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A B S T R A C T   

Metal-based Laser Powder Bed Fusion (LPBF) has made fabricating intricate components easier. Yet, assessing 
part quality is inefficient, relying on costly Computed Tomography (CT) scans or time-consuming destructive 
tests. Also, intermittent inspection of layers also hampers machine productivity. The Additive Manufacturing 
(AM) field explores real-time quality monitoring using sensor signatures and Machine Learning (ML) to tackle 
this. One such approach is sensing airborne Acoustic Emissions (AE) from process zone perturbations and 
comprehending flaw formation for monitoring the LPBF process. This study emphasizes the importance of 
selecting airborne AE sensors for accurately classifying LPBF dynamics in 316 L, utilizing a flat response sensor to 
capture AE’s during three regimes: Lack of Fusion, conduction mode, and keyhole. To comprehensively under-
stand AE from a broad process space, the data was collected for two different 316 L stainless steel powder 
distributions (> 45 µm and < 45 µm) using two different parameter sets. Frequency analysis unveiled distinct 
LPBF dynamics as dominant and correlated in specific frequency ranges. Empirical Mode Decomposition was 
used to examine the periodicity of AE signals by separating them into constituent signals for comparison. 
Transformed AE signals were trained to distinguish regimes using ML classifiers (Convolutional Neural Networks, 
eXtreme Gradient Boosting, and Support Vector Machines). Sensitivity analysis using saliency maps and feature 
importance scores identified frequency information below 40 kHz relevant for decision-making. This study 
highlights interpretable machine learning’s potential to identify critical frequency ranges for distinguishing LPBF 
regimes and underscores the importance of sensor selection for enhanced process monitoring.   

1. Introduction 

Laser Powder Bed Fusion (LPBF) is a rapidly developing Additive 
Manufacturing (AM) technique which is gaining popularity in various 
industries, including aerospace, automotive, and medical. By utilizing 
thermal energy as a laser beam, the LPBF process can selectively fuse 
specific regions of a replenishing powder bed, constructing a part layer 
by layer. This technique facilitates the creation of highly optimized 
designs, intricate lattices, and structures that were previously chal-
lenging or impossible to manufacture. In addition, the LPBF process 
allows for producing complex geometries in low-volume quantities, 
making it ideal for rapid prototyping or highly specialized applications. 
However, the interaction between the laser beam and the powder 

particles during LPBF leads to various physics phenomena such as ra-
diation absorption, instant melting, kinematics inside the melt pool, 
materials evaporation, solidification of material, and microstructure 
growth. These phenomena significantly depend on the parameters used 
during the LPBF process, including laser power, powder composition, 
scan speed and strategy, layer thickness, and environmental factors 
(DebRoy et al., 2018). If these parameters are not optimally set or if 
abrupt changes in environmental conditions occur, undesired mecha-
nisms such as balling, Lack of Fusion (LoF), crack propagation, delami-
nation, and the formation of pores can occur (Snow et al., 2020). 
Therefore, controlling these parameters is critical to producing 
high-quality, defect-free LPBF components. 

The LPBF process shows promise for metal-based manufacturing. 
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Still, ensuring that the produced parts meet quality standards is crucial, 
particularly in safety-critical applications such as biomedical and aero-
space industries. There are two methods to quantify the components 
produced: post-mortem, which is the traditional approach, and in-situ, 
which is becoming more popular. Traditional post-mortem analyses 
such as X-ray tomography or ultrasounds are expensive and time- 
consuming. Furthermore, detecting defects in complex geometries 
through post-build imaging or mechanical testing is challenging. Also, 
the statistical quantification of defects for complex geometries is inap-
propriate because defects are not guaranteed to occur in repetitive lo-
cations. Other post-mortem quantification strategies, such as destructive 
testing, are time-consuming and expensive on customer-specific design 
modifications or small batch production sizes. Overall, the fundamental 
limitation of post-mortem assessment is its inability to rectify defects 
once they arise. This leads to unnecessary utilization of resources, 
including materials and machine time, on parts that will inevitably fail 
quality checks. Consequently, the popularity of in-situ monitoring is on 
the rise, offering real-time defect detection and the ability to adjust 
process parameters promptly. This can help to reduce the likelihood of 
producing defective parts, save time, and improve the overall quality of 
the final product. As a result, there is great excitement within the AM 
research communities for advancing real-time/in-situ quality estimation 
as a viable alternative to post-mortem. Recent progress in sensor tech-
nology and related signal processing methods, including Artificial In-
telligence (AI) algorithms, has become instrumental in facilitating the 
development of in-situ quantification. 

