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Abstract

This work presents a method for computing the averaged free energy and constitutive relations in hyperelastic material
odels with distributed fibres, as they apply to soft fibre-reinforced materials and biological tissues. While these models are

urrently implemented through either spherical cubature of the fibre free energy or its Taylor series, we here propose a new
ethod based on a univariate Gauss quadrature rule with integration points and weights informed by the statistical moments

f the distribution of fibre stretch. As an intrinsic property, the new approach separates the integration of the fibre constitutive
aw from the integration of the orientation distribution, the latter leading to structural tensors of even order. Provided the latter
n− 1 tensors are computed accurately up to tensorial order 2(2n− 1), the method integrates exactly any polynomial of order

2n−1 that agrees with the fibre law at the n integration points. After formally introducing the quadrature method for generally
non-affine fibre deformations and arbitrary order, we focus on the important special case of affine fibre kinematics and discuss
the rules with n ≤ 3 integration points, for which the corresponding positions and weights are determined analytically. At a
computational cost comparable to the existing approaches, the new method does not require the fibre law to be analytic and
can thus robustly deal with piece-wise definitions of the fibre energy, in contrast to Taylor-series approaches, and it does not
induce additional anisotropy as it can occur with spherical cubature rules. The 3-point rule is further investigated and illustrated
in numerical examples relating to soft collagenous tissues based on a Fortran implementation of the method suitable for use
in finite element analyses.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The efficient computation of averaged non-linear properties of materials that feature fibre network microstructures
r that are reinforced by statistically distributed fibres represents an essential steps in various fields of mechanics. A
rominent example is the biomechanics of soft collagenous tissues, which is at the basis of various analyses that help
nderstanding the mechanical functioning of the body in the physiological state, allow studying the development of
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pathological conditions induced or accompanied by changes of the mechanical environment, and that finally support
the development of biomedical materials and devices.

Integrating basic information on tissue microstructure into constitutive models that represent the mechanical
ehaviour of the material at macroscopic length scale has been an objective pursued by the biomechanics community
or a long time, and has led to various approaches, both tissue-specific and general ones. One of the most popular
trategies is the method known as structural modelling [1], which is typically associated with the pioneering work
f Y. Lanir [2]. Briefly, the ensemble response of fibres, each associated with an alignment direction in space, is
btained by an average of a single fibre’s response over the set of all possible directions, potentially weighted by an
rientation probability density function in case the orientation distribution is not uniform. The directional ‘space’
s conveniently represented by the unit sphere in 2 or 3 dimensions for planar and bulk tissues, respectively, so that
he averaging operation results in a spherical integral.

Spherical integration has become a ‘canonical’ strategy to address the averaging problem, not only in biome-
hanics but also in various other fields of mechanics. The generally highly non-linear fibre properties potentially
ultiplied by likewise non-linear orientation distributions usually forbid an analytic solution of the integrals and call

or numerical methods. The two most common approaches in this regard concern numerical cubature on the sphere
3], and analytic approximations based on a Taylor-series expansion of the fibre related properties [see e.g. the
eview in 4].

Both these approaches require the existence of a relation between the response of a single fibre with given
nitial orientation and the macroscopic state of deformation. Although it has frequently been shown that such a
eterministic relation between fibre orientation and stretch is generally lacking in non-affine fibre networks [5–8],
everal models were proposed to link fibre orientation and stretch [e.g. 9–13], and most prominent is the assumption
f affine deformations.

In the affine case, the fibre square stretch is a quadratic spherical polynomial linear in the components of the
acroscopic right Cauchy–Green tensor. Hence, if the fibre response is defined in terms of an analytical function

f its square stretch, the integrand may represent an infinite series of analytically integrable terms, at least in the
ase of uniform orientation distributions. If the orientation distribution is non-uniform, i.e. the network anisotropic,
t additionally depends on the form of the latter, whether the product of fibre energy and distribution density to be
ntegrated maintains this beneficial property. Therefore both methods, spherical cubature and Taylor-series-based
nalytical approaches, can be shown to be exact in the special cases where the series is finite and the integrand
epresents a spherical polynomial of some degree n. However, the observed non-linear properties of collagen fibre
undles are often expressed in terms of non-polynomial functions; asymptotes in the constitutive fibre law are
ometimes used to reflect limiting strains [14,15]; fibre switches [16] are considered to reflect tension-compression
symmetry of slender fibres; eventually highly non-linear orientation distributions are typically employed to reflect
he dispersion of the collagen fibres within the tissue. All these characteristics derogate a potentially polynomial
haracter of the integrand.

As a consequence both methods, spherical cubature and Taylor-series-based analytical approaches generally
epresent approximations, whereby the quality largely scales with the computational cost. In the Taylor-series-based
pproach, quality and cost depend on the number of considered terms before the series is truncated. For spherical
ubature, they generally increase with the number of integration points on the sphere, each associated with an
valuation of the integrand. In addition, both methods come with their own special weakness, that tends to vanish
nly slowly when increasing the computational efforts. Spherical cubature is known to impair the intended material
ymmetry of the model [17], while the analytic approach has strong limitations dealing with fibre switches that lead
o discontinuities in the derivatives of the integrand [4].

In recent work [4,18], we have shown that the averaged free energy of networks of elastic fibres can be formulated
n an alternative way in terms of the distribution of fibre stretch, or suitable functions of the latter. The average free
nergy density of the network, which is a scalar multiple of the expectation of the fibre free energy density, results
s a one-dimensional integral on the positive reals R>0 [18]. In the affine case it lives on the support bounded by the
inimum and maximum macroscopic principal stretch. In general, a wealth of numerical quadrature methods exists

o approximately solve such integrals, and here we propose the use of Gauss-quadrature to address this task. We
xemplify how the moment-based Gauss quadrature [19] can be used to integrate structural models in biomechanics
20–22], that take account of statistically distributed fibre orientations. We show that this method represents a robust
echnique that can actually compete with the existing approaches. Given that the thus obtained approximations are
oth free of induced anisotropy and robust against piecewise-defined, non-smooth fibre strain-energies, the proposed

pproach may even present the method of choice for applications in soft tissue biomechanics.
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2. Preliminaries

2.1. Kinematics and stress in hyperelastic materials

The deformation of a material body is described by the mapping ϕ : B0 → Bt , X ↦→ x, taking a material point
from its reference position X in the referential configuration B0 to its current position x in the current configuration
Bt . The corresponding deformation gradient F = ∂ϕ/∂X with determinant J = detF > 0 allows to define the right
Cauchy–Green tensor C = FTF.

Let the free energy Ψ per unit reference volume be given by the function Ψ = Ψ̂ (C). For a hyperelastic
unconstrained material the second Piola–Kirchhoff stress S and the related Cauchy stress σ as well as fourth-order
tangent tensor C are

S = 2
∂Ψ̂

∂C
, σ = J−1FSFT, C = 2

∂S
∂C
= 4

∂2Ψ̂

∂C∂C
. (1)

We assume that the reference configuration B0 is associated with an energy- and stress-free state of the material,
i.e. Ψ̂ (I) = 0 and S(I) = 0.

2.2. Averaging of the fibre energy

We propose a new method to approximate the free energy density Ψ f of a network or ensemble of statistically
distributed fibres characterised by the fibre strain–energy density function1 ψ . We assume that ψ is expressed in
terms of the fibre square stretch Λ = λ2. To this end, we introduce the expectation operator E [ · ] to express the
macroscopic energy Ψ f as an integral of the microscopic energy ψ , i.e.

Ψ f = νfE [ψ] , (2)

where νf is a constant used for the energetic scale equivalence, essentially akin to a ‘fibre density’. If it exists a
function ΛN : E→ R, N ↦→ Λ that for each macroscopic deformation C returns the real scalar square stretch Λ of
a fibre that is initially oriented along the unit vector N within the Euclidean vector space E, the expectation E [ψ]
can be evaluated as

E [ψ] =
∫
S
ψ(ΛN (z)) dPN (z) , (3)

where PN models the initial fibre orientation distribution in the reference state. Although (3) has become the standard
approach for averaging fibre energies, the intermediate change of variables to express the stretch dependent energy
ψ as a function of orientation N , is in general not required. More generally, and particularly not requiring the
existence of ΛN , the expectation can be expressed as [18]

E [ψ] =
∫
R>0

ψ(x) dPΛ(x) , (4)

where PΛ is the stretch distribution. In almost all cases relevant for the mechanics of tissues and materials with
continuously distributed fibres, the latter can be expressed in terms of a corresponding density function pΛ, so that
Eq. (4) can be written as

E [ψ] =
∫ Λmax

Λmin

ψ(x) pΛ(x) dx , (5)

with limits 0 < Λmin < Λmax < ∞ that reflect the extremal values of the square stretch appearing within the
network. In fact, pΛ may degenerate or be non-existent in special cases, e.g. in the case of discrete single fibre
directions or if all stretches concentrate at a single value implying Λmin = Λmax. For the realm of this paper, and
in particular for the formulation of the Gauss quadrature proposed in Section 3 we will assume validity of the
representation (5) and deal with exceptions separately (cf. Remark 1).

1 For fibres the ‘density’ ψ may represent the energy per unit volume or per unit length, depending on whether fibres are modelled as
three or one-dimensional structures. The factor ν in Eq. (2) is accordingly dimensionless or has units of (area)−1, respectively.
f
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If the function ΛN exists, the two Eqs. (3) and (5) both evaluate the integral E [ · ]. An important example concerns
the affine case dealt with in Section 4, for which ΛN = N · CN . In view of the unit sphere S representing the
integration domain of Eq. (3), one might want to parametrise N in terms of spherical angles φ and θ . Accordingly,
one finds the equality

E [ · ] =
∫
R>0

· dPΛ(x) =
∫
S
· dPN (z) =

1
4π

∫ 2π

0

∫ π

0
· ρ(φ, θ) sin(θ )dθ dφ , (6)

where “ · ” is the placeholder for the integrand, that naturally needs to be expressed in terms of the integration
variables. For completeness ρ(φ, θ) is a common orientation density that quantifies the weight of fibre material
aligned along N , and that is normalised such that E [1] = 1.

