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Abstract: Organophosphorus chemicals are versatile and important in industry. Trivinylphosphine
oxide (TVPO), for example, exhibited a promising precursor as a flame-retardant additive for indus-
trial applications. Density functional theory (DFT) simulations were used to explore the kinetic and
thermodynamic chemical processes underlying the nucleophilic addition reactions of TVPO in order
to better understand their polymerization mechanisms. An experimental X-ray single-crystal study
of TVPO supported this work’s theory based on its computed findings. TVPO was prepared using
POCl3 and VMB in a temperature-dependent reaction. TVPO, the thermodynamically favourable
product, is preferentially produced at low temperatures. The endothermic anionic addition polymer-
ization reaction between TVPO and VMB begins when the reaction temperature rises. An implicit
solvation model simulated TVPO and piperazine reactions in water, whereas a hybrid model mod-
elled VMB interactions in tetrahydrofuran. The simulations showed a pseudo-Michael addition
reaction mechanism with a four-membered ring transition state. The Michael addition reaction is
analogous to this process.

Keywords: organophosphorus; Michael-like addition; Grignard reagent; X-ray analysis; DFT calcula-
tions; reaction profile; kinetic and thermodynamic comparison

1. Introduction

Organophosphorus compounds are one of the most important classes of organic
chemistry due to their wide applications such as polymer additives in industry, acting
as flame retardants [1,2] and antioxidants [3]. In general, the flame retardant efficacy of
polymeric matrices can be enhanced using either reactive or non-reactive flame retardant ad-
ditives [4,5]. Organophosphorus compounds can be classified according to their valency (λ)
and coordination number (σ), affording for example: (i) P(V) pentavalent tetracoordinated
compounds (λ5σ4), such as phosphine oxides, phosphoramidates, phosphonamidates, and
phosphates; (ii) P(III) tervalent tricoordinated compounds (λ3σ3), such as phosphine, phos-
phites, and phosphorus trichloride, and (iii) P(III) pentavalent tetracoordinated compounds
(λ5σ4), such as H-phosphonates and H-phosphinates [6]. Due to the importance of these
compounds, different synthetic approaches have been explored using elemental phospho-
rus as a foundation for these approaches [7], and benign synthetic approaches have been
also investigated [8,9]. The protection and deprotection of phosphine compounds using
borane complexes are one of the numerous essential applications characterized by simple,
effective, and environmentally friendly protocols for protecting the phosphorus atom with
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borane and then removing this protection from tertiary phosphines under benign condi-
tions. Such reactions are analysed kinetically, and computational modelling facilitates the
design of customized reaction conditions based on the substrate’s specific requirements.
These advancements enhance the adaptability and utility of phosphine compounds for a
wide range of applications [10].

Among all of these synthetic approaches, the formation of P-C bonds to produce phos-
phine oxides has attracted special attention due to their thermal and chemical stability [11].
Amongst the phosphine oxide compounds, trivinylphosphine oxide (TVPO, Figure 1) has
received interest due to its promising prospective potential applications. Thus, different
synthetic approaches have been followed to synthesize TVPO [12–16]. The reactivity of
the vinyl group towards radical polymerization and Michael-like addition reactions has
been investigated using the reactive extrusion approach [17]. This methodology forges in
situ preparation of polymeric material acting as immobilized flame-retardant additives.
Such methodologies have been also applied for the preparation of durable flame retarded
cellulose fabric materials using physical networks, with the polymerization of TVPO and
piperazine at high-temperature [18]. Moreover, the Michael-addition reaction between
TVPO and piperazine in water afforded pH-responsive nanostructured hydrogels with
potential applications in drug release [19]. To the best of our knowledge, the nucleophilic
addition reaction of α,β-unsaturated phosphine oxides using theoretical modelling has
not been explored. The present study aims to investigate the synthesis of TVPO and ex-
amine its chemical reactivity with respect to Michael-like addition reactions and anionic
addition polymerization reactions using a Grignard reagent. This is achieved with the
application of thermodynamic and kinetic principles using theoretical modelling, including
the corresponding molecular configurations. With the integration of experimental synthesis
and single-crystal analysis with computational methodologies, significant insights into
the reaction mechanism were obtained regarding the thermodynamic stability and kinetic
behaviour exhibited by TVPO during its chemical reactions. The results of our study offer
a thorough understanding of the reactivity exhibited by TVPO. This contributes to the
development of knowledge in this particular area and creates opportunities for potential
applications in the fields of materials science and polymer chemistry.
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2. Results and Discussion
2.1. Synthesis and Structural Analysis

