual stress 
distribution (heterogeneity) along the x2 axis, leading to different re-
sidual stress σI

11 in the measured volume after the tensile test compared 
to the initial value before loading (cf. Fig. 11 b, loading and unloading). 

Important results were obtained when the second-order stresses 

(characterized by σII,pl
Mises) were analyzed. The evolution of σII,pl

ij stresses 
should be discussed together with the changes in the figure of merit χ2 

(Eq. 8) describing the least square fitting quality of the calculated lattice 
parameters < a(ψ,φ)>hkl to the experimental results. 

In Fig. 13, the variation of χ2 vs. sample total strain E11 is shown for 
two ways of data treatment. First assumes q = 0 (the influence of σII,pl

ij is 
neglected), while the second takes into account the adjusted q-param-
eter. Both for austenitic (Fig. 13 a) and ferritic (Fig. 13 b) samples, the 
fitting is much better, i.e., χ2 is much lower when the q is adjusted in Eq. 

Table 3 
Input parameters characterizing the initial microstructure of the investigated 
materials.  

Structure Slip 
systems 

Initial CRSS τc
0 

(MPa) 
Hardening parameter H 
(MPa) 

bcc (ferrite) 〈111〉
{110} 

190 0 

〈111〉
{112} 
〈111〉
{123} 

fcc 
(austenite) 

〈110〉
{111} 

84 270  
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5 (excluding the two first points for the austenitic sample). 
In Fig. 14 the a0 stress-free parameter obtained in stress analysis was 

shown for different deformation of the sample, using the same range for 
a0 as for < a(ψ,φ)>hkl in Figs. 7 and 10. Comparing the variation of <
a(ψ,φ)>hkl in Figs. 7 and 10 with the changes of a0 in Fig. 14, it can be 
concluded that the value a0 obtained from the analysis is almost 

constant during the tensile test, and their insignificant changes do not 
influence results concerning determined first- and second-order stresses. 

Finally, it is interesting to present the dependence of the plastic in-
compatibility second-order stresses on grain orientation (i.e. σII,pl

ij ob-

tained from Eq. 6 using our method). Because the full tensor σII,pl
ij is built 

Fig. 7. Comparison of the experimental data (points) with the calculated < a(ψ,φ)>hklvs. cos2φ plots obtained for adjusted q-parameter (solid line) and the q =
0 (dashed line). The results are shown for the initial non-loaded (a) austenitic sample (Σ11 = 0 MPa; both lines, solid and dashed, overlap each other) and (b) ferritic 
sample (Σ11 = 5 MPa, the small load was applied to fix the sample). 

M. Marciszko-Wiąckowska et al.                                                                                                                                                                                                            



Materials Characterization 203 (2023) 113114

12

Fig. 8. Comparison of the experimental data (points) with the calculated < a(ψ,φ)>hkl vs. cos2φ plots obtained for adjusted q-parameter (solid line) and the q =
0 (dashed line). The results are shown for the elastic range of deformation for (a) austenitic sample (Σ11 = 140 MPa) and (b) ferritic sample (Σ11 = 352 MPa). The 
solid and dashed lines overlap each other in the case of austenite. 
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from 6 independent components, its presentation in Euler space is 
difficult. Therefore, the von Mises stress σII,pl

Mises calculated from the tensor 
σII,pl

ij for each orientation can be shown as the measure of the magnitude 
of the second-order plastic incompatibility stresses. The so calculated 
σII,pl

Mises is shown in Euler space for austenitic (Fig. 15 a) and ferritic 
(Fig. 15 d) samples subjected to tensile deformation followed by 
unloading/fracture. It was found that there the minima of von Mises 
second-order stresses σII,pl

Mises corresponds to maxima of ODF obtained by 

EPSC for austenitic steel (compare Fig. 15 a with Fig. 15 b); however, no 
such correlations were found in the case of the ferritic sample. What is 
more, in some regions of Euler space, minima of σII,pl

Mises correspond to 
minima of ODF – compare Fig. 15 d with Fig. 15 e. Comparison of 
Figs. 15 b and e with Fig. 2 shows that the texture change during the 
performed deformation is very small for both studied samples. 