In practise, if the transformation (6) is admissible, i.e. given an integrand that can be expressed as a function
f (N(φ, θ)) and provided a continuous fibre distribution ρ(φ, θ), this integral is typically approximated using a
pherical cubature rule, i.e. [see e.g. 3]

E [ f (N)] ≈ SC [ f (N)] =
n∑

k=1

f (Nk) ρ(φk, θk) Wk (7)

ith integration points {Nk} on the unit sphere, corresponding to the pairs {(φk, θk)}, and weights {Wk}. Indeed the
weights {Wk} are typically not accounting for the fibre distribution ρ(φ, θ) that therefore practically becomes part

f the integrand. Formally one may of course consider W̃k = ρ(φk, θk)Wk as new weights, but we emphasise that
s a consequence of the approximative character of (7) they usually violate the condition E [1] =

∑
k W̃k , and need

o be re-normalised (cf. Remark 3).
Among a generally wide choice of spherical cubature rules of the type (7), applications in mechanics have

avoured integration schemes that satisfy additional criteria, e.g. on symmetry or sign of the weights [11,17,23,24].
mong those schemes, a spherical t-design [25,26] will be considered in Section 5.1. Moreover, in order to achieve
costly but highly accurate approximation of Eq. (6) that will serve as ground truth for our further developments

nd benchmarks, a high-order Lebedev quadrature [27,28] was used. Both selected methods integrate polynomials
p to a certain degree t exactly.

. Gauss quadrature of stretch dependent constitutive laws

The alternative form of the free energy representation (5) suggests that if the stretch distribution is known, the
xpectation can be approximated by one of the well-established quadrature rules that exist for univariate integrals.
uadrature rules of the Gaussian type are commonly applied for a wide range of problems and in this section we
ill show that classical Gauss quadrature is particularly suitable to evaluate the expectation of the free energy (5)

ince the integration points and weights can be associated with the stretch distribution PΛ.

3.1. n-Point Gauss quadrature

Applying Gauss-type quadrature to evaluate the integral2 (5), the n-point approximate reads [19,29,30]

E [ψ] =
∫ Λmax

Λmin

ψ(x) pΛ(x) dx ≈ GI [ψ] =
n∑

k=1

ψ(xk)wk , (8)

where {xk} and {wk} are the integration points and corresponding weights, respectively. It can be shown Appendix A
hat (i) the Gauss integration is exact for polynomials of degree m ≤ 2n− 1, (ii) that the integration points {xk} lie

in the range [Λmin,Λmax] and (iii) the weights {wk} are positive [29]. Importantly, in this type of quadrature only
the function ψ(x) is evaluated at {xk}, while the ‘weight function’ pΛ(x) affects their positions and the weights wk .

The integration points {xk} are the roots of the nth orthogonal polynomial Pn (Section 3.2) corresponding to pΛ

and the weights {wk} calculate as Appendix A

wi = E

⎡⎣∏
j ̸=i

x − x j

xi − x j

⎤⎦ , i = 1, 2, . . . , n. (9)

2 Gaussian quadrature may be directly applied to the more general integral (4) [19].
4



B.R. Britt and A.E. Ehret Computer Methods in Applied Mechanics and Engineering 415 (2023) 116281

F
m

t
i
p
I

3

Fig. 1. Illustration of the Gram–Schmidt orthogonalisation process (12) and relationship (13).

Notably, in the common but here irrelevant case, where the weight function is constant Pn are the Legendre
polynomials.

3.2. Orthogonal polynomials corresponding to pΛ

The orthogonal polynomials {Pk} are defined with respect to the inner product (in an infinite vector space) [cp.
31], which in the specific problem is given by the expectation (5),

⟨ f, g⟩ =
∫ Λmax

Λmin

f (x) g(x) pΛ(x) dx = E [ f g] , (10)

such that

⟨Pn, xk
⟩ = E

[
Pn xk]

= 0, for all k < n. (11)

ollowing the idea of the Gram–Schmidt (orthogonalisation) process, starting from the standard basis for polyno-
ials {xk

} and definition of P0 = 1, one can compute [see e.g. 31]

P0 = 1,

P1 = x −
⟨x, P0⟩

⟨P0, P0⟩
P0,

P2 = x2
−
⟨x2, P0⟩

⟨P0, P0⟩
P0 −

⟨x2, P1⟩

⟨P1, P1⟩
P1,

...

Pn = xn
−

n−1∑
k=0

⟨xn, Pk⟩

⟨Pk, Pk⟩
Pk

= xn
− (projections of xn onto Pk for k < n)

(12)

o obtain in the kth step Pk as that part of xk that is perpendicular to all Pl for l < k. Hence, using in the kth step
nstead of xk an arbitrary kth order polynomial

∑k
l=0 αl x l with leading coefficient αk = 1 yields the same orthogonal

olynomial Pk because all {αl x l
}l<k are linear combinations of {Pl}l<k and therefore naturally perpendicular to Pk .

n case of an arbitrary leading coefficient αk one has the relationship (cp. Fig. 1)

P̃k =

k∑
l=0

αl x l
− (projections of

k∑
l=0

αl x l onto Pl for l < k) = αk Pk . (13)

.3. {Pk} As functions of the moments of pΛ

According to (10) and (12), calculation of the orthogonal polynomials (12) requires computing the inner products

k [ k ]

⟨x , Pl⟩ = E x Pl , l < k. (14)

5
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The latter are integrals of polynomials in x because Pl are polynomials in x , and can accordingly be expressed as
a finite weighted sum of {E

[
xk
]
}, i.e. integrals of integer powers xk . As a consequence, knowledge of the integrals

{E
[
xk
]
} implies a closed-form solution for {Pk}. In fact, given the definition (6), E

[
xk
]

can be identified as the kth
raw moment of the square stretch distribution, which we will denote as

µk = E
[
xk] . (15)

Expressing orthogonal polynomials in terms of raw moments is an established process, and one can derive the
following determinant formula to determine the set {Qk} of orthogonal polynomials [31, Eq. 2.2.6]

Qn =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 µ1 µ2 µ3 . . . µn

µ1 µ2 µ3 µ4 . . . µn+1
µ2 µ3 µ4 µ5 . . . µn+2
...

...

µn−1 µn µn+1 µn+2 . . . µ2n−1
1 x x2 x3 . . . xn

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (16)

to be understood as a cofactor expansion along the last row. One can easily verify that Qn is indeed orthogonal to
all {Qk}k<n: Since each {Qk}k<n is a linear combination of {xk

}k<n , it suffices to confirm that Qn is orthogonal to
all {xk

}k<n , i.e. that

⟨Qn, xk
⟩ = E

⎡⎢⎢⎢⎣
⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 . . . µn
...

...

µn−1 . . . µ2n−1
1 . . . xn

⏐⏐⏐⏐⏐⏐⏐⏐⏐ xk

⎤⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎣
⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 . . . µn
...

...

µn−1 . . . µ2n−1
xk . . . xk+n

⏐⏐⏐⏐⏐⏐⏐⏐⏐

⎤⎥⎥⎥⎦ = 0, k < n, (17)

hich is satisfied, because after integration the last and (k + 1)th row in the determinant are identical, so that the
eterminant evaluates to 0.

The polynomials Qn are scalar multiples of the orthogonals Pn , and in view of Eq. (13) we set P̃n = Qn , so
that

Qn = G2n−2,µPn, G2n−2,µ =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 µ1 µ2 µ3 . . . µn−1
µ1 µ2 µ3 µ4 . . . µn

µ2 µ3 µ4 µ5 . . . µn+1
...

...

µn−1 µn µn+1 µn+2 . . . µ2n−2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (18)

here G2n−2,µ plays the role of αn as the leading coefficient arising from a cofactor expansion of the determinant
ormula for Qn .

Alternatively introducing the signed distance of x from the mean µ1 as

x̄ = x − µ1 , (19)

one can express the orthogonal polynomial Pk in terms of the central moments

µ̄k = E
[
x̄k] , (20)

because (x − µ1)k has the same leading coefficient as xk and using the arguments that led to Eq. (13). In analogy
to Eq. (16) one finds Qn as

Qn =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 0 µ̄2 µ̄3 . . . µ̄n

0 µ̄2 µ̄3 µ̄4 . . . µ̄n+1
µ̄2 µ̄3 µ̄4 µ̄5 . . . µ̄n+2
...

...

µ̄n−1 µ̄n µ̄n+1 µ̄n+2 . . . µ̄2n−1
2 3 n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (21)
1 x̄ x̄ x̄ . . . x̄
6
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where in analogy to Eq. (18) Qn = G2n−2,µ̄Pn and we note that indeed G2n−2,µ̄ = G2n−2,µ. Since for determining
he roots of the orthogonal polynomials their normalisation and scaling is irrelevant, we will henceforth focus on
heir form Qn (21).

Explicitly for the first four orthogonal polynomials {Qk} one finds

Q0 = 1,
Q1 = x̄,

Q2 = µ̄2 x̄2
− µ̄3 x̄ − µ̄2

2 ,

Q3 = a x̄3
+ b x̄2

+ c x̄ + d ,

(22)

here the coefficients {a, b, c, d} are given by

a = µ̄2µ̄4 − µ̄
3
2 − µ̄

2
3 ,

b = µ̄2
2µ̄3 − µ̄2µ̄5 + µ̄3µ̄4 ,

c = µ̄2
2µ̄4 − µ̄2µ̄

2
3 + µ̄3µ̄5 − µ̄

2
4 ,

d = µ̄2
2µ̄5 − 2µ̄2µ̄3µ̄4 + µ̄

3
3 .

(23)

.4. Integration points {xk} as functions of the moments of pΛ

In view of the fact that there exists no general closed-form solution for the quintic (and thus any higher order)
equation, the roots of Qn and therefore the integration points {xk} may generally have to be computed numerically.
In the following we will therefore focus on the well known closed-form solutions for the roots of polynomials of
degree n ≤ 3.

Since the expression for the orthogonal polynomials {Qk} (22) depends on x̄ , i.e. the position of x relative to
µ1, it is useful to likewise determine the location of the roots {xk} relative to µ1. Therefore analogous to Eq. (19)
we define {x̄k} such that

xk = x̄k + µ1 . (24)

Obviously for n = 1, the single root of P1 or equivalently Q1 (22) is x̄1 = 0, i.e. x1 = µ1. In case n = 2 the
quadratic formula helps determine x1,2 = µ1 + x̄1,2 with

x̄1,2 =
µ̄3 ∓

√
4µ̄3

2 + µ̄
2
3

2µ̄2
(25)

s the two roots of P2 and Q2 (22). For the n = 3 closed-form solution, the roots xk = µ1 + x̄k of P3 and Q3 (22)
an be expressed by means of Cardano’s formula, so that

x̄k =
I1 + 2

√
ACk

3
, Ck = cos

(
ϑ + 2πk

3

)
, k = 1, 2, 3, (26)

here

A = I2
1 − 3I2 , B = I3

1 −
9
2
I1I2 +

27
2
I3 , ϑ = arccos

(
B

A3/2

)
(27)

are defined in terms of the dedicated invariant expressions

I1 = −
b
a
, I2 =

c
a
, I3 = −

d
a
, (28)

which in turn can be written in terms of the central moments µ̄k , k = 1, 2, . . . , 5, by use of the auxiliary variables
23). We note that because the roots are real, it can be shown that A ≥ 0 and B/A3/2

∈ (−1, 1). Finally, we
mphasise that the expressions (28) must not be confused with the principal strain invariants.

emark 1 (Single Stretch Value). The determination of the roots for the n > 1 cases, requires a variance µ̄2 > 0,
.e. a stretch distribution that does not concentrate all stretches at a single value Λ . This technical detail may
single

7
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be simply circumvented by a case distinction in Eq. (5) and appreciation of the associated trivial solution, i.e. in
this case E [ψ] = ψ(Λsingle). Alternatively, one may add small perturbations to the stretch Λsingle in the numerical
solution, which in view of a stable problem can be considered reasonable as this only leads to small variations in
the result.