In this study, TVPO was synthesized with the reaction of vinylmagnesium bromide
(VMB) and phosphoryl trichloride in a 3 to 1 molar ratio at −78 ◦C. The reaction product is
temperature-dependent, and an increase in the reaction temperature results in the formation
of a bulk precipitate that is attributed to the in situ polymerization of TVPO [16]. Hence,
we investigated the kinetic and thermodynamic product selectivity of the reaction between
POCl3 and VMB. Theoretical calculations indicate that the reaction between POCl3 and
VMB is both thermodynamically favourable and exhibits rapid kinetics. The reaction
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proceeds through a nucleophilic substitution mechanism, in which the vinyl anion derived
from VMB acts as the nucleophile and attacks the phosphorus atom of POCl3. The first step
in the process involves attacking the phosphorus atom with a vinyl anion, which causes
the displacement of a chloride ion. This step is fast, due to the high reactivity of the vinyl
anion as a nucleophile and is accompanied by an exothermic process that results in an
energy release of 61 kcal/mol. Afterwards, a vinyl anion from VMB reacts at a fast rate
with the intermediate species’ phosphorus atom (vinylphosphonic dichloride), causing
another chloride ion to be displaced, thereby releasing 53 kcal/mol of energy. The reaction
progresses through a series of swift nucleophilic substitution steps, ultimately resulting in
the formation of TVPO that releases 160 kcal/mol of energy in total. The rate of a reaction
can be affected by various factors, including temperature, the concentration of reactants, and
the properties of the solvent. Overall, the reaction between POCl3 and VMB is characterized
by rapid kinetics and thermodynamic favourability. This is attributed to the high reactivity
of the vinyl anion and the favourable conditions for nucleophilic substitution. The analysis
conducted indicates that the vinyl anion derived from VMB displays significant reactivity,
which facilitates the reaction with TVPO. This reaction leads to the formation of polymers,
as explained in the section covering the anionic addition reaction using a Grignard reagent.
The chemical structure of TVPO was confirmed using NMR spectroscopy and single-crystal
analysis, and it was found to be identical to published reports. Combining the single-crystal
data from our analysis and a previous report [15] allowed us to validate the level of theory
used in this study based on bond lengths and the nature of inter- and intra-molecular
interactions. A summary of the crystal data and structure refinement are summarized in
Table 1 and the Supplementary Materials (Tables S1–S5).

Table 1. Crystal data and structure refinement of TVPO.

Identification Code TVPO (CCDC 2260460) TVPO (CCDC 1277428) [15]

Empirical formula C6H9OP C6H9OP
Formula weight 128.10 128.10
Temperature (K) 173.15 143
Crystal system Orthorhombic Orthorhombic

Space group Pnma Pnma
a (Å) 9.4940 (7) 9.5130 (2)
b (Å) 10.7754 (12) 10.7830 (3)
c (Å) 7.0590 (6) 7.0590 (3)
α (◦) 90 90
β (◦) 90 90
γ (◦) 90 90

Volume (Å3) 722.15 (11) 724.10 (4)
Z 4 4

ρcalc (g/cm3) 1.178 1.175
µ (mm−1) 0.286 0.286

F(000) 272.0 272.0
Crystal size (mm3) 0.5 × 0.3 × 0.2 0.5 × 0.20 × 0.15

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073)
2Θ Range for data collection (◦) 6.9 to 51.168 3.45 to 27.60

Index ranges
−10 ≤ h ≤ 11
−12 ≤ k ≤ 13
−8 ≤ l ≤ 8

0 ≤ h ≤ 12
0 ≤ k ≤ 14
0 ≤ l ≤ 8

Reflections collected 2929 25094
Independent reflections 723 [Rint = 0.0424, Rsigma = 0.0240] 839 [Rint = 0.036]

Data/restraints/parameters 723/0/437 839/0/65
Goodness-of-fit on F2 1.213 1.092

Final R indexes [I ≥ 2σ (I)] R1 = 0.0275, wR2 = 0.0673 R1 = 0.0353, wR2 = 0.1030
Final R indexes [all data] R1 = 0.0327, wR2 = 0.0855 R1 = 0.0355, wR2 = 0.1032

Largest diff. peak/hole (e Å−3) 0.22/−0.44 0.258/−0.305
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From the crystal structure, the bond length of P−O is found to be 1.486 (2) Å. This
bond length is shorter than the sum of the single-bond radii of phosphorus (1.07 Å) and
oxygen (0.66 Å) atoms. Thus, the P−O bond is shorter than the single bond, which indicates
a double bond nature. However, the short bond length of P−O can also be attributed to
the attraction nature of the P+O– bond [20,21]. The validation of our modelling approach
used herein was performed by matching the experimental bond lengths of TVPO (Figure 1),
as revealed using single-crystal X-ray analysis (of two different crystals), with the bond
lengths, which were calculated using our level of theory summarized in Table 2.

The bond lengths for both crystal structures, as listed in Table 2, are consistent with the
characteristics of the chemical bonds and agree with the results of the single-crystal study.
The existence of four TVPO molecules per unit cell was discovered during an investigation
of a single crystal (Figure 2).
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Figure 2. Packing diagram showing the ORTEP structure for TVPO per unit cell with a 50% ellipsoidal
probability level. P: yellow; O: red; C: grey; H: white. Blue dotted lines represent intramolecular
O···H bonds, while red dotted lines represent intermolecular O···H bonds.

