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Abstract. The physical properties of a quantum many-body system can, in principle, be determined by
diagonalizing the respective Hamiltonian, but the dimensions of its matrix representation scale exponen-
tially with the number of degrees of freedom. Hence, only small systems that are described through simple
models can be tackled via exact diagonalization. To overcome this limitation, numerical methods based
on the renormalization group paradigm that restrict the quantum many-body problem to a manageable
subspace of the exponentially large full Hilbert space have been put forth. A striking example is the
density-matrix renormalization group (DMRG), which has become the reference numerical method to
obtain the low-energy properties of one-dimensional quantum systems with short-range interactions. Here,
we provide a pedagogical introduction to DMRG, presenting both its original formulation and its modern
tensor-network-based version. This colloquium sets itself apart from previous contributions in two ways.
First, didactic code implementations are provided to bridge the gap between conceptual and practical
understanding. Second, a concise and self-contained introduction to the tensor-network methods employed
in the modern version of DMRG is given, thus allowing the reader to effortlessly cross the deep chasm
between the two formulations of DMRG without having to explore the broad literature on tensor networks.
We expect this pedagogical review to find wide readership among students and researchers who are taking
their first steps in numerical simulations via DMRG.

1 Introduction

Understanding the properties of quantum matter is one
of the key challenges of the modern era [1]. The difficul-
ties encountered are typically twofold. On the one hand,
there is the challenge of modeling all the interactions of
a complex quantum system. On the other hand, even
when an accurate model is known, solving it is generally
not an easy task. In what follows, we will overlook the
first challenge and consider only quantum systems for
which we can write a model Hamiltonian. Whether such
a model is a good description of the physical system or
not is thus beyond the scope of this colloquium.

Quantum problems can be divided into two classes:
single-body and many-body. In the single-body case,
the model Hamiltonian does not include interactions
between different quantum particles. In other words,
the quantum system can be described as if there was
only one quantum particle subject to some potential.

a e-mail: goncalo.catarina@empa.ch (corresponding
author)

Single-body problems are easy to solve by numerical
means, as the dimension of the corresponding Hamilto-
nian matrix scales linearly with the number of degrees
of freedom. For instance, if we consider one electron
in No spin-degenerate molecular orbitals, we have 2No

possible configurations, as the electron can have either
spin-↑ or spin-↓ in each of the molecular orbitals. In
contrast to the single-body case, quantum many-body
problems entail interactions between the different quan-
tum particles that compose the system. In that case,
the Hamiltonian matrix must take all particles into
account, which leads to an exponential growth of its
dimension with the number of degrees of freedom. Using
the previous example, the basis of the most general
many-body Hamiltonian should have 4No terms, since
every molecular orbital can be empty, doubly-occupied,
or occupied by one electron with either spin-up or spin-
down. Even if we fix the filling level Ne/No (where Ne

denotes the number of electrons), we obtain
(
2No
Ne

)
con-
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figurations, which still scales exponentially with No.1
Hence, the exact diagonalization of quantum many-
body problems is limited to small systems described by
simple models. This is known as the exponential wall
problem [2].

To circumvent the exponential wall in quantum
mechanics, several numerical methods, each involving
a different set of approximations, have been devised.
Notable examples are the mean-field approximation,
perturbation theory, the configuration interaction
method [3], density-functional theory [4–6], quantum
Monte Carlo [7], and quantum simulation [8–10], each
of which having its own limitations. Additionally, there
is the density-matrix renormalization group (DMRG),
introduced in 1992 by Steven R. White [11,12]. This
approach, founded on the basis of the variational prin-
ciple, rapidly established itself as the reference numeri-
cal method to obtain the low-energy properties of one-
dimensional (1D) quantum systems with short-range
interactions [13]. Importantly, a few years after its dis-
covery, DMRG was reformulated in the language of
tensor networks [14–16], which allowed for more effi-
cient code implementations [17,18]. The connection
between the original formulation of DMRG and its
tensor-network version is by no means straightforward,
as the latter involves a variational optimization of a
wave function represented by a matrix product state
(MPS), making no direct reference to any type of renor-
malization technique.

The goal of this colloquium is to present a pedagog-
ical introduction to DMRG in both the original and
the MPS-based formulations. Our contribution should,
therefore, add up to the vast set of DMRG reviews in
the literature [13,16,19–22]. By following a low-level
approach and focusing on learning purposes, we aim to
provide a comprehensive introduction for beginners in
the field. Bearing in mind that a thorough conceptual
knowledge should be accompanied by a notion of prac-
tical implementation, we provide as supporting mate-
rials simplified and digestible code implementations in
the form of documented Jupyter notebooks [23] to put
both levels of understanding on firm footing.

The rest of this work is organized as follows. In
Sect. 2, we introduce the truncated iterative diago-
nalization (TID). Although this renormalization tech-
nique has been successfully applied to quantum impu-
rity models through Wilson’s numerical renormaliza-
tion group [24,25], we illustrate why it is not suitable
for the majority of quantum problems. Section 3 con-
tains the original formulation of DMRG, as invented by
Steven R. White [11,12]. We first describe the infinite-
system DMRG, which essentially differs from the TID
by the type of truncation employed. The truncation

1 For reference, note that for No = Ne = 6, as we would
have in the simplest model for a benzene molecule, there
are 924 electronic configurations, which could be encoded
in 4 kB of computer memory. However, in the case of a
slightly larger molecule such as triangulene, for which No =
Ne = 22, there are roughly 2 × 1012 configurations, which
would require 8 TB.

used in DMRG is then shown to be optimal, in the
sense that it minimizes the difference between the exact
and the truncated wave functions. Importantly, we also
clarify the reason that renders this truncation efficient
when applied to the low-energy states of 1D quantum
systems with short-range interactions. This section ends
with the introduction of the finite-system DMRG. In
Sect. 4, we give a brief overview on tensor networks,
addressing the minimal fundamental concepts that are
required to understand how these are used in the con-
text of DMRG. Section 5 shows how, in the framework
of tensor networks, the finite-system DMRG can be seen
as an optimization routine that, provided a representa-
tion of the Hamiltonian in terms of a matrix product
operator (MPO), minimizes the energy of a variational
MPS wave function. Finally, in Sect. 6, we present our
concluding remarks, mentioning relevant topics that are
beyond the scope of this review.

In Supplementary Information, we make available a
transparent (though not optimized) Python [26] code
that, for a given 1D spin model, implements the fol-
lowing algorithms: (i) iterative exact diagonalization,
which suffers from the exponential wall problem; (ii)
TID; (iii) infinite-system DMRG, within the original
formulation. For pedagogical purposes, this code shares
the same main structure for the three methods, differ-
ing only on a few lines of code that correspond to the
implementation of the truncations associated with each
method. Following the same didactic approach, we also
provide a practical implementation of the finite-system
DMRG algorithm in the language of tensor networks.

2 Truncated iterative diagonalization

The roots of DMRG can be traced back to a deci-
mation procedure, to which we refer as TID. Given a
large, numerically intractable quantum system, the key
idea of this approach is to divide it into smaller blocks
that can be solved by exact diagonalization. Combin-
ing these smaller blocks together, one at the time and
integrating out the high-energy degrees of freedom, this
renormalization technique arrives at a description of
the full system in terms of a truncated Hamiltonian
that can be diagonalized numerically. The underlying
assumption of this method is that the low-energy states
of the full system can be accurately described by the
low-energy states of smaller blocks. The TID routine is
one of the main steps in Wilson’s numerical renormal-
ization group [24,25], which has had notable success in
solving quantum impurity problems, such as the Kondo
[27] and the Anderson [28] models. As we shall point
out below, TID was found to perform poorly for most
quantum problems, working only for those where there
is an intrinsic energy scale separation, such as quantum
impurity models.

We now elaborate on the details of a TID implemen-
tation. For that matter, let us consider TID as schemat-
ically described in Fig. 1. In the first step, we consider
a small system A, with Hamiltonian HA, the dimension
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Fig. 1 Schematic description of the truncated iterative
diagonalization method. At every iteration, the system size
is increased while maintaining the dimension of the Hamilto-
nian matrix manageable for numerical diagonalization. This
is achieved by projecting the basis of the enlarged system
onto a truncated basis spanned by its lowest-energy eigen-
states. The underlying assumption of this renormalization
technique is that the low-energy states of the full system can
be accurately described by the low-energy states of smaller
blocks

of which, NA, is assumed to be manageable by numeri-
cal means. In the next step, we increase the system size,
forming what we denote by system AB, the Hamilto-
nian of which, HAB, has dimension NANB and is also
assumed to be numerically tractable. The Hamiltonian
HAB includes the Hamiltonians of the two individual
blocks A and B, as well as their mutual interactions
VAB. Importantly, if we iterated the procedure at this
step, it would be equivalent to doing exact diagonaliza-
tion, in which case we would rapidly arrive at the sit-
uation where the dimension of the Hamiltonian matrix
would increase to values that are too large to handle.
Instead, in the third step, we diagonalize HAB and keep
only its NA lowest-energy eigenstates.2 These are used
to form a rectangular matrix O, which can be employed
to project the Hilbert space of the system AB onto a
truncated basis spanned by its NA lowest-energy eigen-
states, thereby integrating out the remaining higher
energy degrees of freedom. As a consequence, it is possi-
ble to find an effective truncated version of any relevant
operator defined in the system AB. In particular, we can
truncate HAB, obtaining an effective Hamiltonian H̃AB

with reduced dimension NA, which can be used as the
input for the first step of the next iteration. This pro-
cedure is then iterated until the desired system size is
reached. As a final remark, we note that the matrices O
should be saved in memory at every iteration, as they

2 More generally, the number of kept states does not need
to be equal to NA, but only small enough to stop the expo-
nential growth and make the next iteration manageable.

Fig. 2 Illustration of the failure of the truncated iterative
diagonalization method for the problem of a quantum par-
ticle in a box. The dashed blue (red) lines represent the two
lowest-energy wave functions in the box A (B). The solid
black line represents the lowest-energy wave function in the
box AB. It is apparent that the lowest-energy state of the
larger box cannot be obtained as a linear combination of
a few low-energy states of the smaller boxes, thus leading
to the breakdown of the principle that underpins the TID
approach

are required to obtain the terms VAB, which we usually
only know how to write in the original basis, as well as
to compute expectation values of observables.

Despite its rather intuitive formulation, TID turned
out to yield poor results for most quantum many-body
problems [12]. In fact, White and Noack realized [29]
that this renormalization approach could not even be
straightforwardly applied to one of the simplest (single-
body) problems in quantum mechanics: the particle-in-
a-box model (Fig. 2). Even though White and Noack
managed to fix this issue by considering various combi-
nations of boundary conditions, this observation was a
clear drawback to the aspirations of TID, which moti-
vated the search for a different method. This culmi-
nated in the invention of DMRG, which is the focus of
the next section.

3 Original formulation of DMRG

3.1 Infinite-system algorithm

In 1992, Steven R. White realized that the eigenstates
of the density matrix are more appropriate to describe
a quantum system than the eigenstates of its Hamil-
tonian [11]. This is the working principle of DMRG.
In this subsection, we consider the so-called infinite-
system DMRG algorithm. Even though it is possible
to further improve this implementation scheme,3 it is

3 In this review, we shall focus on finite 1D systems with
open boundary conditions. In this regard, the approximate
ground state found via infinite-system DMRG by grow-
ing the system size at every iteration is refined by finite-
system DMRG by sweeping across the fixed-size system, as
described in Sect. 3.2. However, for reference, we refer the
reader to alternative implementations of DMRG that target
the thermodynamic limit, namely, the infinite time-evolving
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an instructive starting point as it already contains the
core ideas of DMRG. Below, we introduce it in four
steps. First, we describe how to apply it, providing no
motivation for its structure. Second, we show, on the
basis of the variational principle, that the truncation
protocol prescribed by this method is optimal. Third,
we address its efficiency—i.e., how numerically afford-
able the truncation required for an accurate description
of a large system is—clarifying the models for which it
is most suitable. Fourth, we provide a pedagogical code
implementation and discuss the results obtained.