3.5. Weights {wk} as functions of the moments of pΛ

Given the integration points {xk} the computation of the weights (9) again requires to determine integrals of
polynomials in x , which in turn we have identified in terms of moments of the stretch distribution. Therefore the
weights (9) can generally be expressed as functions of the moments as well. For the n-point quadratures with n ≤ 3
or which closed-form solutions for the integration points have been derived in the previous section (24)–(26) we
ill now explicitly state the corresponding weights.
In case n = 1 the single weight is 1. In case n = 2 insertion of the integration points {x1, x2} given by Eq. (24),

25) into the formula for the weights (9) yields

w1,2 =
1
2
±

µ̄3

2
√

4µ̄3
2 + µ̄

2
3

, (29)

hich matches with the intuition that for a positive skewness µ̄3 > 0, i.e. a stretch distribution with a tail to the
ight, more weight should be put to the left integration point x1 that is then closer to the mean µ1 (see Eq. (25))

and vice versa. If the skewness is zero, the distribution is symmetric, the integration points have equal distance
from the mean and the weights are equal. For n = 3, using the transformations (19) and (24), the weights (9) can
be written as

wk = E
[

(x̄ − x̄ j )(x̄ − x̄l)
(x̄k − x̄ j )(x̄k − x̄l)

]
, k ̸= j ̸= l ̸= k, (30)

here we used again the notation x̄ = x −µ1 and x̄k = xk −µ1. Taking into account that E [x̄] = 0 this simplifies
as

wk =
µ̄2 + x̄ j x̄l

vk
, vk = (x̄k − x̄ j )(x̄k − x̄l) , k ̸= j ̸= l ̸= k, (31)

here {x̄k} is given in Eq. (26), and k runs from 1 to 3.

.6. Derivatives of the approximated expectation

The stretch distribution generally depends on the macroscopic deformation expressed through C. The same holds
or its moments and correspondingly for the integration points and weights, which define the Gauss quadrature of
he averaged free energy E [ψ] ≈ GI [ψ] (8). Since the latter defines the free energy density of the material Ψ , e.g.

through Eq. (2) or, as exemplified later in Sections 5.2.2 and 5.2.3, the calculation of stress and stiffness according
to Eq. (1) requires the computation of first and second derivatives of GI [ψ] with respect to C. Assuming that the
integration points {xk} and corresponding weights {wk} can be expressed as functions of C, these derivatives of the

uadrature rule (8) are

∂GI [ψ]
∂C

=

n∑
k=1

ψ ′(xk)wk
∂xk

∂C
+ ψ(xk)

∂wk

∂C
(32)

nd

∂GI [ψ]
∂C

=

n∑
k=1

ψ ′′(xk)wk
∂xk

∂C
⊗
∂xk

∂C

+ ψ ′(xk)
(
∂xk

∂C
⊗
∂wk

∂C
+
∂wk

∂C
⊗
∂xk

∂C
+ wk

∂2xk

∂C∂C

)
+ ψ(xk)

∂2wk
,

(33)
∂C∂C
8
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C

b

where xk = µ1 + x̄k . Since the integration points {xk} and weights {wk} have already been derived as functions
of the moments {µ1, µ̄2, µ̄3, . . .}, use of the first and second derivatives of these moments (Sections 4.3 and 4.4)
along with the chain rule of differentiation

y,C =
∑

M∈{µ1,µ̄2,µ̄3}

y,M M,C for y ∈ {xk, wk}, (34)

provides the expressions {xk,C} and {wk,C} as well as {xk,CC} and {wk,CC}. While for n = 1 (x1 = µ1) and n = 2
(Eq. (24), (25)) these expressions are straightforward, they are provided in Appendix B for n = 3.

Remark 2 (Numeric Computation of Stress and Tangent Tensors). Alternative to the analytic approach presented in
Section 3.6 numeric differentiation schemes [see e.g. 32,33] applied to the free energy Ψ may be used to compute
the stress and tangent tensor components, in particular for the cases, where the integration points (i.e. the roots of
Pn) are determined numerically, i.e. most likely for any case n > 3.

4. Application to anisotropic affine networks

The Gauss quadrature averaging is next specified for the special case of affine fibre kinematics. The assumption
of affinity establishes for any fixed state of deformation expressed through C = FTF a deterministic relation between
fibre stretch and initial orientation, and thus allows defining the function ΛN : E→ R, N ↦→ Λ. Consequently, the
square stretch distribution PΛ and its density pΛ can be exclusively expressed in terms of C and the orientation
distribution ρ(φ, θ) by use of suitable variable transformations [4,34,35]. Moreover, as resumed in Section 2.2 the
expectation E [·] can be equivalently evaluated as either an integral over the stretch distribution or over the unit
sphere (6). This equivalence allows exactly determining the moments (20) by means of well established methods,
in terms of either strain invariants in the isotropic case [4,36] or in terms of generalised structural tensors in the
general, anisotropic case of non-uniform fibre orientation distributions [4,37]. Here, we focus on the second of these
cases, which has gained particular importance for formulating constitutive models of soft collagenous biological
tissues.

4.1. Preliminaries

4.1.1. Affine kinematics
If the fibres are assumed to transform like infinitesimal vectorial line elements of the macroscopic material

considered as a continuous body, their change in squared end-to-end length is defined by the macroscopic
deformation gradient F through the affine mapping, so that

Λ := ΛN = ∥FN∥2
= N · CN. (35)

This deterministic relation between initial orientation, macroscopic deformation and the microscopic fibre stretch
also sets the limits Λmin and Λmax of the (square) stretch distribution (5), which result as the minimum and maximum
eigenvalue of C in this case.

4.1.2. Cartesian components
For the sake of simplicity and in view of the implementation into computer codes, we use index-notation in

this section, together with the Einstein summation-convention to express vectors, second and higher order tensors
through their Cartesian components referring to a basis formed by a fixed orthonormal set of vectors {e1, e2, e3}.

onsequently we will address vectors v = vi ei , second order tensors T = Ti j ei⊗ei and in general nth order tensors

A = Ai ...t ei ⊗ . . .⊗ et (36)
y just their components, i.e. vi , Ti j and in general Ai ...t .

9
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4.1.3. Generalised structural tensors
The nth even order generalised structural tensor is defined as [38]

Hn = E

⎡⎣N ⊗ . . .⊗ N  
n copies

⎤⎦ . (37)

he Cartesian components of Hn with respect to the orthonormal basis {ei } thus read

H i j ...st
2n

= E

⎡⎢⎣Ni N j . . . Ns Nt  
2n

⎤⎥⎦ , (38)

where Ni = N·ei . It is observed that the value of the component Hi j ···st depends only on the number of occurrences
p, q, r of the indices 1, 2, 3, respectively. Hence for computation and storage it is reasonable to introduce [39]

Hp,q,r = E
[
N p

1 N q
2 N r

3

]
, (39)

where the sum of p, q, r is equal to the number of indices in the representation (38) and therefore the (even) order
2n of the structural tensor. In view of Eq. (6), it can be concluded that given a fibre orientation distribution ρ(φ, θ)
these components calculate as

Hp,q,r =
1
4

∫ 2π

0

∫ π

0
cosp(φ) sinq (φ) sinp+q+1(θ ) cosr (θ ) ρ(φ, θ) dθ dφ , (40)

where we used the definition of the spherical angles according to which

N = Ni ei = cos(φ) sin(θ )e1 + sin(φ) sin(θ )e2 + cos(θ )e3 . (41)

While for special cases of ρ(φ, θ) the components (40) can be calculated analytically [cf. e.g. 39], the general case
requires numerical integration, which typically uses the cubature rule (7), i.e.

Hp,q,r = E
[
N p

1 N q
2 N r

3

]
≈ SC

[
N p

1 N q
2 N r

3

]
=

n∑
k=1

(Nk)p
1 (Nk)q

2(Nk)r
3 ρ(φk, θk) Wk  

=W̃k

(42)

or integration points {Nk}, equivalently expressed through pairs of spherical angles {(φk, θk)}, on the unit sphere
nd weights {Wk}.

Another important property of generalised structural tensors is that higher order tensors contain all information
bout lower order tensors, and in particular that the tensors of order 2n result from those of 2(n + 1) by simple
ontraction with the second order identity tensor. For the components (38) this leads to [cf. 38]

Hi j ···st  
order 2n

= E

⎡⎣Ni N j . . . Ns Nt Nu Nvδuv  
=1

⎤⎦ = Hi j ···stuv  
order 2(n + 1)

δuv , (43)

hich we understand to include Hstδst = 1 and Hstuvδuv = Hst for n = 0 and n = 1, respectively.

emark 3 (Consistency of Hi j ...st ). As already mentioned, due to the numerical error of spherical cubature, the
ew weights {W̃k} in Eq. (42) obtained in this way usually do not satisfy the normalisation condition E [1] = 1, i.e.

k W̃k = 1. Consequently, determining Hi j ...st through Eq. (42) usually violates the important properties (43), i.e.
n particular Hstδst = 1, making the structural tensors inconsistent. A simple solution to overcome this issue is to
enormalise the new weights {W̃k} as

W̃ ∗k =
W̃k∑n

k=1 W̃k
, k = 1, 2, . . . , n, (44)

and to use W̃ ∗k instead of W̃k in Eq. (42). Such a procedure is reasonable as it just shifts the numerical error.
For the proposed GI method, this consistency is very important as otherwise the formulae for the moments (48)

may yield unreasonable results leading to nonsensical Gauss integration points (Section 3.4), e.g., situated outside

of the interval [Λmin,Λmax] in which they must fall.