Table 2. Exploring selected TVPO bond lengths. The calculated (aqueous phase) values with
experimental measurements from this work a and other studies b.

CCDC 2260460 a CCDC 1277428 b Calculated, This Study c

P−O 1.486 (2) 1.5004 (13) 1.503
P−C1 1.7886 (18) 1.796 (2) 1.792
P−C3 1.787 (3) 1.7929 (14) 1.791

C1−C5 1.310 (3) 1.316 (3) 1.314
C2−C3 1.313 (4) 1.321 (2) 1.320

O···H2A 2.7165 (15) 2.78 (4) 2.743
O···H5A 2.7065 (8) 2.75 (3) 2.731

a This work. b Ref. [15]. c Calculated values using the M062X/6-311++G(d,p) level of theory.

The order of the atom orientation in the structure packing reveals the nature of the
inter- and intra-molecular interactions among the atoms and shows the probability of
electron density within the molecule. Within each molecule (Figure 2), the oxygen atom
has intramolecular contacts with H5A and H2A hydrogen atoms of =CH2 groups (blue
dotted lines; bond lengths are summarized in Table 2). In addition, other hydrogen atoms
are involved in intermolecular contact with oxygen atoms of neighbouring molecules (red
dotted lines) Therefore, the electron density is more likely concentrated on the oxygen
atoms of TVPO.
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2.2. DFT Calculations

The initial stage of our discourse entails meticulous scrutiny of the TVPO configuration
derived from our computations conducted within the M062X/6-311++G(d,p) theoretical
framework. The aim of this study is to evaluate the reliability and accuracy of the selected
theoretical framework using a comparative analysis of the computational outcomes and
the X-ray data obtained from experiments. The present comparative study aims to offer
significant insights into the accuracy and validity of our theoretical approach to elucidating
the intricate molecular architecture of TVPO. The outcomes of this assessment will establish
a basis for making a knowledgeable decision regarding the appropriateness of using the
M062X/6-311++G(d,p) level of theory to investigate the reaction profiles of TVPO in two
separate classifications: nucleophilic and Grignard addition reactions.

Within the realm of our current knowledge, two rigorous X-ray studies were conducted
to unravel the intricate structure of TVPO, as outlined in Table 2. These investigations
yielded compelling evidence, suggesting the presence of a pseudo C3v symmetry encircling
the principal rotational axis. Notably, the measured P–O bond length obtained from these
studies exhibits a range spanning from 1.489 to 1.500 Å. In the pursuit of deeper com-
prehension, our research endeavours extended to predictive analysis. Using meticulous
calculations, we determined a predicted bond length of 1.503 Å (Table 2). While this value
modestly exceeds the experimental range, it remains within close proximity, highlighting
the significant alignment between theoretical expectations and empirical observations.
Furthermore, Table 2 presents additional noteworthy findings regarding the P–C bond
length in TVPO. Specifically, the X-ray measurements (Table 2) demonstrate a range of
1.787–1.796 Å, while our present study yields a value of approximately 1.790 Å. The remark-
able agreement between our results and experimental data serves as a strong validation
of our research methodology and underscores the robustness of our findings. Expanding
our analysis to encompass C–C bond lengths and the intramolecular O···H distances, the
M062X/6-311++G(d,p) optimization approach was used. As indicated in Table 2, the
predicted C–C bond lengths range from 1.314 to 1.320 Å, while the O···H distances span
from 2.731 to 2.743 Å. Remarkably, these calculated ranges align remarkably well with the
corresponding experimental values of 1.310–1.321 Å and 2.706–2.780 Å, respectively. This
convergence serves to bolster our confidence in the predictive capability of the used level
of theory, accentuating its profound utility in elucidating the intricate complexities within
the realms of two distinct reaction profile categories.

Nucleophilic addition reactions are a crucial category of conversions in organic synthe-
sis. The exploration of the reactivity of TVPO at the critical β-C position (of the vinyl group)
provides opportunities for innovative synthetic methodologies. The present investigation is
centred on the examination of the nucleophilic addition reactions of TVPO with piperazine
(i.e., pseudo-Michael addition) [22,23] and VMB (i.e., anionic addition reaction using a
Grignard reagent) reactions. Our objective is to elucidate the complex thermodynamic and
kinetic aspects of every reaction through the determination of the free energy and barrier
heights for both the forward and reverse directions.

2.2.1. Nucleophilic Addition Reaction (Pseudo-Michael Addition) Using Piperazine

The chemical reaction between TVPO and piperazine has garnered considerable
interest owing to their multifaceted utility [17–19]. A plausible reaction mechanism between
TVPO and piperazine (Pip) was proposed in this work to identify the possible reaction
pathway (Scheme 1).