3.1.1 Description

The infinite-system DMRG algorithm is schematically
described in Fig. 3. In the first step, we consider two
blocks, denoted as S (system) and E (environment). As
we shall see, both blocks are part of the full system
under study, so their designation is arbitrary. Then, we
increase the system size by adding two physical sites,
one to each block, forming what we denote by blocks L
(left) and R (right). We proceed by building the block
SB (superblock), which amounts to bundling the blocks
L and R. The block SB is the representation of the full
system that we intend to describe at every iteration.
It should be noted that all block aggregations imply
that we account for the individual Hamiltonians of each
block, plus their mutual interactions. Finally, we move
on to the truncations. As a side remark, we point out
that, if we truncated the blocks L and R using the cor-
responding low-energy states, forming new blocks S and
E to use in the first step of the next iteration, this algo-
rithm would be essentially equivalent to TID. Alterna-
tively, we diagonalize the block SB, and use one of its
eigenstates |ψ〉 to build the density matrix ρ = |ψ〉〈ψ|.4
Then, we compute the reduced density matrices in the
subspaces of the blocks L and R, σL/R = TrR/Lρ, diag-
onalize them, and keep their eigenvectors with highest
eigenvalues. These are used to truncate the blocks L
and R, forming new blocks S and E that are taken as
inputs of the first step in the next iteration. For clar-
ity, we note that, in the first few iterations, we may
skip the truncation protocol (or, equivalently, keep all
the eigenvectors of σL/R); in that case, the algorithm is
equivalent to exact diagonalization, since the block SB
is defined in the full Hilbert space. Due to the exponen-
tial wall problem, truncations will be required at some
iteration; from then on, the Hamiltonian of the block
SB is no longer exact, as it is represented in a truncated
basis set.

Footnote 3 continued
block decimation [30], a modern version of the infinite-
system DMRG [31], and the variational uniform matrix
product state algorithm [32].
4 Here, we should choose the eigenstate |ψ〉 that we intend
to obtain. Most often, it will be the ground state or one of
the lowest-energy eigenstates. It is also possible to consider
multiple target states |ψn〉, taking ρ =

∑
n cn|ψn〉〈ψn|, with∑

n cn = 1. Drawbacks and best practices of this strategy
are briefly discussed in Ref. [13].

Fig. 3 Schematic description of the infinite-system DMRG
algorithm (see also Fig. 18 of Appendix D for the corre-
sponding pseudocode). Similarly to the TID approach, the
system size is increased at every iteration while preventing
an exponential growth of the dimension of its Hamiltonian
matrix. The truncation employed involves the diagonaliza-
tion of reduced density matrices, as their eigenvectors with
highest eigenvalues are used to obtain an effective descrip-
tion of the enlarged system in a reduced basis. As shown in
Sect. 3.1.2, this truncation protocol is optimal and can, in
principle, be applied to obtain the best approximation of any
state |ψ〉 of an arbitrary quantum model. In practice, how-
ever, this method is mostly useful to probe the low-energy
states of 1D quantum problems with short-range interac-
tions (see Sect. 3.1.3)

3.1.2 Argument for truncation

Here, we justify the truncation strategy prescribed
above. For that matter, let us consider an exact wave
function of the block SB, written as

|ψ〉 =
NL∑

iL=1

NR∑

iR=1

ψiL,iR |iL〉 ⊗ |iR〉, (1)

where |iL〉 (|iR〉) denotes a complete basis of the block
L (R), with dimension NL (NR). We now propose a
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variational wave function of the form

|ψ̃〉 =
DL∑

αL=1

NR∑

iR=1

cαL,iR |αL〉 ⊗ |iR〉, (2)

where |αL〉 denotes a truncated basis of the block L,
with reduced dimension DL < NL. The goal is to find
the states |αL〉 and the variational coefficients cαL,iR
that provide the best approximation of the truncated
wave function |ψ̃〉 to the exact wave function |ψ〉, for a
given DL. This can be achieved by minimizing ‖|ψ〉 −
|ψ̃〉‖2.

The exact wave function is normalized, i.e., 〈ψ|ψ〉 =
1. Using this property, we obtain

‖|ψ〉 − |ψ̃〉‖2 = 1 −
∑

iL,iR,αL

(
ψ∗

iL,iRcαL,iR〈iL|αL〉

+ c∗
αL,iRψiL,iR〈αL|iL〉

)
+

∑

αL,iR

|cαL,iR |2,

(3)

where we have also used the orthonormal properties of
the basis states, e.g., 〈iR|i′R〉 = δiR,i′

R
. To minimize the

previous expression, we impose that its derivative with
respect to the variational coefficients cαL,iR (or c∗

αL,iR
)

must be zero. This leads to

cαL,iR =
NL∑

iL=1

ψiL,iR〈αL|iL〉. (4)

Inserting Eqs. (4) into (3), we obtain

‖|ψ〉 − |ψ̃〉‖2 = 1 −
DL∑

αL=1

〈αL|σL|αL〉, (5)

where we have introduced the reduced density matrix
of the state |ψ〉 in the subspace of block L

σL = TrRρ =
NR∑

iR=1

〈iR|ρ|iR〉, (6)

defined in terms of the full density matrix

ρ = |ψ〉〈ψ|. (7)

Looking at Eq. (5), we observe that it involves a par-
tial trace of the reduced density matrix σL (note that σL

is an NL×NL matrix, but the sum over αL runs over DL

terms only). Since σL is a density matrix, its full trace
must be equal to 1, in which case the minimization of
‖|ψ〉− |ψ̃〉‖2 is accomplished by maximizing the partial
trace of σL. Per the Schur–Horn theorem [33,34], the
states |αL〉 that accomplish this are those that diago-
nalize σL with highest eigenvalues λαL (which are all

non-negative, since any density matrix is positive semi-
definite), that is

σL|αL〉 = λαL |αL〉, λ1 ≥ λ2 ≥ . . . , (8)

thus leading to

‖|ψ〉 − |ψ̃〉‖2 = 1 −
DL∑

αL=1

λαL . (9)

Let us now put into words what we have just demon-
strated. Starting from an exact wave function |ψ〉, we
can obtain a truncated (in the subspace of the block L)
wave function |ψ̃〉 that best approximates |ψ〉 by going
through the following protocol. First, we build the den-
sity matrix ρ = |ψ〉〈ψ| and compute the reduced density
matrix σL = TrRρ. Then, we diagonalize σL and form a
DL × NL matrix O whose lines are the eigenvectors of
σL with highest eigenvalue. Finally, |ψ̃〉 is obtained as
|ψ̃〉 = O|ψ〉. Repeating the same strategy for the block
R, for which the derivation is completely analogous, we
arrive at the truncation scheme described in Sect. 3.1.1.

The calculation of ‖|ψ〉 − |ψ̃〉‖2 at every iteration of
the algorithm, using Eq. (9), can be used as a measure
of the quality of the corresponding truncation. There-
fore, instead of fixing a given DL, we can impose a max-
imum tolerance for ‖|ψ〉 − |ψ̃〉‖2, obtaining an adaptive
truncation scheme. As a final remark, we note that,
while the general derivation presented here applies to
any state |ψ〉 of an arbitrary quantum problem, the
efficiency of DMRG relies on how large DL must be
to ensure that the truncation does not compromise the
accurate quantitative description of the system under
study. This subject is addressed below.

3.1.3 Efficiency

Recalling Eq. (9), it is apparent that the efficiency of
DMRG relies on how fast the eigenvalues of the reduced
density matrices decay for the quantum state |ψ〉 under
study. However, this property is, in general, unknown.5
Instead, the entanglement entropy—for which general
results are known or conjectured [37]—can be used as
a proxy, as explained below.

The blocks L and R form a bipartition of the full
system, represented by the block SB. We can therefore
define the von Neumann entanglement entropy (of the
state |ψ〉) between L and R as

S ≡ S(σL) = −Tr (σL log2 σL)
= S(σR) = −Tr (σR log2 σR) . (10)

5 For completeness, we note that, for 1D systems at quan-
tum critical points, the distribution of the eigenvalues of the
reduced density matrix can be obtained from a conformal
field theory [35], but it is only strictly valid in the contin-
uum limit. Nevertheless, this result is often referenced in
the study of the complexity of the MPS representation of
1 + 1D critical ground states (see, e.g., Ref. [36]).
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Fig. 4 Relation between dimensionality and range of interactions on a lattice model. In the example depicted, a 3 × 3
two-dimensional square lattice with nearest-neighbor hopping terms is described as a 1D chain with hoppings up to fifth
neighbors. In general, the same mapping applied to an N × N lattice leads to (nonlocal) hopping terms between sites
separated by up to 2N − 1 units of the 1D chain

Focusing on the block L, without loss of generality, we
write

S = −
NL∑

αL=1

λαL log2 λαL 
 −
DL∑

αL=1

λαL log2 λαL ,

(11)

where we have restricted the sum over αL to the DL

highest eigenvalues of σL. This approximation is valid,
since we are fixing DL, so that ‖|ψ〉 − |ψ̃〉‖2 
 0, which
implies, by virtue of Eq. (9), that the remaining eigen-
values are close to zero; given that limλ→0+ λ log2 λ = 0,
it follows that the lowest eigenvalues of σL can be
safely discarded in the calculation of the entanglement
entropy. Within this assumption, it is also straightfor-
ward to check that S is maximal if λαL = 1/DL, αL =
1, 2, . . . ,DL, which allows us to write

S ≤ log2 DL, (12)

leading to

DL ≥ 2S . (13)

Using Eq. (13), we can make a rough estimate of the
order of magnitude of DL

DL ∼ 2S . (14)

The scaling of S with the size of a translationally
invariant quantum system is a property that is widely
studied. In particular, there are exceptional quantum
states that obey the so-called area laws [37], meaning
that S, instead of being an extensive quantity,6 is at
most proportional to the boundary of the two parti-
tions. The area laws are commonly found to hold for
the ground states of gapped Hamiltonians with local
interactions [37]; this result has been rigorously demon-
strated in the 1D case [38]. It should also be noted
that, for the ground states of 1D critical/gapless local
models, the scenario is not dramatically worse as S is
typically verified to scale only logarithmically with the
chain length [39,40].

6 Note that this situation, expected in the most general
case, leads to an exponential scaling of DL with the system
size, which is impractical for numerical purposes.

In summary, considering the ground state of a local
Hamiltonian describing a D-dimensional system of size
L in each dimension, we expect to have:

• S ∼ const., for 1D gapped systems. This implies a
favorable scaling DL ∼ 2const..

• S ∼ c log2 L, for 1D gapless models. This leads to
DL ∼ 2c log2 L, yielding a power law in L, which is
usually numerically manageable in practical cases.

• S ∼ LD−1, for gapped systems in D = 2, 3 dimen-
sions. This implies DL ∼ 2LD−1

, resulting in an
exponential scaling that severely restricts the scala-
bility of numerical calculations.

In short, we see that the truncation strategy employed
in DMRG is in principle suitable for 1D quantum
models (gapped or gapless), but not in higher dimen-
sions. Notable exceptions are two-dimensional prob-
lems whose solutions can be obtained or extrapolated
from lattices where the size along one of the two
dimensions is rather small, such as stripes or cylin-
ders (see Ref. [41] for a review on the use of DMRG
to study two-dimensional systems). In fact, there is
a relation between dimensionality and range of inter-
actions in finite systems (Fig. 4), from which it also
becomes apparent that DMRG is in practice only effi-
cient when applied to models with short-range interac-
tions. Finally, it is reasonable to expect that the pre-
vious statements may hold not only for ground states
but also for a few low-lying states.