10



B.R. Britt and A.E. Ehret Computer Methods in Applied Mechanics and Engineering 415 (2023) 116281

A

T

w

R
t
b

4

C

4.2. Moments of the affine stretch distribution

In terms of the components of C and N , the affine square stretch (35) reads

Λ = N · CN = Ci j Ni N j . (45)

ccording to the definition of the first raw moment (15) one finds

µ1 = E [Λ] = E
[
Ci j Ni N j

]
= Ci j Hi j . (46)

he definition of the central moments (20) further yields [4]

µ̄k = E
[
(Ci j Ni N j − µ1)k]

= E
[
((Ci j − µ1δi j )Ni N j )k]

= (Ci j − µ1δi j ) . . . (Cmn − µ1δmn)  
k copies

Hi j ...mn , (47)

where δi j is the Kronecker symbol so that for the second equality in Eq. (47) we could use that ∥N∥2
= δi j Ni N j = 1.

Explicitly the first five relevant moments read

µ1 = Ci j Hi j ,

µ̄2 = C̃i j C̃kl Hi jkl ,

µ̄3 = C̃i j C̃klC̃mn Hi jklmn ,

µ̄4 = C̃i j C̃klC̃mnC̃st Hi jklmnst ,

µ̄5 = C̃i j C̃klC̃mnC̃st C̃uvHi jklmnstuv ,

(48)

here

C̃i j = Ci j − µ1δi j . (49)

emark 4 (Isotropic Materials). We note that for uniform fibre distributions, all moments can be expressed in
erms of polynomials of invariants of C, as outlined in [4]. Terms up to the 10th moment have been provided
efore [see 36].

.3. Derivatives of the moments with respect to C

As µ1 = Ckl Hkl it follows that

∂µ1

∂Ci j
= δkiδl j Hkl = Hi j , (50)

and consequently ∂2µ1/(∂Cst∂Ci j ) = 0. Considering definition (49), for µ̄2 = C̃mnC̃op Hmnop one can derive

∂µ̄2

∂Ci j
=

(
∂C̃mn

∂Ci j
C̃op + C̃mn

∂C̃op

∂Ci j

)
Hmnop

= 2(δmiδnj + Hi jδmn)C̃op Hmnop

= 2C̃op(Hi jop + Hi j Hop) = 2C̃op Hi jop .

(51)

Here, to obtain the second equality, the symmetry of Hmnop was exploited, and that its value is independent of
the ordering of its indices (cf. Eq. (39)). The third and final equality holds due to the property (43) and because
˜op Hop = µ̄1 = 0, respectively. From Eq. (51) one can further derive

∂2µ̄2

∂Cst∂Ci j
= 2(δosδpt + Hstδop)Hi jop (52)

= 2(Hi jst + Hst Hi j ) .

11
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a

a

Fig. 2. Efficient computation of the moments and their derivatives starting from the terms marked in red. Details are explained in Section 4.4
in terms of Cartesian components, such that Hα ·C̃⊗β = HαCβ, where α, β are integers, e.g. H5 ·C̃⊗3

= H5C3. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Following the same steps for the higher moments µ̄k = C̃mnC̃op . . . C̃uvHmnop...uv (k ≥ 3) one concludes

∂µ̄k

∂Ci j
=

(
∂C̃mn

∂Ci j
C̃op . . . C̃uv + . . .+ C̃mnC̃op . . .

∂C̃uv

∂Ci j

)
Hmnop...uv

= k(δmiδnj − Hi jδmn)C̃op . . . C̃uvHmnop...uv

= k C̃op . . . C̃uv  
k − 1 copies

Hi jop...uv − k Hi j µ̄k−1

(53)

nd

∂2µ̄k

∂Cst∂Ci j
= k

(
∂C̃op

∂Cst
. . . C̃uv + . . .+ C̃op . . .

∂C̃uv

∂Cst

)
Hi jop...uv − k Hi j

∂µ̄k−1

∂Cst

= k(k − 1)(δosδpt − Hstδop) · · · C̃uvHi jop...uv − k Hi j
∂µ̄k−1

∂Cst

= k(k − 1) . . . C̃uv  
k − 2 copies

(Hi jst ...uv − Hst Hi j ...uv  
order 2(k − 1)

)− k Hi j
∂µ̄k−1

∂Cst
.

(54)

4.4. Efficient computation scheme for the moments and their derivatives

The previous sections include all information to compute the moments µ̄k and their derivatives. Nevertheless,
using the high degree of symmetry of the structural tensors, and in particular the repeated application of the essential
property (43), allows defining an efficient scheme to compute the first five moments and their first and second
derivatives. The essential steps are illustrated in Fig. 2 and all steps are explained in what follows.

Given components of the five generalised structural tensors

Hi jklmnopqr , Hi jklmnop, Hi jklmn, Hi jkl , Hi j (55)

nd the current state of deformation expressed through the components Ci j of C, one can calculate

µ = H C , C̃ = C − µ δ . (56)
1 i j i j i j i j 1 i j

12
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Next one computes the auxiliary contractions between structural tensors and C̃

H5C3i jkl = Hi jklmnopqr C̃mnC̃opC̃qr ,

H4C2i jkl = Hi jklmnopC̃mnC̃op,

H3C1i jkl = Hi jklmnC̃mn,

(57)

whose further contractions provide

H5C4i j = H5C3i jklC̃kl ,

H4C3i j = H5C3i jkl δkl ,

H3C2i j = H4C2i jkl δkl ,

H2C1i j = H3C1i jkl δkl .

(58)

he latter can be directly used to compute the affine moments (48) as

µ̄5 = H5C4i j C̃i j ,

µ̄4 = H5C4i j δi j ,

µ̄3 = H4C3i j δi j ,

µ̄2 = H3C2i j δi j ,

(59)

s well as their first derivatives
(µ̄5,C)i j = 5(H5C4i j − µ̄4 Hi j ),
(µ̄4,C)i j = 4(H4C3i j − µ̄3 Hi j ),
(µ̄3,C)i j = 3(H3C2i j − µ̄2 Hi j ),
(µ̄2,C)i j = 2 H2C1i j ,

(60)

nd their second derivatives
(µ̄5,CC)i jkl = 20(H5C3i jkl − H4C3i j Hkl − Hi j H4C3kl + µ̄3 Hi j Hkl),
(µ̄4,CC)i jkl = 12(H4C2i jkl − H3C2i j Hkl − Hi j H3C2kl + µ̄2 Hi j Hkl),
(µ̄3,CC)i jkl = 6(H3C1i jkl − H2C1i j Hkl − Hi j H2C1kl),
(µ̄2,CC)i jkl = 2(Hi jkl − Hi j Hkl).

(61)

or the sake of completeness, we repeat the first results from Section 4.3.

(µ1,C)i j = Hi j , (µ1,CC)i jkl = 0 (62)

nd emphasise that in all the operations the computational cost can be highly reduced by exploiting the symmetries of
he operations arising from symmetries in the generalised structural tensors and C – for example, of the 310

= 59049
omponents of the fifth generalised structural tensor only 66 are unique.

. Examples and comparisons

The new method for averaging will be applied to two cases inspired by typical problems in biomechanics, and the
esults will be compared to those obtained by spherical cubature and the Taylor-series based approach, i.e. a higher-
rder structural tensor method. Particularly, as a representative of the soft collagenous tissue type behaviour we
onsider an isotropic matrix reinforced by non-linear elastic fibres distributed according to a transversely isotropic
rientation density function. Two common approaches, following an additive representation of the matrix and fibre
ontributions [cf. 40] and the exponential approach according to Rubin and Bodner [41] are considered to define
he free energy of the tissue.

.1. Integration methods

.1.1. Summary of the proposed approach: 3-point Gauss quadrature
The affinity assumption (35) together with a continuous fibre orientation distribution ensures that the stretch
istribution PΛ is continuous, and hence existence of the density function pΛ in Eq. (5) for all deformations with

13
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µ̄2 > 0. Consequently, with the exception of equi-triaxial deformations (Λ1 = Λ2 = Λ3) for which µ̄2 = 0, the
auss integration can be applied as described in Section 3. The equi-triaxial case is easily treated as an exception

Remark 1) using that in this case E [ψ] = ψ(µ1).
Energy, stress and stiffness are calculated simultaneously according to the scheme described in Section 4.4

Fig. 2 ). It is important to note that in the elastic affine case the generalised structural tensors are effectively
aterial parameters, that remain constant during deformation. For this reason, they only need to be computed once

or each material, and can hence be stored. As a consequence the potential computational cost of an adequate
uadrature rule may be considered of minor importance. Nevertheless, we note that efficient alternative algorithms
xist to compute generalised structural tensors for special cases, e.g. those with a single preferred direction leading
o transverse isotropy. Hashlamoun and Federico [39].

Algorithm 1 summarises the procedure as a Fortran subroutine-like pseudo code.
unction GI (F, mat param, dist param )

% items to be preserved after return, i.e. reused in subsequent function calls:
save old dist param
save {Hk}k=1,2,3,4,5
% reuse old or calculate new structural tensors:
if dist param not old dist param then

compute {Hk}k=1,2,3,4,5
old dist param ← dist param

end
compute µ1, {µ̄k, µ̄k,C, µ̄k,CC}k=2,3,4,5 (Section 4.4)
if µ̄2 < tol then

Ψ = ψ(µ1)
Ψ,C = ψ

′(µ1)H1
Ψ,CC = ψ

′′(µ1)H2

else
compute a, b, c, d (23), I1, I2, I3,A,B, ϑ (27), (28), {x̄k} (26)
compute {xk} and {wk} (24), (31)
compute {xk,C} and {wk,C} (B.1)-(B.7)
compute {xk,CC} and {wk,CC} (B.8)-(B.13)
Ψ = GI [ψ] (8)
Ψ,C = GI [ψ],C (32)
Ψ,CC = GI [ψ],CC (33)

end
σi j = 2J−1 Fi I F j J (Ψ,C)I J

C i jkl = 4J−1 Fi I F j J FkK Fl L (Ψ,CC)I J K L

C̃ i jkl = C i jkl + (σikδl j + σilδk j + δikσl j + δilσk j )/2
return Ψ , σi j , C̃ i jkl

Algorithm 1: Pseudo code for 3-point Gauss integration of the network free energy, Cauchy stress σ as well
as the spatial elasticity tensor C and the ‘Jacobian’ C̃, e.g. for use with continuum elements in Abaqus [42]. For
the sake of brevity in notation, Ψ here refers only to the averaged fibre energy, so that Ψ = E [ψ], i.e. the
factor νf and additional matrix contributions are omitted. The function takes as input the deformation gradient
F, material parameters mat param and fibre distribution parameters dist param. Note that, using this function to
analyse a series of deformations F for a given fibre distribution the structural tensors are only computed once.
The inclusion of dist param as an input allows to give a general form that, e.g., provides the typical freedom
o analyse different fibre distributions without rewriting code.