The present investigation aims to examine the two-step reaction mechanism that
culminates in the creation of the adduct. Our study places particular emphasis on the
intermediate (2-(piperazin-1-yl)ethyl)divinylphosphine oxide monoadduct (Scheme 1, In-
termediate). Based on a comprehensive examination, it is suggested that the monoadduct
plays a fundamental role as an intermediary between two transitional states, thereby pro-
viding insight into the fundamental reaction mechanism. The chemical process occurs
via a biphasic mechanism, commencing with the generation of a preliminary pre-reactive
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amalgamation, designated the monoadduct intermediate (I), via the transition state TS1.
Within TS1 (Figure 3), a hydrogen (H) atom is situated in a poised position between the
terminal nitrogen atom of piperazine and the carbon, thereby effectively creating a bridge
as visually depicted in Figure 3 and Scheme 1 (Path B).
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were calculated at the M062x/6-311++G(d,p) level of theory.

The extension of the bond length may arise from the establishment of a bridging
interaction linking the nucleophilic nitrogen atom and the β-carbon (Cβ). The process
underlying the bridging interaction entails the exchange of electron density and the ad-
justment of bond lengths to facilitate the formation of a novel bonding configuration. It is
noteworthy that the initial product resulting from the reaction between TVPO and piper-
azine in a 1:1 mole ratio is the (2-(piperazin-1-yl)ethyl)divinylphosphine oxide monoadduct
(I). The results of this study indicate that the reaction proceeds in a consistent manner,
culminating in the creation of the intermediate, even when the ratio is 2:1. Following this,
the (2-(piperazin-1-yl)ethyl)divinylphosphine oxide monoadduct (I) undergoes a transfor-
mation towards the intended (piperazine-1,4-diylbis(ethane-2,1-diyl))bis(divinylphosphine
oxide) adduct (P) via transition state TS2, which exhibits a comparable H-bridge arrange-



Molecules 2023, 28, 6097 7 of 15

ment. Figure 3 and Scheme 1 (Path B) illustrate the prevalence of a four-membered ring in
both TS1 and TS2.

In the transition state TS1, a distinct geometric transformation becomes evident. No-
tably, the N-Cβ bond exhibits a discernible elongation of approximately 0.127 Å compared
with the corresponding bond length in the monoadduct. Simultaneously, the Cα-Cβ bond
experiences a contraction by approximately 0.031 Å in the transition state relative to the
monoadduct. Furthermore, the N and Cβ atoms come closer to each other, resulting in
a distance of 1.582 Å between them. It is noteworthy that this bond formation occurs at
a length of 1.455 Å in the (2-(piperazin-1-yl)ethyl)divinylphosphine oxide monoadduct
intermediate (I), thus indicating a progression towards the transition state. In the transition
state TS2, as depicted in Figure 3, notable changes in bond lengths are observed. The Cα-Cβ

bond demonstrates a minor elongation of 0.012 Å in comparison with the corresponding
bond length observed in TS1. In contrast, the Cβ-N bond experiences a contraction of
0.026 Å, suggesting a more condensed configuration. Furthermore, it is noted that the
distances separating the H-bridge, the Cα, and N atoms exhibit greater lengths in TS2 in
comparison to TS1. This observation implies that the configuration of TS2 exhibits a greater
level of relaxation, potentially suggesting a reduced energy barrier in the reaction pathway
in comparison with TS1.

The thermodynamic and kinetic favourability of a chemical reaction are essential
considerations that significantly contribute to comprehending its feasibility and rate of
occurrence. The present study aimed to examine the reaction depicted in Figure 3 and
assess its thermodynamic and kinetic properties. The activation energies (Ea) for the first
and second steps were found to be 18.63 kcal/mol and 17.3 kcal/mol, respectively. The Ea
observed in the second step implies a higher degree of kinetic favourability, thereby indicat-
ing a comparatively accelerated reaction rate in comparison to the first step. The computed
values for the free energy changes indicate that the reaction exhibits exothermic properties,
consistent with the findings of our investigation. The free energy alterations associated
with the creation of the monoadduct, adduct, and bis-adduct products are 10.46 kcal/mol,
7.94 kcal/mol, and 8.40 kcal/mol, correspondingly. Exothermic reactions generally demon-
strate thermodynamic favourability as they release energy and progress towards a more
stable state in relation to Gibb’s free energy (∆G). Based on the provided activation energies
and the exothermic nature of the reaction, it can be deduced that the reaction is thermo-
dynamically and kinetically favourable. This statement implies that the reaction exhibits
a high degree of reactivity and is exothermic in nature. Furthermore, a comprehensive
examination of the entropy (∆S) values of the products was carried out. The entropy
values of three different compounds were measured. The first compound, (2-(piperazin-1-
yl)ethyl)divinylphosphine oxide monoadduct, has an entropy value of 125.733 cal/mol·K.
The second compound, (piperazine-1,4-diylbis(ethane-2,1-diyl))bis(divinylphosphine ox-
ide) adduct, has an entropy value of 173.843 cal/mol·K. The third compound, TVPO-
PIP-TVPO-PIP bisadduct, has an entropy value of 199.377 cal/mol·K. The values of ∆S
mentioned here offer further evidence for the thermodynamic favourability of the reaction.
This is because an increase in entropy is usually linked to reactions that are more favourable.