3.1.4 Code implementation

In Supplementary Information, we present a didac-
tic code implementation of the infinite-system DMRG
algorithm, also made available at https://github.com/
GCatarina/DMRG_didactic. In this documented Jupyter
notebook, written in Python, we focus on tackling spin-
1 Heisenberg chains with open boundary conditions.
The generalization to different spin models is com-
pletely straightforward. As for other types of quan-
tum problems (e.g., fermionic models), this code can
be readily used after simply defining the operators that
appear in the corresponding Hamiltonian. We also note
that a slight modification of the algorithm has been pro-
posed to better deal with periodic boundary conditions
[43].
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Fig. 5 Benchmark results of truncated iterative diagonal-
ization and infinite-system DMRG methods applied to open-
ended spin-1 Heisenberg chains. Ground-state energy per
spin, as a function of the number of spins, obtained with TID
(a) and infinite-system DMRG (b), for different values of D,
which reflects the truncation employed, as described in the
text. In both algorithms, every iteration implies the diag-
onalization of an Hamiltonian matrix of maximal dimen-
sion 9D2 × 9D2. Larger matrices are allowed if degenera-
cies to within numerical precision are found at the trunca-
tion threshold, as explained in the code documentation. The
dashed black line marks the known result in the thermody-
namic limit [42]

For pedagogical purposes, our Jupyter notebook is
structured in three parts. First, we adopt the scheme
described in Fig. 3, but make no truncations. This is
the same as doing exact diagonalization. It is observed
that, at every iteration, the running time of the code
increases dramatically, reflecting the exponential wall
problem. Second, maintaining the same scheme, we
make a truncation where the D lowest-energy states
of the block L (R) are used to obtain the new block S

Fig. 6 Magnetic properties of spin-1 Heisenberg chains
computed by infinite-system DMRG. Local distribution of
magnetization for the ground state with quantum number
Sz = +1 (where Sz denotes the total spin projection) of an
open-ended chain composed of 100 spins. The calculated
local moments are exponentially localized at both edges
of the chain, reflecting the fractionalization of the ground
state into two effective spin-1/2 edge states. These results
were obtained with an adaptive implementation in which the
truncation error at every iteration was imposed to be below
10−4. A small Zeeman term was added to the Hamiltonian
to target the Sz = +1 ground state

(E). This is equivalent to the TID approach. In Fig. 5a,
we plot the ground state energy per spin, as a func-
tion of the number of spins, obtained with this strat-
egy, for different values of D. Our calculations show a
disagreement of at least 5% with the reference value
[42], which does not appear to be overcome by consid-
ering larger values for D. Therefore, we conclude that
TID is not fully reliable for this problem. Third, we
implement the infinite-system DMRG, where we first
set a fixed value for D ≡ DL = DR in the truncations.
Computing the ground state energy per spin with this
method, the results obtained are very close to the ref-
erence value, even for small values of D, as shown in
Fig. 5b. For completeness, we also implement an adap-
tive version of the algorithm where the values of DL/R

used at every iteration are set as to keep the truncation
error, given by Eq. (9), below a certain threshold. This
adaptive implementation is used to compute the expec-
tation values presented in Fig. 6, which show a known
signature of the emergence of fractional spin-1/2 edge
states in the model [42].

3.2 Finite-system scheme

Within the infinite-system DMRG approach, the size of
the system that we aim to describe increases at every
iteration of the algorithm. Therefore, the wave function
targeted at each step is different. This can lead to a
poor convergence of the variational problem or even to
incorrect results. For instance, a metastable state can
be favored by edge effects in the early DMRG steps,
where the embedding with the environment is not so
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Fig. 7 Breakdown of the finite-system DMRG routine. At the first stage, infinite-system DMRG is used to obtain an
effective description for the target wave function of a system with desired size. This is followed by a sweeping protocol
where one of the blocks is allowed to grow while the other is shrunk, thus keeping the total system size fixed. To prevent the
exponential scaling, DMRG truncations (targeting the intended state) are employed for the growing blocks. The shrinking
blocks are retrieved from memory, using stored data of the latest description of the block with such size (either from
the infinite-system routine or from an earlier step of the sweeping procedure). The growth direction is reversed when the
shrinking block reaches its minimal size. A typical strategy is to fix a maximal truncation error for the DMRG truncations,
and perform sweeps until convergence in energy (and/or other physical quantities of interest) is attained; this approach
ensures that the description of the target wave function is improved (or at least not worsened) at each step of the sweeping
protocol

effective due to its small size, and the lack of “thermal-
ization” in the following iterations may not allow for a
proper convergence to the target state.

In this subsection, we present the so-called finite-
system DMRG method, which manages to fix the afore-
mentioned issues to a large extent. The breakdown of
this algorithm is shown in Fig. 7. Its first step consists in
applying the infinite-system routine to obtain an effec-
tive description for the target wave function of a system
with desired size. Then, a sweeping protocol is carried
out to improve this description. In this part, one of the
blocks is allowed to grow, while simultaneously shrink-
ing the other, thus keeping the overall system size fixed.
DMRG truncations (targeting the intended state) are
employed for the growing blocks, whereas the shrink-
ing blocks are retrieved from previous steps. When the
shrinking block reaches its minimal size, the growth
direction is reversed. A complete loop of this proto-
col, referred to as a sweep, entails the shrinkage of the
two blocks to their minimal sizes, and the return to

the initial block configuration. For a fixed truncation
error, every step of a sweep must lead to a better (or
at least equivalent) description of the target wave func-
tion; when the target is the ground state, this implies a
variational optimization in which the estimated energy
is a monotonically non-increasing function of the num-
ber of sweep steps performed. This property is at the
heart of the MPS formulation of DMRG (see Sect. 5.1).

As a final remark, we wish to clarify a few subtleties
related to the variational character of DMRG. For that
matter, let us focus on the case where the target is the
ground-state wave function. According to the deriva-
tion presented in Sect. 3.1.2, it is straightforward to
check that the DMRG truncations are variational in the
number of kept states: a larger value of DL/R implies a
better (or at least equivalent) description of the exact
wave function, and, hence, a non-increasing energy esti-
mation. On top of that, we have just argued that, as
long as we keep a fixed truncation error, the finite-
system method is also variational in the number of
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sweeps. Hence, the finite-system algorithm has an addi-
tional knob of optimization—the number of sweeps—
that allows to improve the results of the infinite-system
scheme.

4 Tensor-network basics

The modern formulation of DMRG is built upon tensor
networks [14–16]. Indeed, virtually all state-of-the-art
implementations of DMRG [17,18] make use of MPSs
and MPOs. Although pedagogical reviews on these and
other tensor networks are available [44–46], their scope
goes far beyond DMRG, as they provide the reader with
the required background to explore the broader litera-
ture on tensor-network methods. Here, we take a more
focused approach, giving the minimum necessary frame-
work on tensor networks to understand the MPS-based
version of the finite-system DMRG algorithm, which is
discussed in detail in Sect. 5.

4.1 Diagrams and key operations

A tensor can be simply regarded as a mathematical
object that stores information in a way that is deter-
mined by the number of indices r ∈ N

0 (referred to as
the rank of the tensor), their dimensions {di}r

i=1 (i.e.,
the ith index can take di ∈ N

+ different values), and the
order by which those indices are organized. The total
number of entries of a tensor is

∏r
i=1 di. The most famil-

iar examples of tensors are scalars (i.e., rank-0 tensors,
each corresponding to a single number, thus not requir-
ing any labels), vectors (i.e., rank-1 tensors, where every
value is labeled by a single index that takes as many
different values as the size of the vector), and matrices
(i.e., rank-2 tensors, where every entry is characterized
by two indices, one labeling the rows and another the
columns). In general, each number stored in a rank-
r tensor is labeled in terms of an ordered array of r
indices, which can be regarded as its coordinates within
the structure of the tensor. In Fig. 8a–c, we show how
tensors are represented diagrammatically.

Although the number of indices, their dimensions,
and the order by which they are organized are crucial
to unambiguously label the entries of a tensor, these
properties—to which we shall refer as the shape of the
tensor—are immaterial in the sense that we can fuse,
split, or permute its indices without actually changing
the information contained within it. For clarity, let us
consider the following 2×4 matrix Aαβ with α ∈ {0, 1},
β ∈ {0, 1, 2, 3}:

A

We can reshape this rank-2 tensor by fusing its two
indices, yielding the 8-dimensional vector A(α,β) ≡ Aγ

if the row index α is chosen to precede the column index
β

A

or A(β,α) ≡ Aδ if β takes precedence

A

Likewise, we can split the d = 4 column index β into two
d = 2 indices, β1, β2 ∈ {0, 1}, corresponding to the least
and most significant digits of the binary decomposition
of β, respectively. This yields the rank-3 tensor

A A

where β2 corresponds to the rightmost leg in the dia-
grams above. Alternatively, we can leave the rank
unchanged, permuting the row and column indices to
yield the 4 × 2 transpose matrix

A

In all three cases, even though we end up with ten-
sors of different shape, all of them store exactly the
same content as the original matrix, albeit in a different
way. This is the key point: reshaping a tensor (by fus-
ing or splitting indices) or simply permuting its indices
merely restructures how the information is stored, leav-
ing the information itself unaffected. In the context of
numerical implementations, we note that these tensor
operations can be applied to arbitrary-rank tensors via
standard built-in functions (e.g., numpy.reshape and
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Fig. 8 Diagrammatic representation of simple examples of tensors: a vector (i.e., rank-1 tensor), b matrix (i.e., rank-2
tensor), and c rank-3 tensor. Tensor networks are constructed by joining individual tensors, which is accomplished by
contracting (i.e., summing over) indices in common. d Example of contraction between rank-2 and rank-3 tensors. Common
index j is contracted. Free indices i, k, and l are represented through open legs. e Example of canonical tensor network,
MPS. Each local tensor has one free index. There is one contracted index (also known as bond) between every pair of
adjacent tensors. f Representation of generic rank-N tensor

numpy.transpose in Python). The time complexity of
reshaping a tensor or permuting its indices is essentially
negligible, as these operations just modify a flag associ-
ated with the tensor that defines its shape rather than
actually moving its elements around in memory.

Thus far, we have only considered isolated tensors.
However, based on the diagrammatic representations
illustrated in Fig. 8a–c, where each index corresponds
to a leg, we can think of joining two individual tensors
by linking a pair of legs, one from each tensor, as shown
in Fig. 8d. Algebraically, such link/bond corresponds to
a sum over a common index shared by the two tensors;
the outcome of this operation can be explicitly obtained
in Python via numpy.einsum. Of course, this process
can be generalized to an arbitrary number of tensors,
resulting in tensor networks of arbitrary shapes and
sizes. Here, we will focus on the so-called matrix prod-
uct states (MPSs), relevant for DMRG. A diagram of an
MPS is shown in Fig. 8e; it comprises both free indices
(i.e., open legs) and contracted indices (i.e., bonds).
The elements of an MPS are uniquely identified by the
free indices, but, unlike the case of an isolated tensor,
their values are not immediately available, as the con-
tracted indices must be summed over to obtain them.
In the context of DMRG, an MPS with N free/physical
indices is typically used to represent a quantum state
of a system with N sites.

Even though the order by which sums over contracted
indices are performed does not affect the obtained
result, different orders may produce substantially dif-
ferent times of execution, especially if the tensor net-
works in question are large. For the 1D tensor networks
herein considered, the type of contractions that we
need to deal with are essentially those shown in Fig. 9,
for which there are two possible contraction strategies.
Contracting multiple bonds of a tensor network essen-
tially amounts to performing nested loops. When we
sum over a given contracted index, corresponding to

the current innermost loop, we effectively have to fix the
dummy variables of the outer loops. However, all pos-
sible values that such dummy variables can take must
be considered. In the scheme of Fig. 9a, we first con-
tract the D-dimensional bond linking tensors B and
C, which involves order O(D) operations on its own,
but we must repeat this for all possible combinations
of values of all other indices of tensors B and C, which
are O(D4), yielding a total scaling of O(D5). The sec-
ond step contracts both bonds linking A to BC, tak-
ing O(D4) operations. For Fig. 9b, in turn, contracting
first the bond between A and B takes O(D4) opera-
tions, and the same scaling is obtained for the second
step. Hence, (b) has an overall cost of O(D4), which is
more favorable than the O(D5) scaling of (a). In gen-
eral, the problem of determining the optimal contrac-
tion scheme is known to be NP-hard [47,48], but this
issue only arises in two and higher dimensions. For our
purposes, the cases described above are all we need to
know about tensor-network contractions.