.1.2. Microsphere model for fibre reinforced tissue: Spherical cubature
A discretisation of the unit sphere into a finite set of directions [see e.g. 23], giving rise to what is referred

o as microsphere [11,43] or microplane [44,45] model represents the most common strategy to implement affine

tructural models of soft collagenous tissues with continuous fibre orientation distributions [2,21,46]. In view of the
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affine relation (35), the fibre energy f (N) = ψ(N ·CN) is accordingly integrated by the cubature rule (7) [see e.g.
43]

E [ψ] ≈ SC [ψ(N · CN)] =
n∑
k

ψ(Nk · CNk) ρ(φk, θk) Wk (63)

for integration points {Nk}, equivalently {(φk, θk)}, on the unit sphere weighted with {Wk}. As a consequence of
the cubature (63) the derivatives with respect to C follow as

∂SC [ψ]
∂C

=

n∑
k

ψ ′(Nk · CNk) Nk⊗Nk ρ(φk, θk) Wk (64)

nd

∂2SC [ψ]
∂C∂C

=

n∑
k

ψ ′′(Nk · CNk) Nk⊗Nk⊗Nk⊗Nk ρ(φk, θk) Wk . (65)

For comparisons with the proposed 1D Gauss integration (Section 5.1.1) the 5810 point Lebedev scheme [27]
made available by bur [28] and a 60 point spherical t-design [25,26] has been used, which exactly integrate

olynomials in the coordinates x, y, z up to order 131 and 10, respectively. The 5810 point scheme represents
computationally much more expensive ground truth and the 60 point scheme was selected as a typical alternative

o the new method.

.1.3. Generalised higher-order structural tensors: Taylor-series based approach
The higher-order generalised structural tensor approach results from a Taylor expansion of the fibre energy

xpressed as a function of the affine stretch square stretch (35). Accordingly [cf. 4]

E [ψ] ≈ E

[
n∑

k=0

1
k!
∂kψ

∂Λk
(Λ0)(Λ− Λ0)k

]
=

n∑
k=0

1
k!
∂kψ

∂Λk
(Λ0)E

[
(Λ− Λ0)k] , (66)

here E
[
(Λ− Λ0)k

]
can be identified as the kth moment of the stretch distribution with respect to Λ0. In view of

q. (47) (formally replacing µ1 with Λ0) this moment can be expressed as

E
[
(Λ− Λ0)k]

= (Ci j − Λ0δi j ) . . . (Cmn − Λ0δmn)  
k copies

Hi j ...mn . (67)

ithout additional information that would favour another expansion point, it is reasonable to expand the Taylor
eries about the point of the expected or mean fibre stretch, i.e. Λ0 = µ1 [cf. 4,36]. In this case Eq. (67) is

the kth central moment and identical to Eq. (67). This choice makes the model consistent with an approach
proposed by Cortes and Elliott [47] termed GHOST method, which we will use as a benchmark. The corresponding
approximation of the free energy reads

E [ψ] ≈ ST [ψ(N · CN)] =
n∑

k=0

1
k!
∂kψ

∂Λk
(µ1) µ̄k , (68)

evealing its form as a weighted sum of the central moments (47).
For the sake of completeness, we note that another choice of the expansion point Λ0 can in some cases improve

he approximation qualities of this approach [cf. 4,36], however, generally requires careful consideration of the
articular fibre energy function and state of deformation C, and therefore is beyond the scope of this paper.

The derivatives with respect to C follow as

∂ST [ψ]
∂C

=

n∑ 1
k!
∂k+1ψ

∂Λk+1 (µ1) µ̄k H1 +
1
k!
∂kψ

∂Λk
(µ1) µ̄k,C , (69)
k=0

15



B.R. Britt and A.E. Ehret Computer Methods in Applied Mechanics and Engineering 415 (2023) 116281

a
u
s

a

w

5

5

m
E

w
n
[

s
t
t

t
(
w

5

Fig. 3. Fibre material model: (a) Initial fibre orientation distribution density represented as a polar plot. Comparison of (b) energy(-level)
nd (c) force(-level) terms of the Holzapfel-Gasser-Ogden-type model (72) and Rubin-Bodner-type model (81), as well as the fibre energy
sed in Bircher et al. [54] that inspired the choice of model parameters (Table 1). In case of the exponential model with tension-compression
witch the analytic continuation (without tension-compression switch) is also included for its relevance in the GHOST method.

nd

∂2ST [ψ]
∂C∂C

=

n∑
k=0

1
k!
∂k+2ψ

∂Λk+2 (µ1) µ̄k H1 ⊗H1 +
1
k!
∂k+1ψ

∂Λk+1 (µ1) µ̄k H1 ⊗
s µ̄k,C

+
1
k!
∂kψ

∂Λk
(µ1) µ̄k,CC ,

(70)

here we defined ⊗s such that A⊗s B = A⊗ B+ B⊗ A for two arbitrary second order tensors A and B.

.2. Specific constitutive assumptions

.2.1. Anisotropic fibre distribution
As an example of an anisotropic fibre distribution we use a transversely isotropic distribution with respect to a

aterial axes specified by a unit vector N0. The fibre density corresponding to a fibre initial orientation N(φ, θ)
q. (41) is defined through a von Mises distribution [37,48–51] as

ρ(φ, θ) = K exp(b(cos(2∡(N(φ, θ), N0))+ 1)) = K exp(2b(N(φ, θ) · N0)2) (71)

ith K such that E [K ] = 1, i.e. K = 2
√

2b/π /erfi
√

2b for b ̸= 0 or otherwise K = 1 (continuation), is a
ormalisation constant (cf. Eq. (6)), b is a concentration parameter and erfi denotes the imaginary error function
49, cf. Remark 4.1 in].

Here, we align the direction N with the unit vector e3 along the z-axis of a Cartesian coordinate system and
tudy the special case b = −5, which leads to a transversely isotropic fibre distribution that concentrates fibres in
he isotropy plane (x − y), as shown in Fig. 3a. This type of distribution is of particular interest when modelling
hin soft tissues and collagenous membranes such as the capsules of organs or the fetal membranes [see e.g. 52,53].

The essential components of the structural tensors required for the GI (Algorithm 1) and ST methods (Sec-
ion 5.1.3) follow from Eq. (39), (40) and were numerically evaluated for these examples by use of spherical cubature
42). To enforce consistency of the numeric results of the GI method (Algorithm 1), the calculated integration
eights {W̃k} were corrected according to Eq. (44) in Remark 3.

.2.2. Additive approach for fibre-reinforced materials: Exponential fibre energy
As a first example the exponential fibre energy with tension compression switch is used [cf. 40]

ψ =

{
cf
2q (exp(q(Λ− 1)2)− 1), if Λ ≥ 1,

(72)

0, otherwise,
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from which the free energy of the ensemble of reinforcing fibres results as Ψ f = νfE [ψ] according to Eq. (2). For
the complete tissue strain–energy density Ψ the fibre contribution is complemented by an isotropic matrix term Ψm

so that

Ψ = Ψm +Ψ f , Ψ f = νfE [ψ] , (73)

where Ψm is chosen as a compressible neo-Hookean material [cf. discussion in 55] with a specific volumetric term
found e.g. in Holzapfel [56, Sec. 6.5] and frequently used to account for the compressible matrix in soft tissue [e.g.
52,54]

Ψm = νmcm

(
I1 − 3+

1
p

(
J−2p
− 1

))
, p > 0 . (74)

rom the free energy (72)–(74) the stress and elasticity tensors (1) follow as

S = 2Ψm,C + 2νfE [ψ],C (75)

nd

C = 4Ψm,CC + 2νfE [ψ],CC , (76)

espectively, where E [ψ] and thus its derivatives may be computed using any of the methods, i.e. GI, SC and ST,
xplained in Section 5.1. The derivatives of the matrix term read

Ψm,C = νmcm

(
1
3

I− J−2p C−1
)

(77)

and

Ψm,CC = νmcm J−2p ( p C−1
⊗ C−1

+ C−1 ⊠ C−1) . (78)

here ‘⊠’ denotes a symmetrising tensor product between second order tensors such that A⊠B : X = A(X+XT)B/2.
The selection of material parameters will be discussed in Section 5.3 and is specified in Table 1.

.2.3. Rubin-bodner type model with continuous fibre distribution
In contrast to Eq. (73) the Rubin-Bodner model for fibre reinforced tissue [41] does not consider an additive split

etween matrix and fibre related energies, even if corresponding terms gm and gf, respectively, can be identified.
ubin and Bodner [41] originally proposed a model for tissues reinforced by a discrete number of fibre families
nd specified their formulation for use with a single family. The model was extended to represent the behaviour
f collagenous membranes [57,58] and a continuous representation of statistically distributed fibres was adopted
n [53]. The latter form hence considers an averaged contribution of the distributed fibres, which can be understood
s the expectation of the fibre contribution E [gf], and hence be computed by means of the Gaussian quadrature
roposed in the present work. The correspondingly adapted form of the Rubin-Bodner type strain–energy density
f the tissue hence reads

Ψ =
c

2k
(exp (k (nmgm + nfE [gf]))− 1) , (79)

ith a matrix term

gm = I1 − 3+
1
p

(
J−2p
− 1

)
, p > 0, (80)

imilar to Eq. (74) and a fibre related term [41]

gf =
1
q

⟨√
Λ− 1

⟩2q
, q ≥ 1, (81)

where Λ = C : N⊗N is the affine stretch, and ⟨ ⟩ denote Macaulay brackets. The choice of material parameters
k, p, q, nm, nf (Table 1) is discussed in Section 5.3.

Based on the free energy (79)–(81) one calculates the stress and elasticity tensors (1) as( )

S = c exp (k (nmgm + nfE [gf])) nmgm,C + nfE [gf],C (82)
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Table 1
Material parameters of the additive exponential and Rubin-Bodner-type models (Eqs. (73) and (79)): The fibre distribution (71) is specified
through b = −5 and N0 = e3.

Model Parameters

Add. Exponential νm cm [N/mm2] νf cf [N/mm2] p q

0.88 0.065 0.12 14.97 0.8857 13.48

Rubin-Bodner c [N/mm2] k nm nf p q

21.5 6.15 5.07e−3 500 0.9 2.5

and

C = c exp (k (nmgm + nfE [gf]))
[
2
(
nmgm,C + nfE [gf],C

)⊗2
+
(
nmgm,CC + nfE [gf],CC

)]
, (83)

here E [gf] and thus its derivatives may once again be computed by use of any of the methods, i.e. GI, SC and
T, explained in Section 5.1. The derivatives for the matrix term gm read

gm,C =
1
3

I− J−2p C−1 (84)

nd

gm,CC = J−2p ( p C−1
⊗ C−1

+ C−1 ⊠ C−1) . (85)

.3. Choice of model parameters

For the purpose of illustrating the new quadrature scheme, the material parameters of the constitutive models
ere chosen to be in a range representative for a soft biological tissues (Table 1). To this end we considered the

lastic response reported by Bircher et al. [54] for bovine Glisson’s capsule, a thin collagenous tissue surrounding
he liver.