Determining the rate constants for the two reaction steps is of great significance,
considering their magnitudes. In this study, we used the Eyring–Polanyi equation, a
comprehensive framework that accounts for both temperature and energy barrier (Ea)
effects. The Eyring equation, given by k = (kbT/h)exp(−∆G‡/(RT)), characterizes the
rate constant (k) of the reaction [10,24]. Here, kb represents the Boltzmann constant
(1.380649 × 10−23 J/K), T denotes the absolute temperature in Kelvin, h signifies the Planck
constant (6.62607015 × 10−34 J·s), ∆G‡ corresponds to the ∆G of activation, and R stands
for the gas constant (8.314 J/(mol·K)). Our comprehensive computational analysis discov-
ered an extraordinary ratio rate constant of 9.5 for the sequential addition of TVPO to
(2-(piperazin-1-yl)ethyl)divinylphosphine oxide monoadduct, culminating in the synthesis
of (piperazine-1,4-diylbis(ethane-2,1-diyl))bis(divinylphosphine oxide) adduct. The deter-
mination of Ea values, specifically, 17.3 kcal/mol for the second addition and 18.63 kcal/mol
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for the first addition, yields insights into the dynamics of reaction kinetics and the underly-
ing mechanisms, as depicted in Figure 3 and Scheme 1 (Path B). This pivotal research serves
as a cornerstone for future explorations aimed at unravelling the intricacies of selectivity
and reactivity within complex multi-step reactions.

2.2.2. Anionic Addition Reaction Using a Grignard Reagent

TVPO has the potential to undergo an anionic addition mechanism upon its reaction
with the Grignard reagent vinylmagnesium bromide (VMB). The reaction process involves
the application of VMB as a nucleophile, which triggers an attack on the electrophilic
carbon (Cβ) of TVPO. Two plausible reaction mechanisms between TVPO and VMB have
been proposed (Scheme 2) to identify the possible reaction pathway using the mononuclear
Grignard reagent species [25].
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The reported crystal structures of the Grignard reagents exhibited their existence in
monomeric, dimeric, and tetrameric structures in the solid state. However, their solid-state
structures may not be representative of their active species in solution. The monomeric
structure of Grignard reagents in solution was reported to exist in a thermodynamic equi-
librium with their corresponding complex species, and hence, VMB was used in its simple
solvated molecular structure. To ensure accurate modelling of VMB, we decided to use its
simple solvated molecular structure, taking into account the equilibrium involved [26–28].
The process involves the creation of an intermediate chemical species, which then under-
goes protonation or additional reaction pathways, affording the final product.

Clarifying our original investigation is crucial for gaining a better understanding of the
mechanisms underlying the TVPO and VMB reactions (Figure 4). The primary goal of this
study is to determine where MgBr and TVPO interact most commonly when the CH2CH−

nucleophile attacks TVPO’s Cβ and to investigate if the interaction takes place mostly with
the Cα or the oxygen atom (Scheme 2). To undertake a complete analysis, we focused
on three key elements: the distribution of natural bond orbital (NBO) charges during
carbanion formation, geometrical analysis, and the resulting stabilization energy (E2) that
arises from orbital interactions between species. According to our findings, the NBO charge
of the Cα in TVPO is −0.575, while the charge of the 1-(divinylphosphoryl)but-3-en-1-ide
anion (V-TVPO) is around −1.055. The oxygen atom in TVPO, on the other hand, has an
NBO charge of −1.135. However, in the V-TVPO anion, it rises insignificantly to −1.210.
Based on these data, the charge density is most likely carried by the Cα atom, indicating
its nucleophilic affinity more than the oxygen atom. The HOMO molecular orbitals of
both TVPO and the V-TVPO anion are designated as the lone pair of oxygen atoms (LpO)
and the lone pair of carbon atoms (LpCα). The geometrical analysis of TVPO and the
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V-TVPO anion reveals that the Cα-P bond in the V-TVPO anion is greatly shortened by
about 0.08 Å, while the P-O bond is somewhat lengthened by approximately 0.02 Å. This
shortening is caused by the absence of the πP-Cα bond in TVPO, which is, on the other hand,
formed in V-TVPO due to the 9% contribution of the phosphorus d-orbital. Finally, the
Fock matrix analysis using second-order perturbation theory in the NBO basis shows that
the stabilization energies (E2) for C···Mg (Scheme 2, Path B) and O···Mg (Scheme 2, Path A)
are 42 kcal/mol and 16 kcal/mol, respectively. The greater possibility of bonding between
MgBr and the Cα atom, due to its higher nucleophilicity, has a significant impact on the
system’s reactivity. As a result, the Cα atom plays an important role as a strong nucleophile,
exceeding the oxygen atom in its ability to form a coordination bond with MgBr.
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For all species represented in Figure 4, the hybrid solvation technique, which combines
implicit and explicit solvation models, was used. We obtained significant results in our
investigation into the role of tetrahydrofuran (THF) as a solvent in connection to the
Grignard reagent (Supplementary Materials, Figure S2). THF, for example, was shown
to stabilize the Grignard reagent by ca. 11.8 kcal/mol. A detailed NBO analysis also
revealed that electrostatic forces are the primary mode of interaction between THF and the
magnesium (Mg) metal ion. It is important to note that this interaction has neither covalent
nor coordination bonds; therefore, no matching frequency was observed. Furthermore,
the closest separation distance between the two THF molecules and the matching species,
according to the proximity analysis, as depicted for the intermediate I1 is around 4.6 Å
(Supplementary Materials, Figure S3). As a result, the presence of the solvent has no
influence on these species’ energy. Therefore, we determined the reaction profile of TS1,
TS2, I1, and I2 species (Figure 4) in the absence of the THF solvent molecules (excluding the
Grignard reagent). Based on these observations, the overall pathway of the reaction profile
did not change in comparison to the implicit solvation model (Supplementary Materials,
Figure S4). It is worth noting that the energy of all the species included changed by
11.8 kcal/mol, together with TS1, TS2, I1, I2, and P (Figure 4, and Supplementary Materials,
Figure S4). We also investigated the coordination of magnesium with the oxygen atom.
Our findings show that the resulting model molecule (Supplementary Materials, Figure S5)
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is approximately 6.5 kcal/mol less stable than intermediate I1 (Figure 4). Accordingly, the
chemical properties of TVPO and α,β-unsaturated ketones must be compared: the P-atom
hybridization of TVPO is sp3d, whereas the carbonyl carbon in α,β-unsaturated ketones
is sp2. Variations in hybridization may affect the resonance of conjugated double bonds
due to the spatial configuration of valence molecular orbitals. Furthermore, the chemical
reaction between Grignard reagents and α,β-unsaturated ketones results in the production
of alcohols via the 1,2-addition process [29]. In contrast, Grignard reagents undergo a
Michael-like addition reaction with TVPO, which is similar to the 1,4-addition reaction
between Gilman reagents and α,β-unsaturated ketones, which results in the formation
of a Michael-addition product. However, depending on the specific characteristics of the
Gilman reagents and the stereochemistry of the enones under consideration, multiple
reaction routes have been found [30,31]. After the detailed explanation provided above, we
can now proceed to outline the mechanism underlying the TVPO and VMB reaction based
on these findings.