Tensor networks can be regarded as tensors with
internal structure. Therein lies their great virtue: such
internal structure allows for a compact storage of infor-
mation, which greatly reduces the memory require-
ments of the variational methods that use these tensor
networks as their ansätze. For concreteness, let us com-
pare the N -site MPS shown in Fig. 8e to an isolated
rank-N tensor (resultant, e.g., from contracting all the
bonds of the N -site MPS), as shown in Fig. 8f. Assum-
ing that free and contracted indices have dimension d
and D, respectively, while the isolated tensor requires
storing a total of dN numbers in memory, the MPS only
involves saving the entries of N−2 rank-3 D×d×D ten-
sors in the bulk and 2 rank-2 d×D tensors at the ends,
yielding O(ND2d) numbers saved in memory. In other
words, the memory requirements of methods based on
MPSs scale linearly with the system size N , in con-
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Fig. 9 Comparison of two strategies to contract a tensor network comprising three tensors. All indices, both free and
contracted, are assumed to have dimension D for the purpose of estimating scaling of cost of contractions. a First, index
γ linking tensors B and C is contracted, and then, indices α and β are summed over, yielding an overall cost of O(D5). b
First, index α linking tensors A and B is contracted, and then, indices β and γ are summed over, resulting in O(D4) cost.
Even though both strategies yield the same outcome, b is preferred, since its execution time scales more favorably with the
index dimension D

trast with the exponential scaling associated with an
unstructured tensor.

4.2 Singular value decomposition

The success of the original formulation of DMRG in
tackling quantum many-body problems in a scalable
way rests upon the projection of the Hilbert space onto
the subspace spanned by the highest-weight eigenstates
of the reduced density matrix on either side of the bipar-
tition considered. In the MPS-based formulation, the
analog operation (see Sect. 5.2) corresponds to the sin-
gular value decomposition (SVD) of the local tensors
that compose the MPS.

SVD consists of factorizing any m×n real or complex
matrix M in the form M = USV†, where U and V are
m × m and n × n unitary matrices, respectively, and
S is an m × n matrix with non-negative real numbers
(some of which possibly zero) along the diagonal and
all remaining entries equal to zero

In the schematic representations of SVD above, the
parallel horizontal and vertical lines forming the grids
within U and V† serve to illustrate that the respec-
tive rows and columns form an orthonormal set, which
is the defining property of a unitary matrix. As high-
lighted by the shaded regions, all entries of the the last
n − m columns (if m < n) or the last m − n rows (if
m > n) of S are zero, so we can remove such redundant
information by truncating U , S and V† (the truncated
versions of which we write as U , S and V †) accordingly

This is the so-called thin or reduced SVD, as opposed to
the full SVD described earlier. Both are implemented
in Python via numpy.linalg.svd, setting the Boolean
input parameter full_matrices appropriately. Hence-
forth, unless stated otherwise, we shall consider the thin
SVD, as it yields the most compact factorization of the
original matrix M .

A brief overview of some terminology related to SVD
is in order. First, in the thin SVD diagrams above, V † in
the m < n case and U in the m > n case are rectangular
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Fig. 10 Singular value decomposition for image compression. The original photo (taken at Fisgas de Ermelo, Portugal)
is stored as a 3335 × 2668 matrix, where each entry corresponds to a pixel and the values encode the grayscale color. The
compressed images are obtained by applying SVD to this matrix, keeping only the highest singular values (namely, 1% and
5% of the total 2668 singular values). The distribution of the singular values is shown in the rightmost panel

matrices, and therefore, neither is unitary. Nevertheless,
as illustrated through the parallel lines, the rows of V †
in the m < n case and the columns of U in the m > n
case still form an orthonormal basis, so the former is
said to be right-normalized (i.e., V †(V †)† = V †V = 1)
and the latter left-normalized (i.e., U†U = 1). The
columns of U and the rows of V † are referred to as
left- and right-singular vectors. The diagonal entries of
the min{m,n}×min{m,n} matrix S are called singular
values. The Schmidt rank rS ≤ min{m,n} is the num-
ber of nonzero singular values. By exploiting the gauge
freedom of SVD (see Appendix A), the singular values
are conventionally stored in descending order, which is
useful when truncations are considered, as explained
below.

The application of the thin SVD to a rectangular
matrix allows for a trivial truncation of the bond dimen-
sions between the factorized matrices. Further trunca-
tions can be implemented by discarding singular values
of negligible magnitude. If the discarded singular val-
ues are zero, this procedure is exact. Otherwise, some
information is lost, but the strategy of discarding the
lowest singular values is known to yield the optimal
truncation [49,50]. Therefore, SVD is widely used for
data compression, being particularly efficient in cases
where the singular values decay rapidly. In Fig. 10,
we show such an example, where SVD is used to com-
press a black-and-white photograph. We observe that,
by keeping only the 1% highest singular values, the
image obtained already exhibits most of the features
of the original photo, though noticeably blurred out.
This blur is significantly reduced when the number of
kept singular values is increased to just 5%.

A wave function can always be exactly represented
by an MPS, although this will generally entail an expo-
nential growth of the bond dimensions from the ends
toward the center of the MPS (see Sect. 4.3.3). Within
the context of MPS-based DMRG, SVD is adopted both
to truncate the bond dimensions of the MPS and to
transform it into convenient canonical forms, which we
shall introduce in Sect. 4.3.2. However, since SVD is

a linear algebraic method, it applies to matrices and
not to the rank-3 tensors found in the non-terminal
sites of an MPS. As a result, these tensors have to be
reshaped by fusing two indices. There are two possi-
bilities for this, depending on which leg we choose to
fuse the physical index with (Fig. 11). In Fig. 11a, we
end up with a left-normalized tensor U at the current
site, with the remaining SV † being contracted with the
next local tensor to the right of the MPS. In Fig. 11b,
the right-normalized tensor V † is the final form of the
tensor at the current site, and US is contracted with
the next local tensor to the left. The expressive power
of an MPS is determined by the bond dimension cut-
off D, which sets the maximum size of the contracted
indices (e.g., α, γ, and ε in Fig. 11). The dimension
d of the physical indices (e.g., β in Fig. 11) is fixed
by the local degrees of freedom of the problem under
consideration (e.g., d = 2s + 1 for a spin-s quantum
model). As a result, in Fig. 11a, b, both dimensions of
the matrix resulting from reshaping the rank-3 tensor
are O(D). Computing the SVD of an m × n matrix
(with m > n) takes O(m2n + n3) floating-point oper-
ations [51]. Hence, within the context of MPS-based
DMRG, the time complexity of SVD is O(D3).

4.3 Matrix product states

This subsection introduces the key operations required
to manipulate MPSs. In particular, we discuss how to
compute overlaps between two MPSs and expectation
values of MPSs for local operators.7 Three MPS canon-
ical forms that simplify some of these computations
are introduced; the construction of all of them merely
involves a sequential sitewise application of SVD, as
described in Fig. 11. For completeness, we also explain
how to obtain an MPS representation of a general wave
function, even though this procedure is not essential for

7 A more general discussion of the computation of expec-
tation values with MPSs is deferred to the next subsection,
where we introduce MPOs.
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Fig. 11 Singular value decomposition of rank-3 tensor A belonging to a matrix product state. a Central/physical index β
is fused with leftmost index α to yield left-normalized tensor U at current site after SVD and index splitting. The remaining
SV † is contracted with the local tensor that appears to the right of A in the MPS. b Central/physical index β is fused
with rightmost index γ to yield right-normalized tensor V † at current site after SVD and index splitting. The remaining
US is contracted with the local tensor that appears to the left of A in the MPS. Triangular shapes indicate left- and
right-normalization of U and V †, respectively. Diamond-shaped diagram illustrates that S is diagonal

Fig. 12 Diagrammatic representation of a MPS for ket
|ψ〉, b MPS for bra 〈ψ|, and c contraction of two previ-
ous MPSs to compute norm 〈ψ|ψ〉. In c, singleton dummy
indices β0, β′

0, βN , and β′
N were added on either side of both

MPSs to ease discussion of efficient method to contract ten-
sors down to scalar 〈ψ|ψ〉 (see Fig. 13)

DMRG. In general, we shall consider N -site MPSs with
bond dimension D and physical index dimension d.

4.3.1 Overlaps

Using Dirac’s Bra–Ket notation, the MPS representa-
tions of a ket |ψ〉 and its bra 〈ψ| are shown in Fig. 12a,
b, respectively. The diagrammatic representation of the
norm of this state, 〈ψ|ψ〉, amounts to linking the two
MPSs by joining the physical indices {σi}N

i=1, as shown
in Fig. 12c. The question, then, is how to contract such

tensor network to arrive at the scalar 〈ψ|ψ〉. A näıf
approach would be to fix the same set of physical indices
in the bra and the ket (σi = σ′

i), contract the remain-
ing bonds (N − 1 at the ket and N − 1 at the bra),
multiply the scalars obtained in the bra and the ket,
and then sum over all possible values of the physical
indices. The problem, however, is that {σi}N

i=1 take dN

different values, so this would be exponentially costly
in N . Fortunately, there is a contraction scheme linear
in N that resembles the process of closing a zipper [52].

In Fig. 13, we illustrate this closing-the-zipper con-
traction scheme of the overlap between two MPSs.8 The
contraction is divided in N steps; at the nth step, the
local tensors A[n] and A†

[n] are contracted with the ten-
sor C[n−1] that stores the outcome of all contractions
from previous steps, yielding the tensor C[n] to be used
in the next step

To make sense of the first and final steps, it is help-
ful to add singleton dummy indices at each end of the
two MPSs, as illustrated in Fig. 12c. This allows to
apply the first step of the recursive process depicted
in Fig. 13 with C[0] initialized as the 1 × 1 identity
matrix (i.e., the scalar 1). At the N th and final step,
the recursive relation results in the rank-2 tensor C[N ],
with both of its indices βN and β′

N having trivial dimen-
sion 1. This scalar corresponds precisely to the norm
〈ψ|ψ〉 we were after. Of course, we can cover the tensor
network from right to left instead, producing exactly
the same outcome. At each step, we make use of the

8 For simplicity, we consider the computation of the norm,
in which case the bra and ket correspond to the same state.
The generalization to the case of an overlap 〈φ|ψ〉 between
two states |φ〉 and |ψ〉 is straightforward.
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Fig. 13 Schematic description of closing-the-zipper strat-
egy to perform contraction of tensor network resulting from
the overlap between two MPSs representing the ket |ψ〉 and
the bra 〈ψ| of a given state to yield 〈ψ|ψ〉. The steps are
ordered from top to bottom. In the first step, C[0] is ini-
tialized as the 1 × 1 identity matrix and introduced on the
left end of the tensor network, being contracted with the
leftmost local tensors A[1] and A†

[1] through the singleton

dummy indices β0 and β′
0. The contraction of the three ten-

sors C[0], A[1], and A†
[1]—following the strategy described in

Fig. 9b—produces the rank-2 tensor C[1]. This three-tensor
contraction is repeated N−1 times until arriving at the final
1×1 C[N ], which is just the desired 〈ψ|ψ〉. Although this fig-
ure considers the computation of the norm of a state |ψ〉, this
scheme can be identically applied to compute the overlap
between two distinct MPSs. The closing-the-zipper method
can be similarly performed from right to left instead. Assum-
ing the free indices of the MPSs have dimension d and the
bond dimension cutoff is D, the closing-the-zipper method
cost scales as O(ND3d)

tensor contraction scheme discussed in Sect. 4.1 (see
Fig. 9b), resulting in a O(ND3d) ∼ O(ND3) scaling
overall. Unlike the näıf approach, the closing-the-zipper
strategy allows for a scalable computation of overlaps
between MPSs, which is crucial for the practicality of
MPS-based DMRG.

4.3.2 Canonical forms

It is possible to cast the MPS in a suitable form
that effectively renders most or even all steps of the
closing-the-zipper scheme trivial, thus allowing to sim-
plify the tensor-network diagrams considerably without
requiring any detailed calculations. Suppose the MPS
is in left-canonical form, in which case all local tensors
{A[i]}N

i=1 are left-normalized, that is

or
∑

βi−1,σi
A∗

β′
i,σi,βi−1

Aβi−1,σi,βi
= δβ′

i,βi
algebraically.