LPBF involves intricate laser-powder interactions and generates 
multiple events in the interaction zone. Therefore, it is vital to equip the 
process with sensors that can capture thermal, optical, and Acoustic 
Emissions (AEs) to monitor the process in real-time and gain a deeper 
understanding of it. The commonly used sensing technologies include 
pyrometers, high-speed cameras, Near-Infrared (NIR) spectrum ther-
mography cameras, photodiodes, and AE sensors (Everton et al., 2016). 
Interpreting sensor data can provide insights into the process and 
identify undesirable mechanisms that need suppression. For instance, 
employing a high-speed camera enables monitoring of the shape and 
behavior of the melt pool (Kanko et al., 2016). By detecting defects such 
as porosity and LoF in real-time, adjustments can be made to process 
parameters to correct these issues. Additionally, infrared cameras can 
monitor build temperature (Zheng et al., 2019), identifying hotspots 
(Bartlett et al., 2018) and other temperature-related defects before they 
escalate into significant problems (Everton et al., 2016). Since the LPBF 
process and its mechanisms occur spontaneously, the sensor that is 
utilized for monitoring must possess a quick response time and be im-
mune to dynamic changes (Mazzoleni et al., 2019). However, the visual 
and optical sensors used for monitoring LPBF encounter difficulties due 
to the small dimensions of the melt pool, 50–250 µm, which are visible 
only for a few microseconds, leading to challenges in achieving spatial 
and temporal resolution (Cheng et al., 2017). Furthermore, plumes and 
vapours obstruct the visibility of the process zone, and the processing of 
high-speed imaging data streams is computationally demanding. Alter-
natively, AE sensors are a reliable and cost-effective option as they can 
sense volumetric information from the material bulk and have a high 
temporal resolution, making them suitable for monitoring melt pool 
occurrences in the 10–100 μs time scale (Khairallah et al., 2016). Despite 
requiring fewer computational resources for processing data, installing 
AE sensors requires caution because of the 3D nature of acoustic waves, 
which affects their sensitivity and signal strength. However, AE sensors 
can be installed with minimal modifications to existing machinery and 
are more cost-effective than visual and optical sensors. For industrial 
and commercial applications of AE sensing in LPBF, it is essential to 
carefully consider sensor location, distance, angle, and filtering to 
ensure optimal sensitivity and signal strength. 

(Redding et al., 2018) proposed a non-destructive airborne acoustic 
inspection method that captures acoustic pressure waves emanating 
from the process zone in LPBF without attaching sensors beneath the 

build substrate. The sources of acoustic pressure waves in LPBF can be 
classified into three main categories: thermal-mechanical sources, 
powder bed interactions, and laser-material interactions. 
Thermal-mechanical sources result from the thermal expansion and 
contraction of the metal powders and the melting and solidification of 
the metal. Powder bed interactions-based sources include spattering, 
erosion, denudation, and sintering of the metal powders, while 
laser-material interactions include melt pool perturbations due to the 
absorption, reflection, and transmission of the laser beam by the metal 
powders and the solidified metal. Various types of AE sensors that work 
on different principles, such as condenser (Chen et al., 2023), dynamic 
(Pandiyan et al., 2021), piezoelectric (Kononenko et al., 2023), electret 
(Harake, 2022), fiber Bragg grating (Shevchik et al., 2018), and 
laser-based (Gutknecht et al., 2021) to convert the acoustic pressure 
waves to a digitalized temporal waveform, have been reported for pro-
cess monitoring in LPBF. Grasping the patterns in the multifaceted AE 
waveforms extracted from the LPBF process zone can aid in character-
izing the underlying physics of these mechanisms and constructing an 
inclusive monitoring system with high reliability. Nevertheless, the 
ever-changing interaction between lasers and materials creates pressure 
waves that are difficult for human operators to decipher and make quick 
decisions on (Pandiyan et al., 2020). However, by combining signal 
processing and machine learning (ML), more valuable insights can be 
gained compared to traditional methods. This can lead to better 
decision-making for process monitoring and optimization, including the 
ability to model the system’s behaviour, detect defects or anomalies, and 
predict potential issues before they arise. Ultimately, this results in a 
more dependable and effective monitoring system. 