The initiation of the chemical interaction between TVPO and VMB occurs through
a transitional state, which involves the formation of a four-membered ring that includes
Mg and the TVPO molecule (Figure 4 and Scheme 2, Path B). The transition state under
consideration displays an Ea of 16.76 kcal/mol and leads to the formation of an interme-
diate chemical species. In the transition state, a chemical bond is formed between the
magnesium atom and the Cα, with a bond length of 2.328 Å. Additionally, the vinyl group
is bonded to the Cβ of the TVPO molecule, with a bond length of 2.684 Å, as depicted in
Figure 4. The configuration mentioned above results in the formation of an intermediate
with considerable stability, as evidenced by a stabilization energy of −6.56 kcal/mol. The
bond lengths of Mg–Cα, Cβ–C=C and Cα-Cβ were observed to relax by 2.143 Å, 1.503 Å,
and 1.551 Å, respectively, as shown in Figure 4. Subsequent reactions take place after
the intermediate stage, ultimately leading to the formation of the desired final product
known as but-3-en-1-yldivinylphosphine oxide (P). The synthesis of this specific chemical
species is accompanied by the release of 56.22 kcal/mol of energy through an exothermic
reaction. The conformational arrangement of but-3-en-1-yldivinylphosphine oxide depends
on the specific disposition of its constituent atoms and the stereochemical parameters that
regulate its chemical reactivity. Acknowledging this aspect holds significant importance.
The outcome is likely to be impacted by the interrelated nature of these variables.

In this work, the computational analysis of the rate constant associated with the
reaction between TVPO and VMB reveals a rate constant of 78 M−1s−1, shedding light on
the kinetics of this chemical process and providing valuable insights. One crucial aspect of
our investigation revolves around the determination of Ea values. We calculated an Ea of
16.76 kcal/mol, which highlights the intricate dynamics governing the reaction kinetics and
offers a deeper understanding of the underlying mechanisms involved. Figure 4 illustrates
detailed representations of these mechanisms, thereby enhancing our comprehension of
the system. Significantly, the formation of the intermediate occurs through an exothermic
reaction, liberating 6.56 kcal/mol of energy. The intermediate mentioned is important in
the reaction pathway because it converts into intermediate I2 through TS2. The activation
energy (Ea) for this conversion is 0.73 kcal/mol. TS2 is facilitated by the rotation around
the P-Cα bond, which aligns the oxygen atom in a position corresponding to that of
magnesium. As a result, a magnesium bridge is formed between the Cα and oxygen atoms,
leading to the creation of I2. This new compound is more stable than I1 by 10.6 kcal/mol.
The stable intermediate is crucial in the reaction pathway because it undergoes a direct
transformation into the desired product but-3-en-1-yldivinylphosphine oxide (P). The
process of conversion involves a loss in energy of 39 kcal/mol, indicating that the overall
transformation is exothermic in nature.