In such case, all {C[n]}N
n=0 in the closing-the-zipper

scheme of Fig. 13 are just resolutions of the identity,
so all steps are trivial and the MPS is normalized,
〈ψ|ψ〉 = 1. The same conclusions hold if the closing-
the-zipper scheme is performed from right to left and
the local tensors are all right-normalized

or
∑

βi,σi
Aβi−1,σi,βi

A∗
βi,σi,β′

i−1
= δβi−1,β′

i−1
algebraically.

This is the right-canonical form.
For the purposes of computing expectation values of

local operators, it is convenient to introduce another
canonical form, the so-called mixed-canonical MPS,
whereby all local tensors to the left of the site on which
the local operator acts nontrivially are left-normalized,
and all local tensors to the right are right-normalized.
To show the usefulness of the mixed-canonical form,
let us consider the expectation value 〈ψ|Ô[i]|ψ〉 of a
one-site operator (acting on a given site i) Ô[i] =∑

σi,σ′
i
Oσi,σi′ |σi〉〈σ′

i|, represented diagrammatically as
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Upon making use of the left- and right-normalization of
the tensors to the left and to the right of site i, closing
the zipper on either side reduces this one-site-operator
expectation value to

Any MPS can be converted into left-canonical form
by performing SVD on one site at a time, covering the
full chain from left to right. As discussed in the final
paragraph of Sect. 4.2, each local rank-3 tensor A[i] can
be reshaped by fusing the leftmost index with the phys-
ical index; the SVD of the resulting matrix yields a uni-
tary matrix U , which becomes a left-normalized rank-3
tensor upon splitting the two indices that were origi-
nally fused. Hence, at each site, we replace the orig-
inal local tensor A[i] with the reshaped U , absorbing
the remaining SV † in the following local tensor A[i+1].
At the very last site, because the rightmost index is
a singleton dummy index, V † is just a complex num-
ber of modulus 1, so we can neglect it as any wave
function is defined up to a global phase factor. More-
over, S is a positive real number that corresponds to
the norm of the original MPS. Typically, S is also dis-
carded, in which case the left-canonical MPS becomes
normalized. To obtain a right-canonical MPS, one pro-
ceeds analogously to the left-canonical case, with the
main differences being that the chain is covered from
right to left, the local tensor A[i] is replaced by the
right-normalized V † resulting from the SVD at that
site, and the remaining US is absorbed by A[i−1]. For
a mixed-canonical MPS, each of the two processes is
carried out on the corresponding side of the selected
site.

4.3.3 General wave function representation

Being 1D tensor networks, MPSs are most naturally
suited for the representation of wave functions of 1D
quantum systems. However, it should be stressed that
any wave function, regardless of its dimensionality or
entanglement structure, can be represented as an MPS,
though possibly with exceedingly large bond dimen-
sions. Suppose we are given the wave function of a quan-
tum system defined on a N -site lattice

|ψ〉 =
∑

σ1,σ2,...,σN

ψσ1,σ2,...,σN
|σ1〉 ⊗ |σ2〉 ⊗ . . . ⊗ |σN 〉,

(15)

where |σi〉 denotes the local basis of site i. Assuming
the dimension of the local Hilbert space at each site
is d, the amplitudes of the wave function, ψσ1,σ2,...,σN

,
typically cast in the form of a dN -dimensional vector,
can be reshaped into a rank-N tensor such as the one
shown in Fig. 8f, with each index having dimension d.
To convert this rank-N tensor into the corresponding
N -site MPS (Fig. 8e), one can perform SVD at each
site at a time following some path that covers every
lattice site once.9 At the first site, the original rank-N
tensor is reshaped into a d×dN−1 matrix; its SVD pro-
duces a unitary d × d matrix U , which is the first local
tensor A[1] of the MPS. The remainder of the SVD,
the d× dN−1 matrix SV †, is reshaped into a d2 × dN−2

matrix, the SVD of which yields a unitary d2×d2 matrix
U , which is reshaped into a left-normalized rank-3 ten-
sor with shape d × d × d2, corresponding to the second
local tensor A[2] of the MPS. This sequence of sitewise
SVDs is carried out until reaching the last site, where
one obtains a rank-2 tensor A[N ] of dimensions d × d.
The final outcome is, therefore, a left-canonical MPS.
Importantly, because no truncations were performed,
until the center of the MPS is reached, the bond dimen-
sion keeps on increasing by a factor of d at each site,
yielding a maximum bond dimension of d�N/2�, which
is exponentially large in the system size. This is con-
sistent with the fact that no information was lost, so
the number of entries of the MPS is O(dN ), as for the
original rank-N tensor.

The exact conversion of a wave function into an
MPS ultimately defeats the purpose of using MPSs (or
tensor networks, more generally), which is to provide
a more compact representation without compromising
the quantitative description of the system under study.
A more scalable approach would involve truncating the
bond dimension of the MPS to a cutoff D set before-

9 In one dimension, the natural choice of path is just to
go through the chain from one end to the other. In two
and higher dimensions, one may consider following a zigzag
path that covers one line of each dimension at a time (see
Fig. 4 for an example in two dimensions). In any case, this
conversion of a general rank-N tensor into an N -site MPS
via a sequence of SVDs works irrespective of the sequence
of sites chosen.
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hand, although this only produces an approximation of
the original state, in general. The remarkable success
of MPS-based methods in the study of 1D quantum
phenomena is rooted upon the favorable scaling of the
required bond dimension cutoff D of MPSs with the sys-
tem size N , in accordance with the entanglement area
laws discussed in Sect. 3.1.3. The relation between the
entanglement entropy of a state in a given bipartition
and the corresponding bond dimension D of its MPS
representation will be clarified in Sect. 5.2.

4.4 Matrix product operators

A matrix product operator (MPO) is a 1D tensor net-
work of the form shown diagrammatically in Fig. 14a.
The structure of an MPO is similar to that of an MPS,
except for the number of physical indices. While an
MPS has a single physical index per site, an MPO has
two, the top one to act on kets and the bottom one to
act on bras, following the convention adopted in Fig. 12.
MPOs constitute the most convenient representation of
operators for MPS-based methods, as they allow for a
sitewise update of the MPS ansatz. In particular, the
MPS-based formulation of DMRG discussed in Sect. 5
involves expressing the Hamiltonian under study as an
MPO.

Applying an MPO onto an MPS yields another MPS
of greater bond dimensions (Fig. 14b). To obtain this
MPS, at every site i = 1, 2, . . . , N , one contracts the
local tensor A[i] from the original MPS with the cor-
responding local tensor O[i] from the MPO, fusing the
pairs of bonds on either side to retrieve a rank-3 tensor
B[i]

Due to this fusion of indices, the bond dimensions of the
final MPS are the product of the bond dimensions of the
original MPS and the MPO. The cost of contracting an
MPO of bond dimension w (which is typically a small
constant, as we shall see below for the case of a short-
ranged Hamiltonian) with an MPS of bond dimension
D, both with N sites and physical index dimension d,
is O(ND2w2d2) ∼ O(ND2).

The expectation value of an operator Ô cast in the
form of an N -site MPO with respect to a state |ψ〉
expressed as a N -site MPS is represented in Fig. 14c.
One way to obtain 〈ψ|Ô|ψ〉 is to calculate the MPS
corresponding to Ô|ψ〉—following the prescription pro-
vided in the previous paragraph—and then compute
the overlap between the two resulting MPSs, one for
Ô|ψ〉 and another for 〈ψ|, using the closing-the-zipper

Fig. 14 a Diagram of N -site operator Ô as an MPO. b
Applying MPO of Ô onto MPS of |ψ〉 yields another MPS.

At mth bond, contracted index βm of MPS of Ô|ψ〉 results
from fusion of corresponding indices γm and αm of MPO
and original MPS, so the dimension of βm is the prod-
uct of the dimensions of αm and γm, hence the bold line
representation in the diagram. c Diagram of expectation
value 〈ψ|Ô|ψ〉. The contraction of the tensor network can
be done in two ways. Either the MPO is applied to one of the
MPSs, and then, the closing-the-zipper strategy (Fig. 13) is
adopted to compute the overlap between the two remaining
MPSs or the closing-the-zipper method is applied directly
to this three-layer tensor network, as described in the text.
Assuming the physical indices have dimension d and the
bond dimension cutoffs are D for the MPS and w for the
MPO, the cost of the two strategies scales as O(ND3w2d)
and O(ND3wd), respectively
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method introduced in Sect. 4.3.1. The cost of this
approach scales as O(ND3w2d) ∼ O(ND3). Alterna-
tively, the closing-the-zipper strategy can be adapted
to contract this three-layer tensor network. Specifically,
at the nth iteration, we have

and the indices are contracted as follows:

1. Sum over αn−1 with fixed σn, αn, γn−1 and α′
n−1

at cost O(D3wd).
2. Sum over γn−1 and σn with fixed αn, γn, σ′

n and
α′

n−1 at cost O(D2w2d2).
3. Sum over α′

n−1 and σ′
n with fixed αn, γn and α′

n at
cost O(D3wd).

Upon completing the N iterations to go through all
sites, the overall scaling is O(ND3wd) ∼ O(ND3). For
technical reasons that will be apparent in Sect. 5.1, this
contraction scheme is preferred in the implementation
of the finite-system DMRG algorithm.

Any N -site operator can be expressed as an MPO
by performing SVD at each site at a time, in a similar
spirit to the representation of an arbitrary wave func-
tion in terms of an MPS, discussed in Sect. 4.3.3. The
problem with this approach is that the bond dimension
of the resulting MPO grows by d2 at every iteration
until reaching the middle of the MPO, thus leading to
O(dN ) bond dimensions. The MPO representation of
an arbitrary tensor product of single-site operators is
straightforward: each local operator is reshaped into a
rank-4 tensor with two singleton dummy indices (cor-
responding to the trivial bonds with dimension w = 1),
which are contracted with those from the adjacent sites
to form the MPO. MPOs like those described above can
also be summed10 to obtain the MPO representation
of more generic operators. It must be noted, however,
that the previous strategy, although versatile, does not
always lead to the lowest possible bond dimensions of

10 See, e.g., Ref. [53] for a general prescription, which
amounts to writing each rank-4 local tensor of the MPOs
that we want to sum as a matrix of the physical operators,
and then perform direct sums of these matrices at every
site, except for the leftmost/rightmost site where the phys-
ical operators are organized in a line/column vector.

the final MPO. In particular, it is possible to represent
local Hamiltonians in terms of MPOs with O(1) bond
dimension—i.e., constant with respect to the system
size N—, as explained below.

The exact MPO of a local Hamiltonian can be
obtained through an analytical method originally pro-
posed by McCulloch [21]. For concreteness, let us con-
sider the Heisenberg model for an open-ended spin-s
chain with a Zeeman term

Ĥ = J

N−1∑

i=1

�̂Si · �̂Si+1 − h

N∑

i=1

Ŝz
i (16)

= J

N−1∑

i=1

(

Ŝz
i Ŝz

i+1 +
Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1

2

)

− h

N∑

i=1

Ŝz
i , (17)

where J and h are model parameters, �̂Si =
(
Ŝx

i , Ŝy
i , Ŝz

i

)

is the vector of spin-s operators at site i ∈ {1, 2, . . . , N},
and Ŝ±

i = Ŝx
i ± iŜy

i are the corresponding spin lad-
der operators. Our goal is to obtain the local tensors
{H[i]}N

i=1 of the MPO that encodes this Hamiltonian.
Four different types of terms arise in Eq. (17)

. . .
5⊗ 1̂

5⊗ JŜz
2⊗ Ŝz

1⊗ 1̂
1⊗ . . .

. . .
5⊗ 1̂

5⊗ J

2
Ŝ+

3⊗ Ŝ− 1⊗ 1̂
1⊗ . . .

. . .
5⊗ 1̂

5⊗ J

2
Ŝ− 4⊗ Ŝ+

1⊗ 1̂
1⊗ . . .

. . .
5⊗ 1̂

5⊗ −hŜz
1⊗ 1̂

1⊗ 1̂
1⊗ . . .