(Ito et al., 2021) showed that the microcrack generated during LPBF 
in real-time can be detected by continuously recording and wirelessly 
transmitting AE waveforms. Acoustic emission was used to detect LoF 
and balling effect in single tracks simulated with increased powder layer 
thickness. Due to complexity, AE signals recorded during processing 
have been analyzed with wavelets (Pandiyan et al., 2020), frequency 
(Drissi-Daoudi et al., 2022), and Short-time Fourier transforms (Kou-
prianoff et al., 2018). Spatial and temporal localization of pores was 
achieved by analyzing the recorded time series of laser position and 
acoustic pressure using Ensemble Empirical Mode Decomposition 
(EMD), traditional Fourier decomposition, and statistical measures 
(Tempelman et al., 2022a). Specific partitions of the acoustic signals 
corresponding to keyhole pore formation were identified using signal 
processing and ML techniques. Signal processing techniques and ML 
algorithms can extract valuable information from the complex AE data 
streams generated during the LPBF process (Tempelman et al., 2022b). A 
defect detection system that utilizes a deep belief network (DBN) and 
microphone data has been reported to categorize balling and other 
mechanisms (Ye et al., 2018a). (Luo et al., 2021) proposed a deep 
learning algorithm to monitor spatter using a microphone by estab-
lishing the correlation between acoustic signals and spatter captured by 
a high-speed camera. (Shevchik et al., 2018) developed a Deep Con-
volutional Neural Network (D-CNN) that accurately classified porosity 
content in the LPBF process using wavelet spectrograms obtained from 
acoustic signals collected via a fiber Bragg grating. Also, (Shevchik et al., 
2019) proposed a CNN network that utilized two input-running win-
dows composed of long and short wavelet spectrograms to process and 
analyze AE signals for quality monitoring. (Ye et al., 2018b) demon-
strated a defect-recognition technique for detecting five different pro-
cess conditions in single tracks fabricated by 304 L stainless steel 
powder. The approach involved utilizing support vector machines 
(SVM) and statistical features extracted from recorded microphone 
signals. In their earlier studies, the authors suggested a semi-supervised 
approach to differentiate between anomaly regimes (such as balling, LoF, 
and keyhole) and AE signatures of the defect-free regime (Pandiyan et al., 
2021). This approach involved training a generative model based on a 
variation autoencoder and Generative Adversarial Network (GAN) using 
only the distribution of the AE dataset corresponding to the defect-free 
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regime. (Pandiyan et al., 2022a) demonstrated that transfer learning 
could be effectively employed between materials by utilizing two 
network architectures initially trained for classification using spectro-
grams representing LPBF mechanisms. (Li et al., 2022) combined 
Airborne AE signals captured using a microphone and photodiode sig-
nals obtained from the process zone to train a CNN model to extract and 
fuse the features derived from both sensor’s for in-situ quality moni-
toring in LPBF. 

(Goh et al., 2021) showed that the application of intelligent moni-
toring in AM has increased due to the advancement of ML algorithms. As 
ML algorithms continue to develop, we can expect even more advanced 
applications in the process monitoring of AM in the future. In-situ 
monitoring is still a developing technology, but it will likely become 
more common as LPBF gains popularity in various industries. The 
complexity of ML algorithms depends on the patterns in the sensor data, 
and most research has focused on treating AE data with state-of-the-art 
ML algorithms. Literature has reported that airborne AE sensors have 
varying sensitivity ranges, such as 40 Hz to 15 kHz (Bevans et al., 2023), 
4 Hz to 20 kHz (Kouprianoff et al., 2018), 39–42 kHz (Pandiyan et al., 
2022a), 3.15–51.2 kHz (Luo et al., 2021), 3.15 Hz to 20 kHz (Zhirnov 
et al., 2022) and low sensitivity below 50 kHz (Gutknecht et al., 2021), 
but they have successfully monitored AM process when used in 
conjunction with ML. Previous research has overlooked the compre-
hensive enhancement of AE information collected from the process zone 
perturbations, particularly with the sensor’s efficacy in capturing vital 
information essential for informed decision-making. This study aims to 
bridge this gap by evaluating the ML model’s complexity with the AE 
sensor information and proposes a framework for effective sensor se-
lection based on the nature of AE emissions from the process zone. This 
study goes beyond traditional ML classification methods and spotlights 
the crucial role of sensor selection in refining the accuracy for classifying 
LPBF regimes. It delves into frequency ranges that clearly distinguish the 
boundaries between these conditions, intending to establish a robust 
approach for selecting sensor ranges that enhances classification accu-
racy. Unlike prior investigations, this study specifically explores the 
impact of utilizing airborne AE sensors sensitive to LPBF dynamics in 
316 L on the accuracy of LPBF regime classification. The study metic-
ulously compares AE signals corresponding to different conditions and 
then trains ML classifiers, namely CNN, eXtreme Gradient Boosting 
(XGBoost), and SVM, on the transformed AE signals to differentiate 
these conditions effectively. Subsequently, the trained models are sub-
jected to sensitivity analysis using saliency maps and feature importance 
scores, obtained through permutation and SHapley Additive exPlana-
tions (SHAP), to identify the frequency range information critical for 
informed decision-making. Notably, the study emphasizes the potential 
of an interpretable machine learning framework in identifying pivotal 
frequency ranges for distinguishing LPBF regimes beyond the scope of 
process monitoring. 

This paper is organized into five sections. Section 1 presents a concise 
outline of the LPBF process and the research gap that will be addressed 
in this work. The LPBF experimental setup, customized in-situ moni-
toring setup, powder characterization findings and dataset collections 
are all presented in Section 2. Section 3 compares the AE signals’ 
spectrum and temporal feature distributions from laser-material inter-
action from different process spaces using periodogram and EMD anal-
ysis. Additionally, the predictions made by the CNN, XGboost and SVM 
based on AE data corresponding to four datasets and the saliency and 
feature importance score mapped with frequency range in AE signal are 
reported. Finally, the findings of this paper and the future directions on 
in situ monitoring for the LPBF process are summarized in Sections 4 and 
5. 