By elucidating the rate constant, Ea values, and energy changes throughout the reac-
tion, our study offers substantial insights into the details of this chemical process. These
findings not only deepen our understanding of reaction kinetics but also bear significant im-
plications for the development and optimization of synthetic methodologies involving the
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reaction between TVPO and VMB. The combination of a high rate constant and relatively
low activation energy suggests that the reaction between TVPO and VMB is kinetically
favourable. Additionally, the exothermic nature of the overall transformation indicates
that the formation of the final product is thermodynamically favoured, with a substantial
energy release. These factors further emphasize the feasibility and potential utility of this
reaction in synthetic chemistry.

3. Materials and Methods
3.1. Materials

Vinylmagnesium bromide (1M in THF) and phosphoryl trichloride (POCl3, Reagent
Plus, purity = 99%), ammonium chloride (NH4Cl, ACS reagent, purity ≥ 99.5%) and
dry THF were purchased from Merck (Buchs, Switzerland). All Chemicals were used as
received without further purification. TVPO was synthesized as previously reported with
slight modifications at the large scale [16,19].

3.2. NMR Spectroscopy

The 1H, 13C, and 31P NMR data were recorded using a Bruker (Billerica, MA, USA)
400 MHz NMR spectrometer (Supplementary Materials, Figure S1). Chemical shifts for
1H NMR and 13C NMR chemical shifts (δ) in ppm were calibrated to the residual solvent
peak (CDCl3: δ = 7.26 and 77.16 ppm, respectively). The chemical shift for 31P NMR was
referenced to an external sample with neat H3PO4 (δ = 0.0 ppm).

3.3. Single-Crystal X-ray Analysis

Single crystals of C6H9OP (TVPO) were obtained from its solution in ethanol using
slow solvent evaporation. A suitable crystal was selected and mounted on an ‘STOE IPDS-II’
diffractometer (Darmstadt, Germany). The crystal was kept at 173 K during data collection.
Using Olex2 [32], the structure was solved with the olex2.solve [33] structure solution
program using charge flipping and refined with the ShelXL [34] refinement package using
least squares minimization. The crystal structure was deposited to CCDC under the number
2260460. The same crystal structure was deposited previously (deposition number 1277428)
and used for comparison [15].

3.4. Computational Methods

The current investigation involved the optimization of structures using the den-
sity functional theory (DFT) methodology with the M062X functional, which was im-
plemented using Gaussian 09 software [35]. The computations were carried out using the
6-311++G(d,p) basis set. Several strong considerations support the choice of the M062X/6-
311++G(d,p) level of theory. The M062X functional has been shown to possess the capacity
to produce accurate results for a wide variety of molecular properties, including geome-
tries, energies, and reaction barriers. This functional has been thoroughly investigated and
found to be effective in analysing reactions and complex systems. Furthermore, the use
of the 6-311++G(d,p) basis set provides a significant and adaptable option, encompassing
both polarization and diffuse functions. These qualities allow it to effectively account
for electron correlation and adequately address the effects of electron density inside the
system under examination. Therefore, it can be argued that the M062X/6-311++G(d,p)
level of theory achieves an ideal equilibrium between precision and computing expendi-
ture. While more advanced techniques may provide higher levels of computational cost,
their processing requirements make them less feasible for larger systems. Given these
circumstances, the selected theoretical level demonstrates a prudent balance, effectively
meeting the research criteria without imposing an undue computational load [36,37]. The
use of the conductor-like polarizable continuum model (CPCM) [38–40] was implemented
at identical theoretical levels to accommodate for the impact of solvent effects. The simula-
tions explored two alternative solvation models: an implicit solvation model using water
solvent parameters for piperazine and a hybrid solvation model using tetrahydrofuran
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(THF) both explicitly and implicitly for BrMgC2H3 (VMB). The solvents in this study (water
for the reaction between TVPO and piperazine and THF for the reaction between TVPO and
VMB) were chosen based on their experimental use for each corresponding reaction [19].
Radii collected from the universal force field (UFF) were used to build the solute cavity.
Frequency calculations were performed in order to verify the correct number of imaginary
frequencies and ensure the precision and dependability of the crucial stationary points.
Moreover, the IRC [41] methodology based on intrinsic coordinates was used to validate the
energy profiles that connect the notable transition structures to their corresponding local
minima. The optimized structures were subsequently used for single-point calculations
using the M062X/6-311++G(d,p) level of theory. Gibb’s free energies (∆G) corresponding
to the aforementioned M062X/6-311++G(d,p) calculations were determined based on the
obtained single-point energies. Using a rigorous computational methodology that incor-
porated dependable theoretical frameworks and solvation phenomena, the precision and
coherence of our computations were guaranteed, thereby furnishing significant insights
into the thermodynamic characteristics and reaction mechanisms being scrutinized.