The numbers above the tensor product signs identify
one of the following five ‘states’:

• ‘State’ 1: Only identity operators 1̂ to the right.
• ‘State’ 2: One Ŝz operator just to the right, followed

by 1̂ operators.
• ‘State’ 3: One Ŝ− operator just to the right, followed

by 1̂ operators.
• ‘State’ 4: One Ŝ+ operator just to the right, followed

by 1̂ operators.
• ‘State’ 5: One complete term somewhere to the

right.

For a given bulk site i, the local rank-4 tensor H[i],
cast in the form of a w × w matrix where each entry
is itself a d × d matrix—with w = 5 the bond dimen-
sion of the MPO (determined by the number of ‘states’)
and d = 2s + 1 the physical index dimension—is con-
structed in such a way that its (k, l) entry corresponds
to the operator that makes the transition from ‘state’ l
to ‘state’ k toward the left
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H[i] =

⎛

⎜
⎜
⎜
⎜
⎝

1̂i 0 0 0 0
Ŝz

i 0 0 0 0
Ŝ−

i 0 0 0 0
Ŝ+

i 0 0 0 0
−hŜz

i JŜz
i

J
2 Ŝ+

i
J
2 Ŝ−

i 1̂i

⎞

⎟
⎟
⎟
⎟
⎠

. (18)

For the terminal sites, due to the open boundary condi-
tions, we have two rank-3 tensors, one corresponding to
the last row of Eq. (18) for the leftmost site i = 1 and
another corresponding to the first column of Eq. (18)
for the rightmost site i = N .

To confirm that the constructed MPO does indeed
give rise to the Hamiltonian stated in Eq. (17), one
can perform by hand the matrix multiplication of
the local tensors in the form shown in Eq. (18), but
with the usual scalar multiplications being replaced by
tensor products as each entry is itself a rank-2 ten-
sor [54]. Alternatively, the MPO can be contracted
and compared directly to the full dN × dN matrix
representation of the model Hamiltonian. This sanity
check is performed for small system sizes N in the
code that complements this manuscript (see Supple-
mentary Information). In this code, we also construct
the MPO Hamiltonian for two other quantum spin
models, the Majumdar–Ghosh [55,56] and the Affleck–
Kennedy–Lieb–Tasaki [57] models. These two addi-
tional examples suffice to demonstrate how to apply
McCulloch’s method in general, namely by adding
next-nearest-neighbor interactions and further nearest-
neighbor interactions, respectively. Assuming the most
conventional case of model Hamiltonians with terms
acting nontrivially on one or two sites only, the bond
dimension of the MPO obtained with this method starts
at two and increases by one for every new type of two-
site term and/or unit of interaction range [16]. There
are, however, notable exceptions to this rule, such as
long-range Hamiltonians that allow for a more com-
pact but still exact MPO representation [58,59]. More
complex Hamiltonians such as those arising in quan-
tum chemistry [60] or in two-dimensional lattice models
on a cylinder in hybrid real and momentum space [61]
may require more sophisticated numerical approaches
to reduce the bond dimension of the corresponding
MPO [53].

5 Finite-system DMRG in the language of
tensor networks

5.1 Derivation: one-site update

The starting point for the derivation of the MPS-based
finite-system DMRG algorithm is to consider the set
of all N -site MPS representations of a ket |ψ〉 with
(maximum) bond dimension D as a variational space.
The local tensor of the MPS at site i is denoted by
A[i]; for the sake of simplicity, we consider that the
physical index dimension is d at all sites. We assume
we are given the N -site MPO representation of the

Hamiltonian Ĥ, with bond dimension w ∼ O(1) and
physical index dimension d; its local rank-4 tensor at
site i is denoted by H[i]. The goal is to minimize the
energy 〈ψ|Ĥ|ψ〉, subject to the normalization constraint
〈ψ|ψ〉 = 1. This can be achieved by minimizing the
cost function 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉, where λ denotes the
Lagrange multiplier. The one-site-update version of the
algorithm consists of finding the stationary points of
the cost function with respect to each local tensor A†

[i]

at a time, that is

∂

∂A†
[i]

(
〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉

)
= 0. (19)

Making use of the diagrammatic representation, and
taking into account that all contractions on a ten-
sor network are linear operations, the derivative with
respect to A†

[i] amounts to punching a hole [52] at the

position of the tensor A†
[i], leading to

which can be understood as a generalized eigenvalue
problem for A[i]. By casting the MPS in mixed-
canonical form with respect to site i, the bottom part
of the previous equation simplifies trivially, yielding an
eigenvalue problem for A[i] that we write as

∑

a

Ma′,a
[i] Aa

[i] = λAa′
[i], (20)

with a ≡ (βi−1, σi, βi) and Ma′,a
[i] defined by the dia-

gram shown in Fig. 15.
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Fig. 15 Tensor-network diagram of the “effective” matrix M[i] of the eigenvalue problem (Eq. (20)) associated with
one iteration—corresponding to the local optimization of the MPS at site i—of the one-site-update finite-system DMRG
algorithm. To optimize the computational performance of the DMRG algorithm, M[i] is stored in terms of three tensors,
L[i], H[i], and R[i] (see Appendix B for details). The pseudocode of the algorithm is shown in Fig. 19 of Appendix D

Having derived an eigenvalue problem [Eq. (20) from
the local optimization of the MPS at site i (Eq. (19)],
the optimal update of the corresponding local tensor
A[i] is simply the eigenstate with lowest eigenvalue,
both of which can be obtained through the Lanczos
algorithm [62]. Although it is common practice to pro-
vide a randomly generated state as the input state to
the Lanczos algorithm, in this case, it is preferable to
use the current version of the local tensor A[i] as the
initial state, as this is a more educated guess of the
ground state, thus reducing the number of iterations
of the Lanczos algorithm. In addition to the obtained
eigenstate being the variationally optimized A[i], the
corresponding eigenvalue is also the current estimate of
the ground-state energy of the full system. This step of
the DMRG algorithm is repeated, sweeping i back and
forth between 1 and N . As for the initialization, the
typical approach is to start with a random MPS.

Two additional technical remarks regarding the imple-
mentation of the DMRG algorithm derived above are
in order. First, at every step of the algorithm, after
having obtained the updated local tensor A[i] as the
ground state of the eigenvalue problem, its SVD is per-
formed to ensure that the MPS is in the appropriate
mixed-canonical form in the next step of the sweep,
thus avoiding a generalized eigenvalue equation. Sec-
ond, the “effective” matrix of the eigenvalue problem,
M[i], is stored in terms of three separate tensors, L[i],
H[i], and R[i] (Fig. 15). As the notation suggests, the
rank-4 tensor H[i] is just the local tensor at site i of
the MPO that encodes the Hamiltonian Ĥ. As for the
rank-3 tensors L[i] and R[i], they result from the con-
traction of all tensors to the left and to the right of site
i, respectively. The efficient computation of L[i] and
R[i] over the multiple sweeps of the DMRG algorithm
is detailed in Appendix B.

Making use of the internal structure of the matrix
M[i], the time complexity of solving the eigenvalue

problem stated in Eq. (20)—required to update one
local tensor of the MPS—is O(D3). This scaling
results largely from the the matrix-vector multipli-
cations involved in the construction of the Krylov
space within the Lanczos algorithm [63]. Note that the
näıf explicit contraction of M[i] into a (D2d) × (D2d)
matrix would have resulted in a O(D4) scaling of
the matrix-vector multiplications, as opposed to the
O(D3) obtained using the L[i], H[i], and R[i] tensors.
In the end, all key steps of one iteration of the one-
site-update finite-system DMRG algorithm—closing-
the-zipper contraction (as described in Appendix B),
eigenvalue problem, and SVD—have the same O(D3)
computational cost, so the overall cost of a full sweep
scales as O(ND3). It must be noted that, since the stan-
dard Python functions to implement the Lanczos algo-
rithm (e.g., scipy.sparse.linalg.eigsh) require a
matrix as input, the näıf explicit contraction of M[i] was
adopted in the code that complements this manuscript,
trading efficiency for simplicity.

Finally, although this discussion has been restricted
to the computation of the ground state, it is straight-
forward to extend it to the calculation of low-lying
excited states. For concreteness, let us suppose we have
already determined the ground state |GS〉 in a previ-
ous run of the DMRG algorithm and wish to obtain
the first excited state. Exploiting the orthogonality of
the eigenbasis of the Hamiltonian, we merely have to
impose the additional constraint 〈ψ|GS〉 = 0 through
another Lagrange multiplier in the cost function. This
additional term effectively imposes an energy penalty
on the variational states |ψ〉 that have nonzero overlap
with |GS〉. In other words, the eigenvalue problem is
restricted to a subspace orthogonal to |GS〉. In prac-
tice, this condition can be imposed by setting |GS〉 as
the first Krylov state in the Lanczos algorithm but per-
forming the diagonalization of the tridiagonal matrix
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defined in the Krylov subspace spanned by all but the
first Krylov state [63].

5.2 Connection to original formalism

The one-site-update MPS-based DMRG algorithm
derived in the previous section is entirely analogous
to the original formulation of the finite-system DMRG
scheme (recall Sect. 3.2) provided that there is only one
site—denoted by ◦—instead of two, between the blocks
S and E (adopting the notation employed in Fig. 7).
Considering a left-to-right sweep11 of the MPS-based
formulation, the SVD of the optimized local tensor A[i]

at the site i between S and E—which leaves a left-
normalized tensor at site i in the MPS representation of
the target eigenstate |ψ〉—and the subsequent contrac-
tions to update the L[i+1] tensor (as defined in Fig. 15)
correspond to the projection of the Hilbert space of
the growing block S◦ onto the subspace spanned by
the highest-weight eigenstates of the reduced density
matrix σS◦ = TrE(|ψ〉〈ψ|) considered in the original
formulation. The number of kept eigenstates of the
reduced density matrix σS◦ in the original formulation
is precisely the number of kept singular values in the
SVD of the optimized local tensor in the MPS-based
version, which translates into the bond dimension D of
the MPS ansatz. To support the previous claims, we
note that the eigenvalues of σS◦ in the original formu-
lation are the square of the singular values {sn}D

n=1 of
the SVD of the updated A[i] in the MPS-based version
(see Appendix C for the derivation)

σS◦ = TrE(|ψ〉〈ψ|) =
D∑

n=1

s2n|un〉S◦ S◦〈un|, (21)

where {|un〉S◦}D
n=1 are the D—out of the total Dd—

eigenstates of σS◦ with (possibly) nonzero eigenval-
ues. Therefore, we see that in both formulations of
DMRG, D quantifies the degree of entanglement that
can be captured across the bipartition between S◦ and
E. Moreover, it becomes apparent that the truncation
prescribed in the original formulation of the one-site-
update finite-system DMRG scheme is actually trivial
(see Appendix C for a more detailed explanation), thus
sorting out the apparent contradiction related with the
fact that no truncation is prescribed in the MPS-based
version of the one-site-update DMRG algorithm.

Although the original and the MPS-based formu-
lations of DMRG are equivalent, there is one key
difference between them regarding the encoding of
the Hamiltonian. While, in the original method, the
Hamiltonian obtained from the prior implementation
of infinite-system DMRG is inherently approximate as
its matrix representation results from an explicit trun-
cation of the Hilbert space through a projection onto
a smaller subspace defined by the highest-weight eigen-

11 An analogous reasoning is straightforward for the case of
a right-to-left sweep.

states of the reduced density matrices on either side
of the bipartition considered, in the MPS-based ver-
sion, the MPO representation of the Hamiltonian with
which one begins to perform the sweeps is exact and
the approximate description of the system is entirely
restricted to the ansatz of the variational problem, an
MPS with given bond dimension D. This difference ren-
ders the MPS-based formulation of DMRG more effec-
tive at calculating physical quantities related to powers
of the Hamiltonian, such as the energy variance or, more
generally, cumulant expansions [53].

