Supporting Information

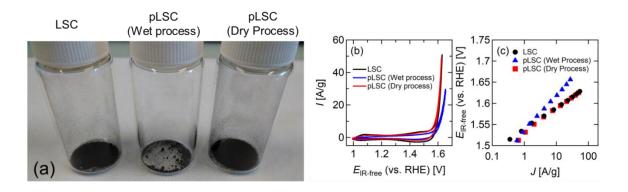
The Role of Phosphate Functionalization on the Oxygen Evolution Reaction Activity of Cobalt-Based Oxides at Different pH Values

Wataru Yoshimune, [a] Juliana B. Falqueto [a] Adam H. Clark, [a] Nur Sena Yüzbasi, [b] Thomas Graule, [b] Dominika Baster, [a] Mario El Kazzi, [a] Thomas J. Schmidt, [a,c] and Emiliana Fabbri [a] *

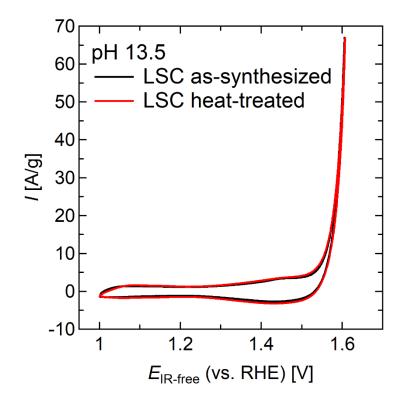
[a] W. Yoshimune, Dr. J. B. Falqueto, Dr. A. D. Clark, Dr. D. Baster, Dr. M. El Kazzi, Prof. T. J. Schmidt, Dr. E. Fabbri

Energy and Environment Research Division, Paul Scherrer Institut PSI, CH-5232 Villigen PSI, Forschungsstrasse 111, Switzerland

E-mail: emiliana.fabbri@psi.ch


[b] Dr. N. S. Yüzbasi, Dr. T. Graule

Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland


[c] Prof. T. J. Schmidt

ETH Zurich, Laboratory of Physical Chemistry, CH-8093 Zürich, Switzerland

S1 and S2. Effect of different phosphate treatment routes and heat treatment without P sources on OER activities

Figure S1. (a) Photograph of as-synthesized La_{0.2}Sr_{0.8}CoO_{3- δ} (LSC) and wet/dry phosphate-treated LSC (pLSC). (b) Cyclic voltammograms (25th cycles at 10 mV s⁻¹) and (c) Tafel plots of LSC and pLSC in synthetic air-saturated 0.1 M KOH at 900 rpm.

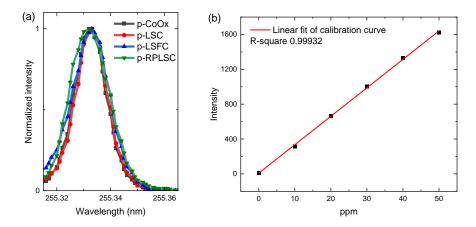


Figure S2. The cyclic voltammograms (25th cycle at 10 mV s⁻¹) at pH 13.5 of LSC assynthesized and heat-treated (300°C for 1 h in N_2 flow) catalysts without P sources in a synthetic air-saturated electrolyte at the rotation speed of 900 rpm.

S3. Inductively coupled plasma optical emission spectrometer (ICP-OES) measurements of the P incorporated in the catalyst surface

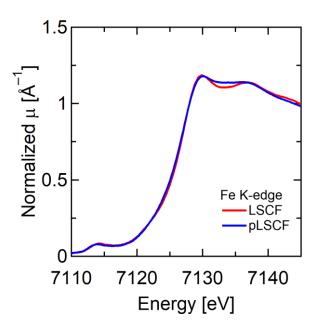
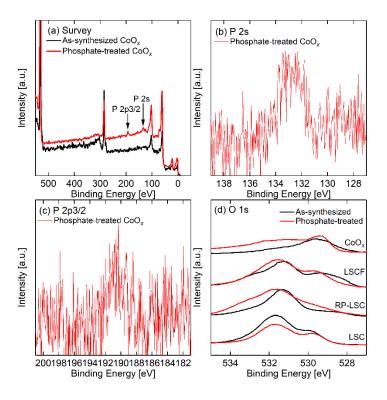

Elemental analysis for P was carried out using ICP-OES to quantify the amount of P in the treated samples. The measurements were performed to probe the wavelength of 255 nm for P (Figure S3a). The trace element was determined using a calibration curve with six points of P standard solutions, diluted with 2% sub-boiled HNO₃. Regression coefficient for the calibration curve were better than 0.999.