For the Rubin-Bodner model (Section 5.2.3) we largely adopted the model parameters calibrated in Bircher
t al. [54, Eq. 1] for bovine Glisson’s capsule (Table 1), specified for a membrane with thickness of 0.1 mm.
he parameters were interpreted to match with our formulation (79), and the constants nf and q were refitted as

llustrated in Fig. 3b, c to omit the use of an additional fibre slackness parameter introduced in [54].
The model parameters of the exponential fibre law (Section 5.2.2) were tuned to provide a similar overall response

s for the Rubin-Bodner type model when applied to the loadcases considered in Section 5.5 (cf. Figs. 4 and 5).
otably, the two different model formulations lead to a different response in terms of the individual matrix and fibre

ontributions as well as the tissue (cf. discussion in Stracuzzi et al. [53]). The fibre behaviour of both parametrised
odels is illustrated in Fig. 3b, c in a scaled representation. This behaviour is extracted from the stretch dependent
bre energy term in the exponential fibre model νfψ f and the corresponding fibre ‘energy level’ term in the Rubin-
odner-type model nfgf. In addition to the fibre ‘energy level’ behaviour shown in Fig. 3b, c represents the fibre

force level’ behaviour, defined as the derivative of the former with respect to the fibre stretch λ =
√
Λ.

The fibre distribution for both models (Eqs. (73) and (79)) is chosen such that it reflects transverse isotropy with
respect to the thickness direction of the thin tissue and strong fibre alignment in the isotropy plane, and is prescribed
by Eq. (71) with b = −5 (Fig. 3a). We note that in [54] these characteristics were captured by distributing a finite
number of fibres in the membrane plane which displayed slight alternating up and down off-plane inclinations
instead of a continuous representation.

5.4. Numerical implementation

The Gauss integration and benchmark methods for both the exponential fibre model and Rubin-Bodner type
model were implemented as subroutines in Fortran, available for download at [59]. These subroutines were either
called from Python scripts (Python 3.7.3) after compilation with help of the numpy.f2py module, or from a Abaqus/

Standard (v6.14-1) User Subroutine [60].
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d
c

Fig. 4. Additive exponential model: Comparison between H&S 60-10 rule, 5th order GST approach and 1D 3-point Gauss rule. The fibre
istribution parameters are N0 = e3 and b = −5. In case of the GST approach the switch of the fibre energy is neglected and the analytic
ontinuation of the fibre energy is used for stretches smaller 1.
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Fig. 5. Rubin-Bodner-type model: Comparison between H&S 60–10 rule and 1D 3-point Gauss rule. The fibre distribution parameters are
N0 = e3 and b = −5.

The responses computed by the different methods when applied to analyse some simple homogeneous deforma-
tion states by means of Python scripts were used to study the accuracy of the methods and to showcase the beneficial
20
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b
b

property of the proposed method with regard to the issue of induced anisotropy. Finite element simulations with
Abaqus/Standard (v6.14-1) were further used to analyse and illustrate the models’ performance in an academic
example.

5.5. Analysis of computational accuracy

To illustrate the general computational accuracy of the 3-point Gauss integration in comparison with the selected
enchmark methods, we consider uniaxial extension within the membrane plane with lateral contraction, described
y

FUA = λx e1⊗ e1 + λy e2⊗ e2 + λz e3⊗ e3 . (86)

The tensile stretch λx is prescribed, while λy, λz are determined such that the strain–energy density is minimised,
implying traction-free lateral directions. Equibiaxial extension within the membrane plane was considered through

FEB = λxy e1⊗ e1 + λxy e2⊗ e2 + λz e3⊗ e3 , (87)

where λxy was prescribed, while λz was computed such that the strain–energy density was at a minimum (which
implied a stress-free state in z direction). Noteworthy, for anisotropic materials, these pure homogeneous deformation
states correspond to simple and equibiaxial tension only in special cases, viz. if the directions ex , ey , ez coincide
with principal axes of material symmetry. Given that the stretch is applied in the isotropy plane (x − y), this holds
for the GI and ST method by definition. The slight anisotropy induced by the position of the integration points
of the SC method, however, might generally violate this condition, depending on the symmetry of the integration
scheme.

In addition, a shear type deformation

FSH = e1⊗ e1 + γxy e1⊗e2 + e2⊗ e2 + λz e3⊗ e3 (88)

was studied, in which the direction perpendicular to the shear plane was assumed to be free of normal stress, i.e.
γxy is prescribed, while λz is optimised to minimise energy.

Energy minimisation to compute the unknown stretches was performed by applying the Nelder–Mead simplex
algorithm implemented in the Python function scipy.optimize.minimize to the energy output of the Fortran
subroutine.

It has been discussed that the Taylor-series based generalised higher order structural tensor method can lead to
discontinuities in the response when applied to piece-wise defined fibre free energies [4,61–63]. More precisely, in
the generalised 5th order structural tensor approach the fibre energy function should be analytic or at least 5 times
continuously differentiable [cf. 4]. As a consequence this method cannot be applied in a straightforward manner
to any of the investigated fibre energy functions with tension-compression switch. For the exponential fibre energy
we therefore substituted Eq. (72) by the version without switch (see analytic continuation in Fig. 3) as previously
proposed [37,47]. Since for the Rubin-Bodner fibre energy (81) there is no analytic continuation (because of q being
real valued), the method was omitted in this case.

Figs. 4 and 5, respectively, display the simulation results for both constitutive models in terms of the computed
stretches (λz), its deviation (∆λz) from the numeric ground truth, the tensile or shear stress (σxx , σxy), and the
corresponding differences (∆σxx ,∆σxy). Inspection of these results reveals that only in terms of the predicted
lateral stretches in the uniaxial extension test, the new method with 3 integration points (GI n = 3) is slightly
less accurate than the 10th order spherical cubature with 60 points. In all other cases it yields either comparable
results or outperforms the spherical 10-design.

Fig. 4 also shows that the results of the 5th order generalised structural tensor approach without fibre switch
(GST(5)) leads to much larger errors.

5.6. Analysis of induced anisotropy

It was noted previously in literature that the directions specified through the set of integration points of spherical
cubature schemes can interfere with the material symmetry prescribed by the orientation distribution function
[43,64]. This problem is particularly evident in allegedly isotropic materials with uniformly distributed fibres, in

which the effect of the integration scheme becomes visible as induced anisotropy [see the discussions in 17,65–67].
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Fig. 6. Illustration of the test performed to analyse induced anisotropy. The pattern has been added to guide the eye.

To illustrate that the new method is not affected by this problem, we applied rotations R prior to subjecting the
aterial with properties described in Section 5.2 to a homogeneous state of deformation given by F, so that the

verall deformation state was expressed by

F′ = FR (89)

cf. 17]. This procedure is illustrated in Fig. 6 for the case of two such experiments, where the pattern has been
dded to guide the eye.

Particularly the response was studied for

F = 1.2e1⊗e1 + 0.7e2⊗e2 + 0.4e3⊗e3 . (90)

R was chosen to represent a rotation by an angle ϕ about either the e3 axis (aligned with z) or the e2 axis (aligned
with y), so that

RA = cos(ϕ) (e1⊗e1 + eB⊗eB)+ sin(ϕ) (e1⊗eB − eB⊗e1)+ eA⊗eA (no sum), (91)

here either A = 3, B = 2, or A = 2, B = 3. Given the perfect symmetry of the material models within the x, y-
lane, ideally the first case (R3) should not affect the results while the second case (R2) should capture the transverse
sotropy defined through the von Mises orientation distribution function (71). We generated F′ as described above
or 100 equidistant angles ϕ ∈ [0, 2π ). For all such F′, both material models and each integration method (see
ection 5.1), we computed the corresponding stress based on Fortran routines called from Python scripts. The
esults are presented in terms of the value of the first principal stress depending on the rotation angle ϕ in Fig. 7.

Figs. 7a, b reveal the obvious anisotropy induced by the 60 point spherical 10-design, which per definition is not
resent in the Gauss integration or generalised structural tensor approaches. As already observed in the accuracy
ests in Section 5.5 the H&S 60–10 and the GI n=3 method have different computational errors, here observed as
ifferent distances of the orange and blue curves from the green dotted ground truth. Interestingly, in Figs. 7a and b
he computational error of the GI n=3 method is throughout smaller than the varying deviation due to the induced
nisotropy of the H&S 60–10 scheme. On the other hand, despite errors in accuracy, all schemes thoroughly capture
he anisotropy induced through the strong preferred alignment of the fibres towards the e3 material axis (Fig. 7c,
).

.7. Finite element example

Calling the Fortran subroutines available at [59] within the Abaqus UMAT subroutine [cf. 60, Sec. 1.1.14] the
ode for the Gauss quadrature and benchmark methods can directly be used in finite element simulations with
baqus/Standard.
This is showcased in a finite element example that was inspired by the investigations in Bircher et al. [54],
nd exemplifies a 0.1 mm thick membrane sample of 100 mm × 100 mm with a central circular defect of 2 mm

22



B.R. Britt and A.E. Ehret Computer Methods in Applied Mechanics and Engineering 415 (2023) 116281

d

Fig. 7. Induced anisotropy. 1st principal Cauchy stress σ1 of two transversely isotropic materials (cf. Table 1) obtained when imposing

eformations F′ = FR with F according to (90), and R representing either (a, b) a rotation about the axis of symmetry (R3) or (c, d) about
an axis within the isotropy plane (R2).

diameter in the centre. For reasons of symmetry only one eighth of this sample was modelled in Abaqus and

discretised by quadratic hexahedral elements with reduced integration (C3D20R). To mimic the effect of a planar

equibiaxial extension, the free lateral faces of the model were displaced by 20% of their length, corresponding to

an equibiaxial stretch of 1.2 in a membrane without defect (Fig. 8).

The finite element simulations were run with both the additive exponential and Rubin-Bodner-type model

equipped with the parameters reported in Table 1, and results were generated for both the 3-point Gauss integration

(GI n = 3) and the spherical 10-design (SC H&S 60–10).

The results are shown in Fig. 9, in terms of radial stress with respect to a cylindrical coordinate system whose

z-axis coincides with the membrane normal, and we anticipate that the corresponding contour plot should display

perfect radial symmetry. In line with the results in Sections 5.5 and 5.6 one can observe that while the overall range

of the results displays only minor differences due to the different numeric approach, the spherical 10-design leads
to deviations from radial symmetry as a clear indicator of the effect of induced anisotropy.
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u
c

Fig. 8. Illustration of the finite element example of a thin sheet of tissue with central circular defect, subject to equibiaxial extension at its
boundaries.