Similarly to the original formulation of the finite-
system DMRG scheme described in Sect. 3.2, there is
a two-site-update version of MPS-based DMRG that
results from simultaneously minimizing the cost func-
tion 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉 (recall Eq. (19) and the corre-
sponding derivation) with respect to two adjacent local
tensors A†

[i] and A†
[i+1], giving rise to an eigenvalue

problem for a two-site tensor of the form

where the explicit contraction (and index fusion) that
casts the two-site tensor in the vectorial form C is not
carried out in practice (as discussed in Sect. 5.1), but
is, nonetheless, a useful picture to have in mind. For
the sake of clarity, the labels associated with the legs
represent the dimensions of the corresponding indices.
Once the eigenvalue problem is solved, the updated ten-
sor C is reshaped into a (Dd) × (Dd) matrix, so that
its SVD can be performed to obtain the optimized local
tensors at sites i and i + 1. Crucially, the MPS bond
dimension between the local tensors at sites i and i + 1
increases from D to Dd after this optimization pro-
cess, so an explicit truncation that keeps only the the
D highest singular values is required. Hence, the two-
site-update algorithm effectively surveys a larger search
space than the one-site-update scheme. In particular,
this allows to escape local minima in the optimization
landscape, namely by having the possibility to explore
different symmetry sectors. This is the main reason why
the two-site-update DMRG scheme, both in its original
and MPS-based formulations, is the standard option in
the literature. It should be stressed, however, that the
one-site-update DMRG algorithm can be just as reliable
as the two-site-update scheme at a lower computational
cost (see Sect. 5.4).

In the original formulation of DMRG, the outcome of
the infinite-system version is the natural starting point
for finite-system DMRG. In the MPS-based version,
however, it is common practice to start from a random
MPS of given bond dimension D, although this is not
usually as good an educated guess as the outcome of
the infinite-system DMRG [16]. Alternatively, one may
perform finite-system DMRG simulations with MPSs of
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Fig. 16 Finite-system DMRG applied to the (isotropic)
XY 1D quantum model. Ground-state energy of an open-
ended chain composed of 20 s = 1/2 spins, as a function
of the number of sweeps of the one-site-update DMRG rou-
tine, for different values of the bond dimension cutoff D.
The dashed black line marks the analytical result [66]. The
deviation from the exact solution is also shown in the inset

progressively larger bond dimension D, using the out-
come of the previous simulation as the initial state for
the current one, padding the remainder of the local ten-
sors with zeros due to the larger bond dimension. A par-
ticularly elegant aspect of MPS-based DMRG, notably
in its one-site-update scheme, is that the manifold of
states explored in the variational problem corresponds
to all MPSs of fixed bond dimension D, with no trun-
cations being performed throughout the computation.
The tangent-space methods developed in recent years
[64,65] explore this feature in more sophisticated ways.

5.3 Code implementation

In the same spirit of Sect. 3.1.4, we provide a prac-
tical implementation of an MPS-based DMRG algo-
rithm. Our code, available both in Supplementary Infor-
mation and at https://github.com/GCatarina/DMRG_
MPS_didactic, consists of a documented Jupyter note-
book, written in Python, that goes through all the key
steps required to implement the finite-system DMRG
method. For simplicity, we consider the one-site update
version (see Sect. 5.1), targeting only the ground-state
properties. It must also be noted that the coded DMRG
routine is model-agnostic, requiring only as input an
Hamiltonian MPO with trivial leftmost and rightmost
legs. In general, the previous requirement is naturally
fulfilled for systems with open boundary conditions in
at least one of their physical dimensions.

To benchmark our DMRG code, we apply it to 1D
systems, with open boundary conditions, for which
exact ground-state solutions are known. Specifically, we
consider the (isotropic) XY [67] and the Majumdar–
Ghosh [55,56] models. In Fig. 16, we show how, for

Fig. 17 Finite-system DMRG calculations for the ground
state of an open-ended Majumdar–Ghosh chain, whose ana-
lytical solution [55,56] can be written as an MPS with bond
dimension 2. Numerical results, obtained with bond dimen-
sion cutoff D = 2, for a chain composed of 20 s = 1/2 spins,
show the convergence to the exact ground state as a func-
tion of the number of sweeps of the one-site-update DMRG
algorithm

an XY chain, the ground-state energy computed by
DMRG compares with the analytical result [66]. It is
apparent that DMRG converges rapidly with the num-
ber of sweeps performed. It is also observed that the
accuracy of the numerical calculation is determined
by the bond dimension cutoff D. In Fig. 17, a com-
plementary example is shown, where DMRG is used
to compute both the error in the energy estimation
and the infidelity associated with the ground state
of a Majumdar–Ghosh chain. Since, for open-ended
Majumdar–Ghosh chains, the exact ground-state wave
function (which is unique for chains with even num-
ber of spins) can be represented by an MPS with bond
dimension 2, it is expected that DMRG yields accurate
results with a bond dimension cutoff as small as D = 2.
It should be noted, however, that, in this case, DMRG
takes a few more sweeps to reach convergence.

5.4 State-of-the-art one-site-update DMRG: recent
developments

As noted in Sect. 5.2, in the path across the optimiza-
tion landscape toward the exact ground state, the two-
site-update DMRG manages to avoid local minima in
which the one-site-update version is often stuck. How-
ever, this comes at a cost: the time taken by the two-
site-update DMRG to complete a step of a sweep is
roughly greater by a factor of d than that of its one-
site-update counterpart [16]. Such a difference may not
be too relevant for simple examples such as the ones
considered in this pedagogical review, but it is cer-
tainly significant in state-of-the-art simulations involv-
ing large bond dimensions and system sizes (namely
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in two-dimensional systems [41]) or even large local
Hilbert spaces (e.g., due to high-spin local magnetic
moments [68] or multiple fermionic orbitals [69,70] at
each site).

However, it is possible to overcome this limitation of
one-site-update DMRG by applying a correction that
was first proposed in the language of the original ver-
sion of DMRG by White in 2005 [71]. The overarching
idea consists of adding quantum fluctuations across the
bipartition that effectively allow the quantum numbers
of the ansatz to change. More concretely, the basis of
the environment block E must be enlarged in such a way
that the state Ĥ|ψ〉 resulting from applying the Hamil-
tonian Ĥ onto the MPS ansatz |ψ〉 is contained in the
basis. This means that the terms of Ĥ|ψ〉 that connect
the system and environment blocks must be added to
the density matrix before its reduced form is diagonal-
ized on either side of the bipartition. If the Hamiltonian
is split into two parts to reflect the bipartition as12

Ĥ =
∑

γ

hγÂγB̂γ , (22)

the correction to the density matrix ρ = |ψ〉〈ψ| for a
left-to-right sweep is

Δρ = a
∑

γ

Âγ |ψ〉〈ψ|(Âγ)†, (23)

with a ∼ 10−4–10−3 [71] a constant that is a parameter
of the simulation. The corrected reduced density matrix
on the enlarged system block, σ′

S◦ = TrE(ρ + Δρ), can
then be diagonalized to update the basis on which the
Hamiltonian is defined. This time, however, contrary
to the discussion in Appendix C for the standard one-
site-update DMRG, there are, in general, more than
D nonzero eigenvalues, so an explicit truncation of the
bond dimension is required. This is consistent with the
fact that the corrected one-site-update DMRG explores
a larger search space, which permits to achieve simi-
lar results to those of two-site-update DMRG but at a
lower computational cost.

White’s corrected one-site-update DMRG can be
straightforwardly formulated in MPS language. Specif-
ically, if the local tensor at the current site i yielded by
solving the eigenvalue problem stated in Fig. 15 is T[i],
then the analog of Âγ |ψ〉 in the tensor-network formu-
lation is given by [16]

12 Note that this expression is complete, in the sense that
not only does it include the terms of the Hamiltonian that
connect the two sides of the bipartition nontrivially, but
it also contains the terms that only have support on the
system block (for which Bγ = 1, ∀γ) and those that only
have support on the environment block (for which Aγ =
1, ∀γ), assuming a left-to-right sweep.

Notice that the whole portion of the tensor network to
the left of site i is just the L[i] tensor used to define the
effective matrix in the eigenvalue problem (see Fig. 15).
This is already stored in memory, so the determina-
tion of the perturbation P[i] is cheap, taking O(D3dw)
floating-point operations. However, unlike in standard
MPS-based one-site-update DMRG, the reduced den-
sity matrix σ′

S◦ must be constructed explicitly as

where the first term on the right-hand side is the orig-
inal reduced density matrix σS◦ (see Eq. (21)) and
the second term is the correction ΔσS◦ ≡ TrEΔρ
[see Eq. (23)]. This extra step is somewhat onerous—
taking O(D3d2w) floating-point operations—but the
corrected single-site-update DMRG is still less costly
than the two-site-update version [71]: while the cor-
rected reduced density matrix only has to be computed
once for each local tensor update in the former, the two-
site-update strategy adopted in the latter adds an extra
factor of d to the cost of all K applications of the effec-
tive matrix onto the latest Krylov vector in the Lanczos
algorithm—as many as the dimension K of the Krylov
space required to find the ground state to the desired
precision [63].

In 2015, Hubig et al. [72] devised an alternative cor-
rection to the one-site-update DMRG that is more suit-
able for the MPS formulation—in that it forgoes the
explicit construction of the reduced density matrix and
its diagonalization—and outperforms White’s density-
matrix perturbation method [71] in terms of runtime to
convergence. For a left-to-right sweep, the MPS ansatz
with the updated local tensor T[i] obtained from the
eigenvalue problem (see Fig. 15) is
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|ψ〉 =
∑

�σ

Aσ1
[1] . . . A

σi−1

[i−1]T
σi

[i] B
σi+1

[i+1] . . . B
σN

[N ]|�σ〉, (24)

where the {A
σj

[j]}i−1
j=1 are all left-normalized and the

{B
σj

[j]}N
j=i+1 are all right-normalized, as in a mixed-

canonical form. |ψ〉 can be rewritten by performing a
subspace expansion at the bond that sets the biparti-
tion

∑

�σ

Aσ1
[1] . . . A

σi−1

[i−1](T
σi

[i] aPσi

[i] )
(

B
σi+1

[i+1]

0

)
. . . BσN

[N ]|�σ〉

=
∑

�σ

Aσ1
[1] . . . A

σi−1

[i−1]T̃
σi

[i] B̃
σi+1

[i+1] . . . B
σN

[N ]|�σ〉. (25)

In words, the local tensor at the current site i is
enlarged by adding an expansion term P[i] that effec-
tively allows to probe more environmental states than
the original D states. In principle, we are free to choose
an arbitrary expansion term, but the one adopted by
Hubig et al. [72] is precisely the heuristically motivated
P[i] introduced earlier within the context of White’s
density-matrix perturbation method, except that it is
reshaped into a rank-3 tensor by fusing the two indices
of dimensions D and w that define the right-hand-
side basis. As a result, the new expanded local tensor
T̃[i] has a D × d × (D + Dw) shape; the local tensor
to its right, B̃[i+1], must be expanded accordingly by
padding the original tensor with zeros due to the greater
bond dimension. At this point, nothing has changed,
since Eqs. (24) and (25) are exactly equal. However,
the greater bond dimension gives the opportunity to
explore a larger search space.

The corrected local tensor can now be obtained with-
out actually referring to the density matrix. Indeed,
we can simply do the SVD of the enlarged tensor,
T̃[i] = USV †, truncating the bond dimension back to
D. As usual, the reshaped left-normalized U becomes
the final update of the local tensor at site i, while SV †
is absorbed in the next tensor at site i+1. Of course, the
final D states selected by the truncation after the SVD
are not necessarily the same as the original D states
with nonzero amplitudes, so this effectively allows to
escape local minima in the optimization process. All in
all, the construction of the expansion term P[i] (detailed
in the previous page) and the SVD of the enlarged ten-
sor T̃[i] = (T[i] aP[i]) take O(D3dw) and O(D3dw2)
floating-point operations, respectively, so no steps with
scaling O(D3d2) are present in this method. This jus-
tified the name strictly single-site DMRG (DMRG3S)
coined by Hubig et al. [72].

Thus far, we have not considered the role played by
the heuristic parameter a, which basically sets the order
of magnitude of the quantum fluctuations introduced in
the state. On the one hand, too large a value of a hin-
ders convergence by obscuring the improvements made
by the local optimizer. On the other hand, too small
a value of a does not allow to avoid the local min-
ima traps. As a result, the value of a must be judi-

ciously tuned throughout the simulation, being model-
dependent [73]. Still, even after tuning a, it is possible
that the energy of the ansatz is increased upon trun-
cating the bond dimension [72].