Finally, the distribution of second-order stresses σII,pl
Mises can be 

compared with the maximum value of the resolved shear stress RSS for 

Fig. 9. Comparison of the experimental data (points) with the calculated < a(ψ,φ)>hkl vs. cos2φ plots obtained for adjusted q-parameter (solid line) and the q =
0 (dashed line). The results are shown for the load causing plastic deformation for (a) austenitic sample (Σ11 = 360 MPa) and (b) ferritic sample (Σ11 = 585 MPa). 
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all potentially active slip systems at given lattice orientations. It can be 
noticed that low values of the maximum RSS correspond to small values 
of von Mises second order plastic incompatibility stresses in the case of 
austenitic sample, c.f. Fig. 15 a and 15 c. In the case of ferritic samples, 
the correlation is similar but not so strong, i.e., for the low values of 

maximum RSS, the values of σII,pl
Mises are also low, but not always small 

value of σII,pl
Mises correspond to a low value of maximum RSS, c.f. Fig. 15 

d and 15 f. 

Fig. 10. Comparison of the experimental data (points) with the calculated < a(ψ,φ)>hkl vs. cos2φ plots obtained for adjusted q-parameter (solid line) and the q =
0 (dashed line). The results are shown for the (a) unloaded austenitic sample (Σ11 = 0 MPa) and fractured ferritic sample (Σ11 = 0 MPa). 
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4. Discussion 

Based on the tests performed and the findings presented in section 
3.1, it can be said that the Eshelby-Kröner model for the sample’s inte-
rior, in which the lattice strains were measured for the elastic range of 
sample deformation, accurately predicts the XSF values (Figs. 5 and 6). 
This implies that the ellipsoidal Eshelby inclusion in the effective matrix 
representing the macroscopic sample can be used to predict the inter-
granular interactions, which are the elastic response of the grains to the 
applied load. For the tested textured samples, slight non-linearities of 
the determined F11 vs. cos2φ plots were found when the load was applied 
along TD, and the orientation of the scattering vector changed between 

TD and RD. It was confirmed by both the experimental and calculated 
F11 vs. cos2φ plots. An important takeaway of this result is that the non- 
linearities < a(ψ,φ)>hkl vs. cos2φ plots measured experimentally 
(Figs. 7–10) cannot be explained by the elastic anisotropy of the crys-
tallites in textured sample. 

After XSF verification, the methodology based on the results of the 
EPSC model was used to determine the first and second-order stresses in 
the initial and in situ deformed samples. The proposed approach of data 
interpretation made it possible to identify the reason of non-linearities in 
the < a(ψ,φ)>hkl vs. cos2φ plots, which can be explained as the effect of 
second-order plastic incompatibility stresses. Such stresses arise as a 
result of plastic anisotropy of individual grains, leading to mismatch 

Fig. 11. Evolution of the experimental first-order stresses expressed in two ways: σI
11 and σI,res

11 + Σ11 compared with σI
11 predicted by the EPSC model, using pa-

rameters given in Table 3, for an austenitic sample subjected to tensile deformation. The evolution of determined second-order stresses mean von Mises stress (σII,pl
Mises) 

is also presented. The plots vs. sample strain E11 (a) and first-order stress Σ11 + σI,res
11 (b) are shown. 

Fig. 12. The analogous evolutions as presented for the ferritic sample in Fig. 11.  
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with the neighboring ones and they can be simulated by the EPSC model. 
The very good agreement of the calculated and experimental non- 
linearities confirms the correctness of the model results. 