Figure S3. (a) Phosphorus bands collected for the phosphate-treated catalyst samples. (b) Calibration curve of P standard solutions.

3

S4. Fe K-edge X-ray absorption near-edge spectroscopy (XANES) Profiles


Figure S4. Fe K-edge XANES profiles: La_{0.2}Sr_{0.8}Co_{0.8}Fe_{0.2}O_{3-δ} (LSCF) and pLSCF.

S5. X-ray Photoelectron Spectroscopy (XPS) Profiles

Figure S5a shows the survey XPS profiles for CoO_x and $pCoO_x$. In the profile of $pCoO_x$, small peaks attributed to P 2s and P 2p3/2 peaks appeared in the profile (see also Fig S5b and c). It should be noted that Sr 3d and La La 4p3/2 peaks overlapped these P-peaks in the system of LSC, LSCF, and RP-LSC.

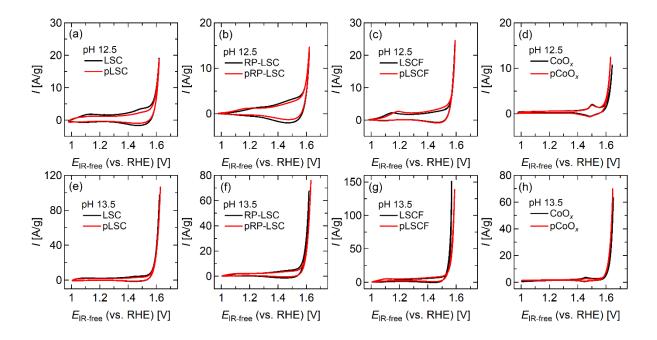
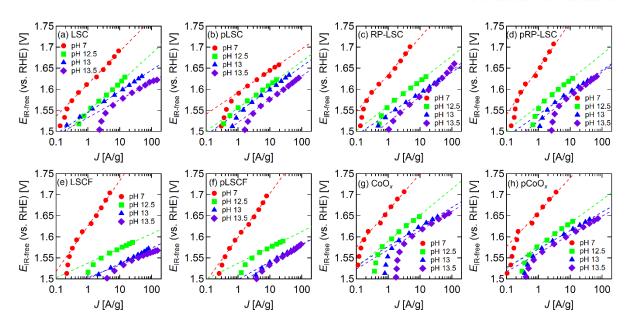

WILEY-VCH

Figure S5d shows the O 1s XPS profiles. The peak at ~529 eV can be assigned to lattice oxygen (O^2) in the oxide structure (Ref. 17a of the manuscript). The second peak at a binding energy of 531 eV corresponds to adsorbed oxygen species (O^2 -, O-, -OH, O_2) (Ref. 9b of the manuscript). However, compared to the identified lattice oxygen peak, attributing the broad O 1s peak at higher binding energy is difficult due to the numerous possible contamination species. For the perovskite samples, the O 1s peak at higher binding energy is at ~531.5 eV, which could match with the O 1s binding energy of SrCO₃ at ~531.5 eV, Sr(OH)₂ at ~530.5 eV, SrO₂ at ~531.1 eV or other contaminants with C–O bonds at ~532.2 eV and C=O bonds at ~533.7 eV (Ref. 17a of the manuscript). For the oxygen species of H₂PO₄⁻ and PO₃⁻ ions, the peak O 1s peaks are centered at 531.6 and 532.6 eV, respectively (Ref. 18a of the manuscript).


Figure S5. (a) Survey XPS profiles for CoO_x and $pCoO_x$, and (b) P 2s (c) P 2p3/2 (d) O 1s XPS core levels for all the investigated samples.

S6 and S7. Summary of Electrochemical Study

Figure S6. Cyclic voltammograms (25^{th} cycles at 10 mVs^{-1}) for each catalyst at (a-d) pH 12.5 and (e-h) pH 13.5.

WILEY-VCH

Figure S7. Tafel plots constructed from a series of chronoamperometry measurements at different pHs for each catalyst.