2. Materials and methods 

2.1. Experimental setup 

The LPBF experimental setup consisted of a SISMA MySint 100 LPBF 
machine equipped with a fiber laser operating at 1070 nm wavelength, 
producing a Gaussian laser spot with a 1/e2 diameter of 55 µm. The build 
chamber utilized argon gas at atmospheric pressure to create an inert 
environment. The Raleigh range of the laser beam was approximately 
2.15 mm. These parameters collectively formed the foundation for the 
conducted LPBF experiments. Furthermore, a customized in-situ AE 
sensing system was installed within the processing chamber, as depicted 
in Fig. 1. 

The in-situ system developed for LPBF monitoring in this research 
includes a CM16/CMPA (Avisoft Bioacoustics, see Fig. 2(a)) airborne AE 
sensor, which has a frequency response range of 0–150 kHz as shown in 
Fig. 2(b). To ensure the sensitivity of the AE sensor, as illustrated via 
Fig. 2(c) in the form of a polar pattern plot, a specialized fixture is 
employed to securely position the supercardioid sensor with its sensing 
side oriented towards the build plate. The sensor’s diaphragm is posi-
tioned in close proximity, approximately 12 cm away, and set at a 45-de-
gree angle directed towards the process zone. Additionally, an extra 
precautionary measure has been integrated. This involves utilizing a 
bronze mesh supplied by the manufacturer to shield the sensor’s dia-
phragm. This mesh acts as a physical barrier, effectively safeguarding 
the sensor’s diaphragm against direct exposure to any potential splatter 
or particulate matter that could be emitted during the process zone. The 
choice of the sensor in this study is critical for detecting all process zone 
perturbations and verifying the proposed signal processing methods. In 
contrast to the airborne acoustic sensors used on AM process monitoring 
in earlier studies that primarily relied on detecting waveforms within 
specific frequency ranges—such as 40 Hz to 15 kHz (Bevans et al., 
2023), 4 Hz to 20 kHz (Kouprianoff et al., 2018), 39–42 kHz (Pandiyan 
et al., 2020), 3.15–51.2 kHz (Luo et al., 2021), 3.15 Hz to 20 kHz 
(Zhirnov et al., 2022)—and differing from acoustic sensors employed in 
earlier investigations that exhibited insufficient sensitivity in the 
lower-frequency range below 50 kHz when addressing repairs for 
keyhole porosity (de Formanoir et al., 2023), as well as in understanding 
the dynamics of remelting under pulsed laser conditions (Nasab et al., 
2023), and assessing AE with other optical sensing techniques (Gut-
knecht et al., 2021), the chosen sensor for this research offers distinct 
advantages. It has a flat frequency response over an extended range, as 
depicted in Fig. 2(b), eliminates bias and amplifies its sensitivity across a 
broader spectrum, making it suited for the proposed signal processing 
techniques and is essential to ensure the validity and effectiveness of the 
methods. 

The schematic representation in Fig. 3 visually outlines the AE data 
acquisition pipeline used in the work. The first channel of the Data 
Acquisition (DAQ) is dedicated to capturing optical emissions from 
laser-powder bed interactions, while the second channel is designated 
for acquiring acoustic data. The trigger for initiating the data acquisition 
was based on the optical channel obtained when the laser interacted 
with the powder bed. A fixed focus collimator of the F220SMA-980 type 
(Thorlabs) is positioned off-axial to capture optical signals from the 
interaction region. The optical signals are then directed to the photo-
diode (PDA20CS2, 800–1700 nm; Thorlabs) through a fiber patch cable 
with a core diameter of 550 µm. The photodiode transforms the optical 
signals into an analog voltage signal proportional to the intensity the 
detector absorbs. Once this voltage signal exceeds a predetermined 
threshold (0.5 V in our case), it triggers the DAQ card to commence the 
acquisition of two channels. The photodiode and AE sensor signals are 
acquired simultaneously using an Advantech 1840 PCIe data acquisition 
card (Advantech, USA), with a dynamic range of ± 5 V and a sampling 
rate of 400 kHz. The data acquisition rate was selected to ensure that the 
frequency response of the AE sensor complies with the Nyquist-Shannon 
theorem (Jerri, 1977). The optical and AE channels are synchronized, 
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and the photodiode gain is preconfigured to achieve an intensity 
exceeding the upper saturation limit 5 V with each laser exposure to the 
powder bed, resulting in a square wave. The AE signatures obtained in 
this square wave window correspond to each scan track and can be 
processed subsequently. 

2.2. Materials 

In this study, the feedstock material used was gas-atomized 316 L 
stainless steel powder obtained from Oerlikon Metco in Switzerland. The 
powder was spherical primarily, with an initial particle size distribution 
ranging from 15 µm to 60 µm. Two different particle size distributions 
were obtained from the gas-atomized 316 L stainless steel powder used 

Fig. 1. Sisma MYSINT 100 augmented with airborne acoustic sensor and photodiode trigger for LPBF process.  