Using the methodology described in the Introduction (Eqs. 5 and 6), 
a zero value of the plastic incompatibility was found for the initial 
austenitic sample and when the load was applied within the elastic range 
of deformation (two first points in Figs. 11 and 13 a). In this case, despite 
adjusting q, high values of χ2 were obtained, approximately equal to 
those obtained assuming q = 0 (cf. Fig. 13 a). However, this does not 
mean that the plastic incompatibility stresses σII,pl

ij in the non-loaded 
sample are negligible, but their variation with orientation does not 
coincide with that predicted by the EPSC model. Therefore the stresses 
σII,pl

ij cannot be determined for the initial sample and the sample sub-
jected to the load within the elastic deformation range. Then, when 
plastic deformation began, the value of χ2 decreased at about E11 = 1.0% 
(for the case of adjusted q) and stabilized at about E11 = 1.5% of sample 
strain. Starting from this point, the analysis of σII,pl

ij can be performed 
because the fitted data matched the experimental points that was 
already observed for the example plots < a(ψ,φ)>hkl vs. cos2φ shown in 
Figs. 9 a and 10 a. Therefore, this means that the evolution of the value 

σII,pl
Mises was qualitatively determined, showing its progressive increase 

with plastic deformation (above approximately E11 = 1%) until the 

beginning of unloading, as presented in Fig. 11 b. Then the value of σII,pl
Mises 

stresses remains unchanged during sample unloading. It should be 
concluded that the sample strain of about E11 = 1% - 2% is enough to 
generate the incompatibility stresses σII,pl

ij corresponding to tensile 

plastic deformation, which replaced the previous σII,pl
ij stresses present in 

the initial austenitic sample. This result agrees well with the behavior of 
the second-order plastic incompatibility stresses determined recently 
during the tensile test in such materials as magnesium alloy [33], ferrite 
in pearlitic steel [32], and both phases in duplex steel [3]. 

Contrary to austenite, non-linearities of the < a(ψ,φ)>hkl vs. cos2φ 
plots measured in the initial non-deformed ferritic sample coincide well 
with model prediction causing significant improvement of the fitting, so 
the decrease of χ2, when the parameter q is adjusted (Fig. 13 b). This 
significantly smaller value of χ2 for the analysis taking into account 
second-order stresses (q adjusted) compared to the assumption of q =
0 is then observed during the elastic and plastic deformation of the 
sample. It was found that the character of the second-order stresses σII,pl

ij 

in the non-loaded sample (subjected primarily to a cold rolling process) 
is similar to that which corresponds to tensile plastic deformation (as 
predicted by the model). It is also seen that the tensile test does not 
significantly change the character of the second-order stresses in the 

ferritic sample during the tensile test but the value of σII,pl
Mises increased 

during deformation (cf. Fig. 12 b). 
Interesting results were obtained from the comparison of σII,pl

Mises dis-

Fig. 13. Evolution of parameter χ2 in the function of sample strain E11 for austenitic (a) and ferritic (b) samples subjected to a tensile test. A dashed vertical line 
separates the elastic range from the plastic deformation range. 

a 0 a 0

Fig. 14. The a0 stress-free parameter determined for loaded and unloaded samples vs. sample strain. The same vertical scale as for the initial (Fig. 7) and unloaded/ 
fractured samples was applied for better comparison (Fig. 10). 
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tribution with the ODF function (cf. Fig. 15). Despite the correlation 
between minima of σII,pl

Mises with maxima of ODF in the case of austenite, 
such correlation was not confirmed by the ferritic sample. It leads to the 
conclusion drawn by Daymond et al. [42], based on lattice strain evo-
lution in an austenitic sample during in situ tensile test, that the second- 
order stresses do not correlate strongly with the crystallographic texture. 
This fact can be explained by the Eshelby-type interaction in which the 
ellipsoidal inclusion interacts with the mean matrix representing poly-
crystalline material. Certainly, the deformation of the matrix depends on 
the texture, but this is not a very significant effect compared to differ-
ences in the plastic behavior of grains (inclusions), which are caused by 
the activation of slip systems depending on the lattice orientation with 
respect to the applied load. In turn, the resulting plastic in-
compatibilities between the grains and the matrix mostly depend on the 
RSS values on different slip systems. This was confirmed in the present 
work, where the correlation between the low values of the minimum 
Schmid factor (corresponding to uniaxial load) with the minima of σII,pl

Mises 
stresses were found for both studied samples (cf. Fig. 15). Similar con-
clusions concerning the correlation between the Schmid factor for basal 
system and σII,pl

Mises stresses was also observed for Mg-alloy studied in [18]. 