Fig. 9. Abaqus simulations: Comparison between integrations using 3-point Gauss rule (left) and 60-point spherical 10-design (right). The
pper and lower pair of images correspond to the additive exponential (73) and Rubin-Bodner-type fibre laws (79), respectively. The radial
omponent of the Cauchy stress (S11 in MPa) is shown.
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5.8. A note on computational costs

To obtain a rough estimate of how the computational cost compares between the methods in Section 5.1, the
esponse of the models in Sections 5.2.2 and 5.2.3 to 10, 000 random homogeneous states of deformation, viz.

F = RQ (λ1 e1⊗e1 + λ2 e2⊗e2 + λ3 e3⊗e3)QT (92)

for random principal stretches {λi } between 0.1 and 2 and rotation tensors R and Q was determined with the different
methods executed under comparable conditions (e.g. same machine). The computational cost of the implementations
of the spherical 60-design and 3-point Gauss integration as well as the 5th higher order generalised structural tensor
approach were found to be virtually indistinguishable, while the cost of the 5810-point Lebedev integration was
roughly 2.5 and 4.5 higher for the models in Eqs. (73) and (79), respectively.

6. Discussion

We have proposed a new method to evaluate the strain–energy density function and constitutive relations of soft
tissues and materials with distributed fibres according to the structural approach, i.e. by integrating the free energy
of single fibres with orientational statistics governed by an orientation density function. The new method is based
on univariate Gauss quadrature of the fibre free energy expressed in terms of the squared fibre stretch, i.e. a real
scalar variable. The applicability of the well-known Gauss type approximation of the integral is a consequence of
transforming the integral over distributed fibres on the unit sphere into an integral over the stretch distribution on
the domain of positive reals, as recently developed in [4,18].

6.1. Applicability

If the orientation distribution is uniform, the method generally applies to any case in which the statistical moments
of the distribution of square stretch can be expressed in terms of the macroscopic deformation. For non-uniform
orientation distributions discussed in the present work, the existence of a relation ΛN : N ↦→ Λ is required between
the referential direction of a fibre and its (square) stretch that it experiences due to a macroscopic deformation F.
Based on such a relation, the stretch distribution and its moments may be obtained by variable transformations
[4,34,35]. The affine modelling approach, where ΛN = (FN)2 clearly falls into this category and has a wide range
of applications. This case is elaborated in the present paper, thus providing an alternative approach to the discretised
microsphere models [23,43–45,64] or methods based on a Taylor series expansion of the fibre energy [36,37], such
as the GHOST method [47], for the implementation of affine structrual models [2,21,46].

6.2. Properties

Compared to the latter two existing methods the univariate Gaussian integration neither impairs the material
symmetry defined by the orientation distribution as it is known for classical cubature on the sphere [17,65–67], nor
does its quality of approximation strongly suffer from non-analytic integrands, e.g. caused by fibre switches that
set the free energy zero when the fibre undergoes compression, which currently limits the application of the Taylor
series approaches [see the discussions in 61–63].

Even for cases where the integrand is well-behaved Gauss integration may be favoured over approaches based
upon a Taylor expansion of the integrand since it does not require the choice of an expansion point to guarantee
convergence [36]. Furthermore, the method only requires the integrand and not its derivatives to be evaluated at
the Gauss points, whereas the use of a m-order Taylor expansion of the fibre energy, requires the evaluation of
additional m derivatives that can be computationally costly to evaluate at each of these levels.

Several advantages of the new method result from the separated integration of the fibre constitutive law and the
orientation distribution function, which in the classical methods are integrated as a product. In the here presented
approach, the fibre law alone is evaluated in the Gaussian quadrature rule with n integration points {xk}, and hence
is exact for polynomials of order 2n − 1 that match with the fibre constitutive function at these n locations. The
orientation distribution function, on the other hand, only affects the positions of {xk} and the values of the weights
{wk}. If the referential fibre orientation is non-uniform, the anisotropy is considered through the 2n − 1 even order

generalised structural tensors up to tensorial order 2(2n − 1). Like in Taylor series approaches [37], they can be
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Fig. 10. Induced anisotropy depends on non-uniformity of orientation distribution: Smallest (dashed) and largest (solid) value of the 1st
rincipal Cauchy stress σ1 for two transversely isotropic materials (cf. Table 1) with concentration parameter b, obtained when imposing

deformations F′ = FR with F according to (90), and R representing a rotation about the axis of symmetry (R3).

calculated by spherical cubature at arbitrarily high order, i.e very high accuracy. The non-linearity of the orientation
distribution does thus not impair the quality by which the fibre energy is integrated. This undesired effect is vice-
versa well-known for spherical cubature with fixed integration points on the sphere since the non-linearity of the
integrand – the product of orientation density and fibre energy – changes both with stretch and orientation, while the
integration points remain at their original position on the sphere. We note that non-linear mappings of the integration
points have been proposed to address this problem [64,68], are however not commonly used.

In order to illustrate the beneficial effect of separating the non-linearity of the fibre law from the non-uniformity of
the orientation distribution, we repeat the analyses conducted in Section 5.6 for various values of the fibre dispersion
parameter b, ranging from 0 (isotropy) to −15 (strong alignment within the isotropy plane). For each b, the smallest
nd largest value of the maximum principal stress σ1 obtained upon rotating the deformation state (90) about the
xis e3 in 100 steps according to Eq. (89) was recorded, and is plotted in Fig. 10. While for the GI method, just like
or an ideal ground truth, the maximal principal stress takes a unique value for each b, it is observed that the range
f values (shaded area) predicted for spherical cubature increases with increasing anisotropy, i.e. |b|. The extent of
he fibre orientation’s non-uniformity hence affects the accuracy of the spherical cubature, in clear contrast to the
ere proposed GI method.

As already observed for b = −5 in Fig. 7, the GI result nearly coincides with the ground truth (Leb 131) for the
ubin-Bodner type model (Fig. 10b) for all b studied, while it has a small offset for the additive energy formulation
ith exponential fibre law (Fig. 10a).
The numerical example in Fig. 10a allows for another interesting observation: There might be cases – in fact

hose with close-to-uniform fibre orientation distributions so that |b| is small – where the spherical 10-design (H&S
0–10) performs better than the GI method, here roughly for −2 < b < 0, while with increasing anisotropy, GI is

closer to the ground truth.
Another advantage of the separation between the integration of orientation distribution and fibre energy results

from the fact that the orientation distribution density is typically considered constant in time for elastic materials, so
that the structural tensors need to be computed only once in a boundary value problem. After that, their components
represent constant material parameters that can be stored and reused, so that only the Gaussian integration of the
fibre energy needs to be accomplished in each step.

6.3. Effective use of information at integration points

The n integration points for Gaussian integration are given by the n roots of the nth orthogonal polynomials,

nd since particularly compact analytical solutions exist for the roots of polynomials with n ≤ 3, we have analysed
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Fig. 11. Illustration of the functions to be integrated for the determination of E [ψ f] in spherical cubature as a landscape (a) and contour
plot (b), and with Gauss quadrature (c). Both examples represent the identical material (ψ f and ρ given by Eq. (72), (71)) and state of
deformation, given by F = 1.2e1⊗ e1 + 1e2⊗ e2 + 0.8e3⊗ e3. The red points indicate the positions of the integration points (60 and 3).
Due to symmetry of the problem only the range φ ∈ [−π/2, π/2], including only 30 of the 60 spherical integration points is shown. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the 3-point quadrature in more detail. We have found that already at this low order the method can compete with
typical spherical integration (a spherical 10-design), and even outperform the latter in either dealing with piecewise
defined, non-smooth integrands or in the quality by which material symmetry is preserved. The fact that such high
accuracy can be achieved with only 3 integration points may seems surprising and is (i) due to the separation of
the deformation dependent terms from the orientation distribution, so that the Gauss rule evaluated at these 3 points
only need to integrate the fibre constitutive law, and (ii) because of the optimal choice of these locations in the
(square) stretch domain. The latter point is illustrated in Fig. 11, that shows for the same material and state of
deformation the integrand in spherical integration (a, b) and the one used for Gauss integration (c) together with
the corresponding integration points, at which this integrand is evaluated. It is clearly observed in this example, that
a majority of the points used for spherical cubature (here defined by the particular 10-design) lie in regions where
the function to be integrated is fairly linear while they lack in the non-linear region. This problem is due to the
orientation distribution multiplying the fibre energy and thus strongly biasing the integrand. In contrast, the 3 points
in (c) are optimal in the sense that they exactly integrate any polynomial of order 5 that matches the fibre energy
in these three points. Loosely speaking, the accuracy of this method depends on how well the fibre strain–energy
density function is captured by a 5th order polynomial within the domain of interest, which in the affine case is
spanned by the values of the minimal and maximal principal square stretch. As mentioned above the method is
therefore correct for any fibre energy that is a polynomial of square stretch of order n ≤ 5. We emphasise again
that this property does generally not hold for the spherical t-design even with t = 10: The latter integrates exactly
spherical polynomials up to order 10, but the corresponding order of the integrand is determined by the product
ρ(φ, θ)ψ(λ), which for the typically used distribution functions is not a spherical polynomial at all, even if ψ is.

6.4. Computational cost and current limitations

In the dedicated test application that was considered, our implementation of the 3-point Gauss quadrature
and other existing approaches with reasonable choices of spherical integration points and Taylor series terms,
demonstrated comparable computational efficiency such that their computation times could not be distinguished.
However, these times strongly depend on the specific problem, for example the considered material behaviour, state
of deformation and the finite element model. For methods using higher-order structural tensors the computational
time is strongly affected by the reusability of their once computed components [cf. the discussion in 47].

We emphasise that in cases where the referential orientation density changes, as it occurs e.g. in models that take
into account growth and remodelling [69], the structural tensors need to be recomputed so that the computational
effort increases.

Finally, compared to the quite ubiquitous spherical cubature, which is able to approximately integrate any, even

inelastic, type of fibre constitutive equation without major changes of the concept, the new method in its present
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form has been developed for the hyperelastic case thus far. Although we do explicitly not exclude applicability of
the method to more general fibre behaviour, this case was not discussed here, and needs thoughtful consideration
in future work.