Fig. 2. a) Avisoft bioacoustics CM16/CMPA airborne AE sensor equipped with a bronze mesh, b) Frequency response of the sensor, (c) Polar diagram of the sensor.  

Fig. 3. Schematics of the proposed sensing system comprising photodiode and AE sensors.  
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in this study. This was achieved by using a vibrating sieve with a mesh 
size of 325 (45 µm distance between wires) to obtain two distributions, 
P1 (consisting of particles in the upper range of the sieved distribution) 
and P2 (consisting of particles with diameters < 45 µm). By generating 
two different powder size distributions, the study aimed to investigate 
the acoustic spectra emitted on a wider processing space as the powder 
interacts with the laser source. Specifically, the study aimed to under-
stand how changes in particle size distribution, scanning speed and laser 
power affect the AE’s generated during the powder-bed fusion process. 

Distributions of the 316 L powder particles corresponding to P1 and 
P2 were measured using the Mastersizer 3000® (Malvern, UK) particle 
size analyzer based on the laser diffraction technique, as shown in Fig. 4. 
Comparing the two distributions in Fig. 4 reveals that P1 has most 
particle sizes centred around 40 µm with only a small fraction of parti-
cles < 20 µm. In contrast, P2 has a significant amount of finer particles, 
less than 40 µm. Table 1 displays the statistical particle size distribution 
for the two distributions (P1 and P2) in terms of D10, D50, and D90 
metrics. These metrics are noticeably distinct for each distribution. This 
characterization suggests that any differences in the acoustic signatures 
from the process zone could directly correlate to the different particle 
size distributions. 

2.3. Process parameters 

We fabricated two cuboids (A and B) samples measuring 20 mm in 
width and length from two powder distribution batches - P1 and P2. 
Different combinations of laser power and scanning speed were used to 
realize three LPBF regimes: LoF, conduction mode and keyhole, as indi-
cated in Table 2. Two sets of the three LPBF regimes were induced in 
each cuboid built with one of the powder distributions. To understand 
the acoustic signals produced from the process zone, two laser power 
parameters with minor offsets were employed to induce each of the 
three LPBF regimes in each cuboid resulting in four datasets - D1, D2, D3 
and D4. The experiments were carried out in an argon gas environment 
with less than 0.1% oxygen. All two cuboids were fabricated using the 
following sequence of regimes (from bottom to top): two sets of the 
keyhole, two sets of conduction, and two sets of LoF regimes in each cube 
after the initial "build-up" phase. This particular order was chosen to 
prevent any artifacts from the previous regimes from influencing the 
acoustic signature of the current regime. A bidirectional scanning 
approach was used, with a 90º rotation between layers, a layer thickness 
of 30 µm and a hatch distance of 0.1 mm for all three processing regimes 
of the two powder fractions. Typically, the powder layer is thicker prior 
to laser irradiation than the powder particles that combine to form a 
dense layer as the cavity is filled. Consequently, after the powder bed is 
refreshed, the cavity of the new layer is thicker than the maintained 
layer thickness (Wischeropp et al., 2019). Therefore, even though a layer 
thickness of 30 µm is maintained, particles from distributions P1 and P2 

greater than 45 µm in size could be accommodated. Labelling the three 
regimes used in the four AE datasets is based on the process parameters 
corresponding to induce them. Furthermore, the existence of the re-
gimes was confirmed using an optical micrograph. 

To verify the existence of the three LPBF regimes, cuboid cross- 
sections were analyzed using optical microscopy. These sections were 
cut perpendicular to the scan tracks and then ground and polished in 
accordance with metallographic preparation standards. As depicted in  
Fig. 5, the varying levels of build density, porosity, and voids observed 
across each regime confirmed that the selected laser powers and scan-
ning speeds led to the intended regimes for the two cuboids, which were 
printed using two different particle size distributions. The primary goal 
of contemporary manufacturing is to create flawlessly dense parts 
without defects. The conduction mode fits well with this objective. 
Nevertheless, it is essential to recognize that while the conduction mode is 
ideal for defect-free parts, a holistic grasp of all LPBF regimes and dy-
namics is essential for process monitoring and quality control. Manu-
facturers can customize process parameters, identify variations, and 
uphold rigorous quality control by comprehending the sensor signature 
dynamics across these regimes. 