3.5. Synthesis of Trivinylphosphine Oxide (TVPO)

In a 3 L double-jacket reactor fitted with a mechanical stirrer, addition funnel, and
nitrogen inlet, POCl3 (51.1 g, 0.33 mol) was charged under N2 flow. Dry THF (1000 mL) was
then added under N2, and the reaction was cooled to −78 ◦C. A vinylmagnesium bromide
solution in THF (1 M, 1 L, 1 mol) was then added dropwise. After complete addition, the
reaction was stirred at −78 ◦C for 3 h. Cold (4 ◦C) ammonium chloride solution (100 mL,
[NH4Cl] = 4 M) was then added, and the mixture was stirred for 5 min. While still cold, the
precipitate was separated using filtration, affording a solution of two layers. The THF layer
(upper layer) was separated, and the volatiles were completely removed in vacuum. The
aqueous layer was then extracted with chloroform (2 × 500 mL and then 2 × 250 mL). The
chloroform phase and the residue from THF layer were mixed and dried over anhydrous
Na2SO4. Volatiles were removed in vacuum, affording a pale-yellow solid that was further
dried in vacuum oven over night at 50 ◦C. After drying, the solid became white. The purity
of TVPO was investigated using NMR spectroscopy, which showed a satisfying purity.
Hence, the product could be used without any further purification process. Yield (32.0 g,
75%); m.p: 98–100 ◦C; 1H NMR (400 MHz, CDCl3) δ (ppm): 6.07–6.31 (m, 9H); 13C NMR
(100 MHz, CDCl3) δ (ppm): 134.03 (s, =CH2), 130.46 (d, 1JCP = 100 Hz, =CH); 31P{1H} NMR
(162 MHz, CDCl3) δ (ppm): 17.45.

4. Conclusions

In conclusion, during the synthesis and derivatization of TVPO, it is crucial to control
the purity of the polymerization processes when seeking industrial applications. This
comprehensive computational analysis offers valuable insights into the intricate molecular
architecture of TVPO and the reaction profiles of TVPO in Michael-like (pseudo-Michael)
addition reactions and anionic addition polymerization reactions. This study showcases
the dependability and precision of the M062X/6-311++G(d,p) theoretical model using a
comparative evaluation with empirical X-ray information. The findings indicate a notewor-
thy correspondence between the theoretical predictions and empirical observations with
regard to bond lengths, thereby confirming the methodology and outcomes.

The investigation of nucleophilic addition reactions with piperazine elucidated a mech-
anism consisting of two distinct steps, which entail the creation of an intermediate and
the transition between states. The lower Ea values seen for the second step as well as the
exothermic nature of the reaction are proof of its thermodynamic and kinetic favourability.
The entropy values that were computed also suggest favourable circumstances. This study
yields a more profound understanding of the reaction kinetics and the function of transi-
tional states, thereby augmenting forthcoming research on specificity and responsiveness
in multi-phase reactions.
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This investigation pertains to the anionic addition polymerization reaction using
the Grignard reagent VMB. This study reveals the emergence of a four-membered ring
intermediate and consequent reactions that culminate in the production of the intended
outcome. The exothermic reaction displays a high rate constant and comparatively low Ea,
implying its kinetic favourability. The results of this study provide insight into the kinetics
and mechanisms underlying the reaction, highlighting its viability and potential usefulness.

In order to have a comprehensive grasp of the sequential processes involved in a
mechanism, it is important to conduct a meticulous reassessment of the essential elements
relating to the species involved in the reaction. These critical elements include a comparison
of geometries, electron density distributions, and stability energies associated with orbital
interactions between different species. This thorough method is highly recommended as a
general practice for analysing the mechanism underlying any response, both before and
after its occurrence, at each individual stage within the mechanism. This systematic exami-
nation promotes a greater understanding of the underlying processes and gives dynamic
insights into the complexities of chemical reactions by examining all possible interactions.

In general, this study enhances our understanding of the reactivity of TVPO, elucidates
the underlying reaction mechanisms, and identifies prospective synthetic utilities. The
integration of computational analysis, theoretical framework, and experimental valida-
tion augments our understanding of reaction profiles and establishes a foundation for
forthcoming advancements and refinements in the realm of synthetic chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28166097/s1, Figure S1: NMR spectra of trivinylphos-
phine oxide (TVPO); Table S1: Fractional atomic coordinates and equivalent isotropic displacement
parameters for TVPO; Table S2: Anisotropic displacement parameters for TVPO; Table S3: Bond
angles for TVPO; Table S4: Torsion angles for TVPO; Table S5: Hydrogen atom coordinates and
isotropic displacement parameters for TVPO; Figure S2: A 3-D view showing the structure of model
compound TVPO.2THF; Figure S3: A 3-D view showing the structure of I1 in the presence of two
explicit THF molecules; Figure S4: A potential energy diagram for the reaction between TVPO and
VMB; Figure S5: A 3-D view showing the structure of model compound TVPO-Mg(Br)(CHCH2); Table
S6: Cartesian coordinates for the reaction between TVPO and piperazine (Pip) and vinylmagnesium
bromide (VMB).
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