7. Conclusions

In this study, we have presented a univariate Gauss quadrature rule for integrating the fibre strain-energy, as well
s stress and stiffness, in materials with generally non-uniform fibre distributions such as soft collagenous tissues.
he method is thus suitable to compute the averaged tissue properties according to the structural approach. i.e.
hen fibre properties are averaged over an orientation distribution defined in the reference configuration.
The obtained quadrature rules do not induce spurious additional anisotropy and are robust in case of piece-wise

efined fibre strain–energy density functions resulting e.g. when neglecting the contribution of ‘compressed’ fibres.
n these aspects, already the special case with n = 3 integration points elaborated in the present work performs
etter than the typical alternatives of spherical cubature and Taylor-expansion of the integrand, while associated
ith comparable numerical cost.
The beneficial properties of the method are mainly due to an intrinsic separation of the averaging operation into

deformation-dependent integral over the fibre stretch distribution, and a deformation-independent integral over the
bre orientation distribution that leads to higher-order structural tensors. The efficiency, in particular, comes from

he reusability of the latter once they have been computed, similar to other generalised structural tensor approaches.
Given that the structural approach and conceptionally similar models are widespread, we believe that the new

ethod has great potential for a wide range of problems even beyond applications in soft tissue biomechanics.
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ppendix A. Basic proofs

In this section we present common proofs for three essential properties of the Gauss quadrature: (i) the n-point
rule integrates polynomials up to degree 2n − 1 exactly, (ii) the weights {wi } are all positive, (iii) the integration
points are real, distinct and lie within the integration interval, i.e. [Λmin,Λmax] [cf. e.g. 29].

Proof (Property (i)). The factorised representation of the nth orthogonal polynomial is

Pn(x) =
n∏

i=1

(x − xi ), x1 < x2 < . . . < xn. (A.1)

et the function f (x) be a polynomial of degree ≤ 2n − 1 that we want to integrate. The Lagrange interpolation
f this function using the interpolation points {xi } is

g(x) =
n∑

i=1

f (xi )
n∏

j=1
j ̸=i

x − x j

xi − x j
. (A.2)

Since f (x)− g(x) is a polynomial of degree ≤ 2n− 1 that satisfies f (x)− g(x) = 0 at x = x j for j = 1, 2, . . . , n,
ne can write

f (x)− g(x) = d(x)P (x) , (A.3)
n
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where d(x) is a polynomial of degree ≤ n − 1. Consequently making use of the linearity of the integral and the
haracteristic orthogonality of Pn to all polynomials of lower degree, i.e. E [d(x)Pn(x)] = 0, the integral of f (x) is

E [ f (x)] = E [g(x)+ d(x)Pn(x)] = E [g(x)] =
n∑

i=1

f (xi ) E

⎡⎢⎣ n∏
j=1
j ̸=i

x − x j

xi − x j

⎤⎥⎦
  

=wi

, (A.4)

which, as the right hand side is the n-point Gauss quadrature rule, proves claim (i). □

Proof (Property (ii)). Let us define the polynomial of degree n − 1

ωn,i (x) =
n∏

j=1
j ̸=i

x − x j

xi − x j
(A.5)

with the essential property wi = E
[
ωn,i (x)

]
. Since ωn,i (x) = 0 at x = x j for all j = 1 . . . , n except j = i for

hich it is 1, one can deduce that ω2
n,i (x)− ωni (x) = 0 at x = x j for all j = 1, 2, . . . , n and thus

ω2
n,i (x)− ωni (x) = q(x)Pn(x) , (A.6)

here q(x) is a polynomial of degree n − 2. Hence one has

E
[
ω2

n,i (x)− ωni (x)
]
= E [q(x)Pn(x)] = 0 , (A.7)

ecause of the orthogonality Pn ⊥ q(x). The claim (ii) follows by linearity of the integral, viz.

wi = E
[
ωn,i (x)

]
= E

[
ω2

ni
(x)
]
> 0 . □ (A.8)

roof (Property (iii)). Let us again consider the factorised form of the nth orthogonal polynomial

Pn(z) =
n∏

j=1

(z − z j ) . (A.9)

Let us now separate any hypothetical complex roots, which according to the fundamental theorem of algebra occur
in complex conjugated pairs and real roots inside and outside the interval I = [Λmin,Λmax], i.e. roots within I and
R\I, viz.

Pn(x) =
∏
{z j∈I}

(z − z j )
∏

{zk∈R\I}

(z − zk)
∏

complex pairs
{x±iy}

(
(z − x)2

+ y2) . (A.10)

ere one can see that the product term associated with the complex pairs of roots and real roots outside I do not
hange sign for z ∈ I. By multiplying Pn(x) with (z− zl) for each real root zl in I with an odd multiplicity mzl , the
esulting expression remains sign-consistent over I, and hence integrating this expression will necessarily produce
non-zero value, viz.

E

⎡⎣Pn(x)
∏

{zl∈I:mzl odd}

(z − zl)

⎤⎦ ̸= 0 . (A.11)

ecause of the orthogonality of Pn to all polynomials of degree ≤ n− 1, this implies
∏
{zl∈I:mzl odd}(z− zl) must be

polynomial of degree n, meaning there must be n real roots in I with multiplicity 1, which proves claim (iii). □
29
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a

Appendix B. Derivatives for 3-point rule

We here provide the expressions to obtain the first derivatives of the integration points {xk} and weights {wk} in
nalytic forms. The former follow from

a,C = (µ̄4 − 3µ̄2
2)µ̄2,C − 2µ̄3µ̄3,C + µ̄2µ̄4,C ,

b,C = (2µ̄2µ̄3 − µ̄5)µ̄2,C + (µ̄2
2 + µ̄4)µ̄3,C + µ̄3µ̄4,C − µ̄2µ̄5,C ,

c,C = (2µ̄2µ̄4 − µ̄
2
3)µ̄2,C + (µ̄5 − 2µ̄2µ̄3)µ̄3,C + (µ̄2

2 − 2µ̄4)µ̄4,C + µ̄3µ̄5,C ,

d,C = (2µ̄2µ̄5 − µ̄3µ̄4)µ̄2,C + (3µ̄2
3 − 2µ̄2µ̄4)µ̄3,C − 2µ̄2µ̄3µ̄4,C + µ̄

2
2µ̄5,C ,

(B.1)

I1,C = −
I1a,C + b,C

a
, I2,C =

c,C − I2a,C
a

, I3,C = −
I3a,C + d,C

a
, (B.2)

A,C = 2I1I1,C − 3I2,C, B,C =
(

3I2
1 −

9
2

)
I1,C −

9
2
I1I2,C +

27
2
I3,C, (B.3)

ϑ,C =
1

√
A3 − B2

(
3
2
B
A
A,C − B,C

)
, (B.4)

so that

x̄k,C =
1
3
I1,C +

1
3

CkA−1/2A,C −
2
9
A1/2Skϑ,C, xk,C = H1 + x̄k,C , (B.5)

and the latter are obtained as

vk,C = (3x̄k − I1) x̄k,C − (x̄k − x̄ j ) x̄l,C − (x̄k − x̄l) x̄ j,C , (B.6)

wk,C =
1
vk

(
µ̄2,C + x̄ j x̄l,C + x̄l x̄ j,C − wkvk,C

)
. (B.7)

The second derivatives follow accordingly by calculating

a,CC = (µ̄4 − 3µ̄2
2)µ̄2,CC − 2µ̄3µ̄3,CC + µ̄2µ̄4,CC

+ µ̄2,C ⊗
s µ̄4,C − 6µ̄2µ̄

⊗2
2,C − 2µ̄⊗2

3,C ,

b,CC = (2µ̄2µ̄3 − µ̄5)µ̄2,CC + (µ̄2
2 + µ̄4)µ̄3,CC + µ̄3µ̄4,CC − µ̄2µ̄5,CC

+ 2µ̄3µ̄
⊗2
2,C + 2µ̄2µ̄2,C ⊗

s µ̄3,C − µ̄2,C ⊗
s µ̄5,C + µ̄3,C ⊗

s µ̄4,C ,

c,CC = (2µ̄2µ̄4 − µ̄
2
3)µ̄2,CC + (µ̄5 − 2µ̄2µ̄3)µ̄3,CC + (µ̄2

2 − 2µ̄4)µ̄4,CC + µ̄3µ̄5,CC

+ 2µ̄4µ̄
⊗2
2,C + 2µ̄2µ̄2,C ⊗

s µ̄4,C − 2µ̄3µ̄2,C ⊗
s µ̄3,C + µ̄3,C ⊗

s µ̄5,C

− 2µ̄2µ̄
⊗2
3,C − 2µ̄⊗2

4,C ,

d,CC = (2µ̄2µ̄5 − µ̄3µ̄4)µ̄2,CC + (3µ̄2
3 − 2µ̄2µ̄4)µ̄3,CC − 2µ̄2µ̄3µ̄4,CC + µ̄

2
2µ̄5,CC

+ 2µ̄5µ̄
⊗2
2,C + 2µ̄2µ̄2,C ⊗

s µ̄5,C − 2µ̄4µ̄2,C ⊗
s µ̄3,C − 2µ̄3µ̄2,C ⊗

s µ̄4,C

+ 6µ̄3µ̄
⊗2
3,C ,

(B.8)

where here and henceforth the notations A⊗2
= A ⊗ A and A ⊗s B = A ⊗ B + B ⊗ A are used for any pair of

second order tensors A and B. One proceeds with

I1,CC = −
1
a

(
b,CC + a,C ⊗s I1,C + I1a,CC

)
,

I2,CC =
1
a

(
c,CC − a,C ⊗s I2,C − I2a,CC

)
,

I2,CC = −
1 (

d,CC + a,C ⊗s I3,C − I3a,CC
)
,

(B.9)
a
30
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so that
A,CC = 2I1I1,CC − 3I2,CC + 2I⊗2

1,C ,

B,CC =

(
3I2

1 −
9
2

)
I1,CC −

9
2
I1I2,CC +

27
2
I3,CC + 6I1I⊗2

1,C −
9
2
I1,C ⊗

s I2,C ,
(B.10)

ϑ,CC = (A3
− B2)−3/2

[(
3
2
B2

A2 − 15A
)
BA⊗2

,C +
3
2
A2A,C ⊗

s B,C − BB⊗2
,C

]
+ (A3

− B2)−1/2
(

3
2
B
A
A,CC − B,CC

)
,

(B.11)

and finally

xk,CC = x̄k,CC =
1
3
I1,CC +

1
3

CkA−1/2A,CC −
2
9
A1/2Skϑ,CC

−
1
9

SkA−1/2A,C ⊗
s ϑ,C

−
1
6

CkA−3/2A⊗2
,C −

2
27

A−1/2Ckϑ
⊗2
,C

(B.12)

and

wk,CC =
1
vk

(
µ̄2,CC − wk

[
(3x̄k − I1)x̄k,CC + 4x̄⊗2

k,C − x̄k,C ⊗
s I1,C

]
− wk,C ⊗

s vk,C

+
[
x̄ j + wk(x̄k − x̄ j )

]
x̄l,CC + [x̄l + wk(x̄k − x̄l)] x̄ j,CC

+ (1− wk)x̄ j,C ⊗
s x̄l,C

) . (B.13)
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