2.4. Dataset preparation 

During the fabrication of the cube using bidirectional scanning, data 
acquisition for both optical and acoustic channels is initiated for each 
layer as soon as the optical signal detected by the photodiode crosses the 
threshold of 0.5 V at the layer’s outset. The photodiode detector gain 
was preset to ensure an intensity surpassing the upper saturation limit of 
+ 5 V. Each instance of laser exposure to the powder bed on each scan 
track in a layer generates a square wave pattern. In the case of layers 
containing bidirectional scan tracks, the count of square waves corre-
sponds directly to the quantity of scan tracks present within each layer. 
The synchronization of the optical and AE channels enables the 
extraction of a dataset comprising AE windows with a 12.5 ms time scale 
in each scan track. The AE signals that are chopped into a 12.5 ms 
window (5000 data points) are subjected to offline low-pass Butterworth 
filtering with a cut-off frequency of 150 kHz, based on the frequency 
response specification of the AE sensor, irrespective of the regime and 
cube. For more information on the AE dataset used in this study, please 
refer to Table 3. The data preparation strategy was the same for the four 
datasets, each consisting of three regimes. 

Fig. 4. Particle size distribution in the two 316 L powders P1 and P2 used in 
the study. 

Table 1 
Statistics of cumulative particle size distribution in terms of D10, D50 and D90.  

Category D10 D50 D90 

Particle distribution above 45 µm [P1] 30.9 µm 42.3 µm 57.9 µm 
Particle distribution below 45 µm [P2] 19.1 µm 29.6 µm 45.3 µm  

Table 2 
LPBF process parameters on the two different powder distributions.   

Laser 
Power 
(W) 

Scan 
speed 

(mm/s) 

Particle 
distribution above 

45 µm [P1] 

Particle 
distribution below 

45 µm [P2] 

Lack of 
Fusion 

110 800 Dataset [D1] Dataset [D3] 

Conduction 
mode 

160 400 

Keyhole 160 75 
Lack of 

Fusion 
90 800 Dataset [D2] Dataset [D4] 

Conduction 
mode 

140 400 

Keyhole 180 75  
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2.5. Methodology 

In this study, we developed two strategies to compute crucial fre-
quency range importance for classification in LPBF regimes. These 
strategies serve distinct purposes and involve varied preprocessing 
levels, leading to different input configurations. The first strategy em-
ploys a 1D CNN to compute saliency over Intrinsic Mode Functions 
(IMFs) derived using EMD. This approach requires minimal pre-
processing, and the CNN computes feature importance via saliency maps 
without additional steps. The input for this strategy is set at 7, corre-
sponding to the 7 IMFs obtained through EMD, each carrying specific 
frequency information. The CNN’s inherent capabilities facilitate this 
process seamlessly. In contrast, the second strategy involves a more 
complex process with additional preprocessing steps. This method en-
tails feature computation, followed by using classifiers like XGBoost and 
SVM to evaluate classification accuracy. Subsequently, the feature 
importance and SHAP method are applied to the trained model to 
discern the importance score. The frequency information acquired from 
manual feature extraction is categorized into 15 bins. The feature 
computation was done with the periodogram method to compute 

energies for fifteen frequency bands from 0 to 150 kHz across all dataset 
windows. This analysis also will provide insight into the AE waveform 
signal in the frequency domain. 

These two strategies are distinct and serve different analytical pur-
poses. While the first strategy leverages the inherent capabilities of a 1D 
CNN to compute saliency over IMFs, the second strategy involves a 
multi-step process incorporating classifiers with feature importance 
scores and SHAP analysis to assess feature importance. Given the 
fundamentally different nature of these strategies, a direct comparison 
between them may not be an ideal approach. Each strategy was designed 
to provide insights into sensor frequency dependence for decision- 
making from a unique perspective. Both strategies were validated 
through comprehensive experimentation and analysis on four different 
AE datasets. 

3. Results and discussion 

3.1. AE signal analysis 

The frequency domain analysis was performed on the windows 
corresponding to each regime across all datasets (D1-D4) to confirm if 
changes in the offset in laser power parameters and distribution of 
powder particles have influenced the distribution of the acoustic 
signature from the process zone. The periodogram (Elliott, 2013) 
method was used to compute the energies for the fifteen frequency 
bands (0–10 kHz, 10–20 kHz, 20–30 kHz, 30–40 kHz, 40–50 kHz, 
50–60 kHz, 60–70 kHz, 70–80 kHz, 80–90 kHz, 90–100 kHz, 
100–110 kHz, 110–120 kHz, 120–130 kHz, 130–140 kHz, and 
140–150 kHz) for all windows in the dataset to analyze the AE wave-
form signal in the frequency domain. 

Fig. 5. Optical micrograph for each regime across three 316 L powder distributions P1 and P2.  

Table 3 
The total number of 12.5 ms (5000 data points) AE windows that were extracted 
during the fabrication of the two cubes from particle distributions P1 and P2.  