5. Summary and conclusions 

This paper deals with the reasons for the non-linearity of the <
a(ψ,φ)>hkl vs. cos2φ plots obtained by diffraction methods used for 
stress measurements. High energy synchrotron beam diffraction in 
transmission mode and prediction from the EPSC model allowed for 
studying the impact of crystallographic texture and second-order plastic 
incompatibility stresses on the results of stress measurements during in 
situ tensile tests carried out for ferritic and austenitic steels. The main 
findings of the work are the following: 

- The F11 XSF constants determined in situ from diffraction measure-
ments carried out for the applied stress increments (elastic loading or 
unloading) are almost linear vs. cos2φ when they are measured be-
tween TD and RD for both textured materials. This linear behavior 
was confirmed by models for XSF determination in which crystallo-
graphic texture is taken into account.  

- The Eshelby-Kröner model used for XSF calculations agrees best with 
the experimental results.  

- It is possible to determine the plastic incompatibility second-order 
stress only when the mode of deformation process is known. In this 

Fig. 15. Second-order plastic incompatibility stress (von Mises value σII,pl
Mises) obtained using the initial experimental texture and initial residual stresses (a, d), final 

ODFs obtained from model (b, e) and a maximum value of resolved shear stress (RSS) from all potentially active slip systems assuming uniaxial macrostress state (c, 
f). The results are presented in Euler space for austenitic (a, b, c) and ferritic (d, e, f) steels subjected to tensile deformation and unloaded. 
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case, the model prediction of anisotropy of lattice strains due to 
second-order plastic incompatibility stresses is possible and the first- 
order as well as second-order stresses can be simultaneously 
determined.  

- For the unloaded austenite sample, the non-linearities of the <
a(ψ,φ)>hkl vs. cos2φ plots are small, while a significant undulation of 
the plots was observed for ferrite. For ferrite, it was possible to 
determine the second-order incompatibility stresses because the non- 
linearities correspond with the model prediction. For austenite, it 
was not possible because there are no such correlations.  

- During the tensile test, the second-order incompatibility stresses 
remained unchanged in the purely elastic range, but they immedi-
ately transformed for the sample strain above 1–2%. Although these 
stresses changed significantly in the austenitic sample, such trans-
formation did not occur for the ferritic sample. This is because the 
residual plastic incompatibility in the initial ferritic sample had a 
character similar to those generated during the tensile test.  

- It was found that the second-order stresses are generated or modified 
only during plastic deformation, while they remain unchanged for a 
purely elastic sample deformation. The second-order incompatible 
stresses remaining in the samples after unloading as residual stresses 
were the reason for the non-linearities in the < a(ψ,φ)>hkl vs. cos2φ 
plots for both investigated samples.  

- The orientation distribution of second-order plastic incompatibility 
stresses is not directly correlated with crystallographic texture but 
correlates with the maximum value of Schmid factor calculated for 
all potentially active slip systems. 
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[24] E. Kröner, Berechnung der elastischen Konstanten des Vielkristalls aus den 
Konstanten des Einkristalls, Z. Physik. 151 (1958) 504–518, https://doi.org/ 
10.1007/BF01337948. 

[25] J.D. Eshelby, R.E. Peierls, The determination of the elastic field of an ellipsoidal 
inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241 
(1957) 376–396, https://doi.org/10.1098/rspa.1957.0133. 
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