This issue was addressed in 2022 by Gleis et al. [73]
by devising a fully variational (in the sense that the
energy estimate never increases) version of the cor-
rected single-site-update DMRG that converges more
rapidly than the subspace-expansion method proposed
earlier by Hubig et al. [72]. The method by Gleis et al.
[73] is based on a controlled bond expansion (CBE),
which amounts to identifying parts of the two-site-
update orthogonal space that carry significant weight
in Ĥ|ψ〉 and to include only those parts when expand-
ing the virtual bonds of the single-site-update Hamilto-
nian. Remarkably, these parts can be found via a projec-
tor that can be constructed at single-site-update costs
through a so-called shrewd selection. Importantly, the
CBE method makes use of no mixing parameters such
as a; there is one simulation parameter that controls
the degree of bond expansion, but it was found to be
model-independent and to remain constant throughout
the calculation [73]. Moreover, the CBE method was
shown to generically converge significantly faster with
respect to the number of sweeps than the subspace-
expansion method [72] while taking about the same
CPU time per sweep, thus resulting in an overall sig-
nificantly faster convergence [73].

On a final note, although these corrections to one-
site-update DMRG were not implemented in the code
that accompanies this pedagogical review—as they
were not relevant for the examples herein considered—
we encourage the readers to implement them on their
own as an exercise. The implementation of White’s
density-matrix perturbation method [71] and of the
subspace-expansion method by Hubig et al. [72] should
be straightforward; the only potentially tricky techni-
cal issue is the update of the mixing factor a, for which
Section VI of Ref. [72] can be helpful. The state-of-
the-art CBE method by Gleis et al. [73] does involve
a slightly more sophisticated enrichment method, but,
in the end, it amounts to a series of SVDs that are
carefully detailed in the supplemental material of Ref.
[73].

6 Conclusion

In summary, we have provided a comprehensive intro-
duction to DMRG, both in the original and in the
tensor-network formulations. For pedagogical purposes,
our work is accompanied by concrete practical imple-
mentations (see Supplementary Information), the main
goal of which is to make the formal description of the
method more tangible. For that reason, our efforts were
directed toward producing digestible, transparent, and
instructive code implementations rather than optimiz-
ing their performance or versatility. Although there
exist publicly available user-friendly libraries that effi-
ciently implement DMRG (e.g., TeNPy [17] and ITen-
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sor [18]), we believe that a clear understanding of the
method is crucial for an educated use of these resources.
Moreover, it is our opinion that the fundamentals of
DMRG are interesting in their own right, as they are
at the same time powerful and simple.

Despite not having been covered in this colloquium,
extensions of DMRG to tackle quantum dynamics [74–
77] and finite-temperature behavior [78,79]—both rele-
vant for the study of out-of-equilibrium quantum many-
body phenomena—have been put forth. Another topic
that was beyond the scope of this review was the
exploitation of symmetries [13,80,81] to restrict the
DMRG simulations to a given symmetry subspace, both
to speed-up the calculations and to find excited states
without having to compute and impose the orthogonal-
ity with respect to all the lower energy states. In any
event, upon completing the reading of this manuscript,
we are confident that the reader is ready to explore
the relevant literature to become acquainted with these
methods.
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A: Gauge freedom of SVD

In the factorization of a matrix via singular value decom-
position (SVD), the singular values are unique, but not the
singular vectors in general [82].

Given a singular value decomposition USV †, there is a
gauge freedom associated with the introduction of a resolu-
tion of the identity, 1 = WW †, in US(WW †)V †. Provided
that W commutes with S, the matrices W and W † can be
absorbed in the definition of the left- and right-singular vec-
tors to produce an alternative singular value decomposition
ŨSṼ †, with Ũ ≡ UW and Ṽ † ≡ W †V †. If all singular values
are distinct, then W must also be diagonal to commute with
S, in which case left- and right-singular vectors are unique
up to a phase factor eiθ. If, instead, there are repeated eigen-
values, then the associated left- and right-singular vectors
may be chosen in any fashion, such that they span the
relevant subspace. This corresponds to W being a block-
diagonal unitary matrix, with nontrivial blocks associated
with the singular vectors of equal singular values.

It is also possible to introduce on either side of S two
resolutions of the identity constructed with a permutation
matrix P , U(P †P )S(P †P )V †, and absorb the permutation
matrices as in U ′S′V ′†, with U ′ ≡ UP †, V ′† ≡ PV †, and
S′ ≡ PSP †. The matrix S′ is still diagonal, but the order
of the entries along the diagonal has changed relative to S.
In particular, this gauge transformation allows to rearrange
the singular values in descending order in the definition of
S. This is a common practice, particularly when truncations
are considered.

B: Update of “effective” matrix in one-site-
update MPS-based DMRG

In this appendix, we explain how to initialize and efficiently
update the rank-3 L[i] and R[i] tensors that are part of the
structure of the “effective” matrix M[i] (see Fig. 15) of the
eigenvalue problem that results in the optimal update of the
local tensor A[i] at site i ∈ {1, 2, . . . , N} of the MPS ansatz
(with bond dimension D) within the one-site-update finite-
system DMRG algorithm. The Hamiltonian considered has
an N -site MPO representation with O(1) bond dimension;
its local tensor at site i is denoted by H[i].

Let us assume that the very first site of the MPS to
be optimized is the leftmost site, i = 1. In that case, the
initial MPS should be cast in right-canonical form, which
takes O(ND3) operations. Before initializing the first left-
to-right sweep, a preliminary right-to-left routine (without
any local optimization of the MPS) is carried out to com-
pute all {R[i]}N

i=1 sequentially. The initial R[N ] is just the
1×1×1 (reshaped) identity, and then, R[N−1] is obtained by

contracting the right-normalized A[N ], its adjoint A†
[N ] and

H[N ] with R[N ], following the three-layer closing-the-zipper
strategy introduced in Sect. 4.4. At the end of this prelimi-
nary right-to-left routine, all {R[i]}N

i=1 have been computed

in O(ND3) time. Therefore, we see that the initialization of
the DMRG algorithm has a computational cost of O(ND3).

At this point, all tensors required to define the eigenvalue
problem at the first site are available, since the correspond-
ing L[1] operator is the trivial 1 × 1 × 1 identity—there is
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nothing to the left of site i = 1. We can therefore start the
first left-to-right sweep to optimize the MPS. At the end of a
given iteration i of this left-to-right sweep, corresponding to
the optimization of the local tensor A[i] at site i, the rank-3
tensor L[i+1] is computed—contracting the previously deter-

mined L[i] with the left-normalized A[i], its adjoint A†
[i] and

H[i], at O(D3) cost—so that it can be used to define the
eigenvalue problem of the next iteration. During such left-to-
right sweep, the R[i] tensors do not have to be recalculated,
because the updated tensors are all absorbed by the L[i]

tensors. Importantly, only a single L[i] tensor is computed
at every iteration of the sweep, so the time complexity of
one iteration is O(D3).

Once a left-to-right sweep is completed and we move on to
a right-to-left sweep, the roles are reversed: the L[i] tensors
are retrieved from memory and the R[i] tensors are recalcu-
lated iteratively.

C: Trivial truncation of Hilbert space in orig-
inal version of one-site-update finite-system
DMRG

In the original formulation of the one-site-update finite-
system DMRG (see Fig. 7 but consider only one site,
denoted by ◦, between blocks S and E), for a d-dimensional
local degree of freedom and D kept eigenstates, the Hamil-
tonian of the full system, S ◦ E, is a (D2d) × (D2d) matrix,
so the target eigenstate |ψ〉 is a (D2d)-dimensional vector,
which is computed. Assuming a left-to-right sweep, with-
out loss of generality, the full system in the next itera-
tion, which we denote by S′ ◦ E′, has an Hilbert space with
increased dimension D2d2, since the D × D Hamiltonian of
the shrunk block E′ is fetched from memory, but the Hamil-
tonian of the grown block S′ ≡ S◦ is obtained anew, yielding
a (Dd) × (Dd) matrix. Therefore, the Hilbert space of the
block S′ has to be truncated before the diagonalization of
the Hamiltonian of S′ ◦ E′ takes place.

To compute the reduced density matrices on either side
of the bipartition between S◦ and E, it is useful to obtain
the Schmidt decomposition [83] of |ψ〉. This involves reshap-
ing the (D2d)-dimensional vector |ψ〉 into a (Dd) × D
matrix M—according to the considered bipartition—and
then performing its full SVD (see Sect. 4.2). This yields
M = USV†, with U a (Dd) × (Dd) unitary matrix with
columns {|un〉}Dd

n=1 (the left-singular vectors), S a (Dd)×D
matrix with non-negative real entries along the diagonal
(the singular values {sn}D

n=1) and all remaining entries equal
to zero, and V† a D×D unitary matrix with lines {|vn〉}D

n=1

(the right-singular vectors).

However, as noted in Sect. 4.2, by considering the thin
SVD instead, it is possible to convert S, the matrix that
encodes the singular values, into a D × D matrix S by dis-
carding the corresponding (Dd−D) columns of U , resulting
in the left-normalized (Dd) × D matrix U . These discarded
columns are nothing more than left-singular vectors associ-
ated with zero-valued rows of S, so this truncation is exact.

In the end, the Schmidt decomposition reads as

|ψ〉 =
D∑

n=1

sn|un〉S◦ ⊗ |vn〉E, (26)

and the reduced density matrices on either side can be writ-
ten as

σS◦ = TrE(|ψ〉〈ψ|) =
D∑

n=1

s2n|un〉S◦ S◦〈un|,

σE = TrS◦(|ψ〉〈ψ|) =
D∑

n=1

s2n|vn〉E E〈vn|. (27)

In summary, we have shown that the eigenvalues of the
reduced density matrices are the square of the singular val-
ues obtained by performing the SVD of the target eigen-
state in the corresponding bipartition, thus establishing a
connection between the original and the MPS-based formu-
lations of DMRG. Moreover, we have found that σS◦, which
is generally a (Dd) × (Dd) matrix, only has D eigenvectors
with nonzero eigenvalues, which can be used to truncate
the Hilbert space of the block S′ without any approxima-
tion, thus showing why no actual truncation takes place in
the original formulation of the one-site update finite-system
DMRG algorithm, as in the corresponding MPS-based ver-
sion.

D: Pseudocodes

In Fig. 18, we present the pseudocode of the infinite-
system DMRG algorithm, within the original formulation.
The corresponding code implementation is available both
in Supplementary Information and at https://github.com/
GCatarina/DMRG_didactic.

Figure 19 shows the pseudocode of the MPS-based
one-site-update finite-system DMRG algorithm. The corre-
sponding code implementation is available both in Supple-
mentary Information and at https://github.com/GCatarina/
DMRG_MPS_didactic.
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Fig. 18 Pseudocode of the original infinite-system DMRG algorithm, as described in the workflow diagram of Fig. 3. For
concreteness, this pseudocode assumes that the target state is the ground state. It is also straightforward to generalize this
pseudocode to the case of an adaptive algorithm where, instead of fixing D, the truncation error given by Eq. (9) is kept
below a given threshold
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Fig. 19 Pseudocode of the MPS-based one-site-update finite-system DMRG algorithm, using the notation of Fig. 15. This
pseudocode assumes an algorithm that targets the ground-state properties. For the sake of brevity, reshaping operations of
tensors are not explicitly indicated
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Strictly single-site DMRG algorithm with subspace
expansion. Phys. Rev. B 91, 155,403 (2015). https://
doi.org/10.1103/PhysRevB.91.155115

73. A. Gleis, J.W. Li, J. von Delft, Controlled bond expan-
sion for density matrix renormalization group ground
state search at single-site costs. Phys. Rev. Lett. 130,
246,402 (2023). https://doi.org/10.1103/PhysRevLett.
130.246402

74. A.J. Daley, C. Kollath, U. Schollwöck, G. Vidal, Time-
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