Particle distribution Dataset name Dataset size [windows] 

Above 45 µm [P1] D1 7500 [2500 / regime] 
D2 7500 [2500 / regime] 

Below 45 µm [P2] D3 7500 [2500 / regime] 
D4 7500 [2500 / regime]  
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The results of the analysis of the cumulative energy values for the 
four datasets with three LPBF regimes across the fifteen frequency bands 
are presented in Fig. 6(a-d). It can be observed that the majority of en-
ergy components for all the powder distributions and laser parameters 
for the LPBF regimes are concentrated in the frequency range below 
100 kHz for all four datasets. The peak energy of the AE waves for the 
keyhole regime was between 0 and 40 kHz. For the LoF regime, the 
dominant frequencies were between 10 and 90 kHz, while for the con-
duction regime, the dominant frequencies were between 10 and 90 kHz. 
The overall comparison of the cumulative energy distribution across the 
fifteen frequency bands confirms that deviations in the AE waves’ en-
ergy content were due to the different dynamics of the process zone 
perturbations in the three regimes caused as a result of the laser power 
parameter and the powder particle distribution. Therefore, the corre-
lation between specific AE information on LPBF regimes may be possible 
to utilized as a tool for monitoring the process quality. It should also be 
noted that further investigations are needed to understand the similar-
ities in trends of AE signatures as a result of varying other process pa-
rameters. Addressing potential noise sources is crucial for accurate AE 
signal analysis. Noise can stem from various factors within the process 
chamber. Components moving, particularly the recoater mechanism, 
can contribute to noise, as can the laminar flow in the chamber. The 
microphone’s directional sensitivity is key to managing and reducing 
this noise. This sensitivity allows the microphone to capture acoustic 
emissions from the process zone selectively. The microphone distin-
guishes real emissions from noise by recording AE data triggered only 
during laser interaction. This differentiation ensures precise and 
dependable AE signal analysis. 

3.2. Empirical mode decomposition 

Empirical Mode Decomposition (EMD) is a powerful signal process-
ing technique that can decompose non-stationary signals into a simpler 
finite number of components that can be analyzed and used for various 
applications (Lei et al., 2013). The EMD performs signal decomposition 
in a time-series context, producing a series of constituent signals that 
comprise the original signal after processing. The linear combination of 
empirical modes can be used to reconstruct the original signal, x(t), 

using the EMD algorithm as depicted in Eq. (1). 

x(t) =
∑n

i=1
ci(t)+ rn(t) (1)  

where ci(t) is i − th empirical mode and rn(t) is the final residue after 
the extraction of n empirical modes. The resulting output of EMD re-
mains in the time domain and does not assume the periodicity of the 
signal (Rilling et al., 2003). Instead, it uses Intrinsic Mode Functions 
(IMFs) that are more complex than simple sine waves. The term 
"empirical" in EMD reflects its approach of making no assumptions about 
the data. The EMD method does not have a specific mathematical for-
mula, as it is a data-driven technique that uses four steps to decompose a 
signal into IMFs (Flandrin et al., 2004b). The first step involves identi-
fying the signal’s extrema (local maxima and minima). The second step 
connects the maxima and minima using cubic spline interpolation to 
form the upper Eu(t) and lower El(t) envelopes of the signal, 
respectively. A “mean envelope” (m(t) = 0.5(Eu(t)+El(t) ))is computed 
as an average of the upper and lower envelopes in the third step. Finally, 
the difference between the original signal and the computed mean en-
velope is calculated, which is considered the first IMF. The process is 
repeated on the residual signal (original signal - first IMF), and subse-
quent IMFs are extracted from the residuals until the residuals become a 
constant or a monotonic function. Each IMF represents a simpler original 
signal component with its own local frequency, amplitude, and phase 
information. The final residual signal represents the trend component of 
the original signal. The IMF components can be further analyzed and 
used for various signal-processing tasks such as filtering (Wu and Huang, 
2010), denoising (Flandrin et al., 2004a), feature extraction (Ali et al., 
2015) and signal reconstruction (Flandrin et al., 2004b). EMD faces a 
significant issue known as mode mixing, which results in the loss of 
physical interpretation for individual IMFs. This phenomenon occurs 
when a single IMF comprises multiple intrinsic oscillation modes or 
when a single intrinsic oscillation mode is present in multiple adjacent 
IMFs (Tang et al., 2012). 

In this work, the IMFs extracted from using EMD on the waveform AE 
signals x(t)corresponding to the three regimes are analyzed to under-
stand the underlying dynamics of the signal. The decision to employ 
EMD was grounded in retaining the signals’ temporal nature and 

Fig. 6. Comparison of cumulative energy content between fifteen frequency bands for three regimes across four AE datasets.  
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avoiding transformations or statistical reduction techniques like feature 
extraction, spectrograms and wavelets. The EMD was chosen to disin-
tegrate the time series signals into distinct frequency bins while pre-
serving their temporal characteristics, aligning with the study’s 
objectives. The visualization of the intrinsic modes computed using EMD 
on raw AE waveform of 12 ms corresponding to LoF pore, conduction 
mode and keyhole pores are shown in Fig. 7, Fig. 8 and Fig. 9. The choice 
of IMFs for seven levels was based on their characterization of them in 
the frequency domain. Interpolation of the computed IMF in the fre-
quency domain, as shown in Fig. 7(b), Fig. 8(b) and Fig. 9(b), reveals 
that individual levels of IMFs carried information corresponding to 
different frequency contents. It could also be revealed that the frequency 
content across IMFs is arranged from higher to lower, as expected. The 
range of frequencies across the 7-IMFs is listed in Table 4. It can be easily 

found from Fig. 7(a), Fig. 8(a) and Fig. 9(a) that the phenomenon of 
mode mixing exists in intrinsic mode oscillations. 

A significant statistical dissimilarity was discovered when the en-
velope spectra of all seven IMF components associated with the three 
LPBF regimes were visualized and compared. This observation implies 
that the presence of statistical dissimilarity in the IMFs’ envelopes can be 
utilized to train a classifier that can differentiate between the three LPBF 
regimes. This study’s use of a 1D CNN is rooted in its seamless 
compatibility with raw data and temporal waveforms, eliminating the 
need for preprocessing steps. This choice aligns perfectly with the nature 
of the analyzed AE signals. The CNNs are well-suited for handling such 
data and facilitating saliency computation. This pivotal feature of sa-
liency computation aids in mapping decision-making processes based on 
input space, crucially ranking the importance of information derived 

Fig. 7. (a) Intrinsic modes computed using EMD on raw AE waveform of 12 ms (Dataset D1) corresponding to LoF pores. (b) Frequency characterization of the 
individual extracted IMFs computed using EMD. 
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from EMD-computed intrinsic modes. The choice of the 1D CNN variant 
stemmed from inherent benefits in training parameters and pre-
processing and the minimum computation resources required, unlike a 
2-Dimensional CNN, which requires conversion to a spectrogram or 
wavelet representation with more computation requirements. The 
monitoring approach proposed in this study involves creating a 1D CNN 
classifier trained on the extracted IMFs for seven levels on AE waveforms 
with a time window of 12.5 ms to distinguish between different LPBF 
regimes. Additionally, it was discovered that the EMD functions as a 
dyadic filter bank that resembles the ones used in wavelet de-
compositions to control information across each IMF. This characteristic 
can be exploited by using saliency techniques (Parvatharaju et al., 2021) 
to identify which IMF modes correspond to more weightage for 
decision-making during inference. 

3.2.1. 1D-CNN – Classifier 
The 1D-CNN model proposed in this work to train the four datasets 

(D1-D4) consists of five convolutional layers, one Fully Connected layer 
(FC − 1), and a classifier layer, as illustrated in Fig. 10. The input tensor 
of size 1×7x5000 is passed through the first layer of the CNN model 
during training. The second dimension of the input tensor represents the 
seven IMFs obtained using the EMD technique. All five convolutional 
layers of the CNN architecture have a kernel size of 16. The first con-
volutional layer generates an output size of four, which is then doubled 
in size in each subsequent layer until the fifth layer. The output size of 
the fifth convolutional layer is 64 with a single dimension, which was 
achieved by applying an adaptive pooling technique on a single 
dimension. The output of these five convolutional layers is then flat-
tened and passed to a fully connected layer and a classification layer for 

Fig. 8. (a) Intrinsic modes computed using EMD on raw AE waveform of 12 ms (Dataset D1) corresponding to conduction mode. (b) Frequency characterization of the 
individual extracted IMFs computed using EMD. 
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further processing. The labelled signals corresponding to the four AE 
datasets computed using EMD are used for training four individual 
networks, namely CNN-1, CNN-2, CNN-3 and CNN-4, for classifying 
them into LoF, condition mode, and keyhole. The cross-entropy loss 
function is used for this classification problem. 

The proposed 1D CNN model has approximately 47 thousand pa-
rameters and was developed using the PyTorch framework. Batch 
normalization is performed across each layer before applying the 
Rectified Linear Unit (ReLU) activation function. Additionally, a 
dropout of 5% is applied across the layer to reduce overfitting. The use of 
dropout is a regularisation technique that helps to prevent overfitting by 
randomly dropping out some neurons during training, which forces the 
network to learn more robustly. The training parameters used for the 
training of the four CNN models are listed in Table 5. These parameters 

Fig. 9. (a) Intrinsic modes computed using EMD on raw AE waveform of 12 ms (Dataset D1) corresponding to keyhole pores. (b) Frequency characterization of the 
individual extracted IMFs computed using EMD. 

Table 4 
Frequency contents across individual extracted IMFs 
computed using EMD.  

IMF‘s Frequency ranges 

Level − 1 60–100 kHz 
Level − 2 30–70 kHz 
Level − 3 25–40 kHz 
Level − 4 15–25 kHz 
Level − 5 10–20 kHz 
Level − 6 5–15 kHz 
Level − 7 0 kHz-10k Hz  
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were drawn from the authors’ prior works using the same architecture 
(Pandiyan et al., 2022b) and combined with empirical optimization 
through trial and error. 

The extracted IMFs for seven levels on AE waveforms with a time 
window of 12.5 ms corresponding to three regimes were used to train 
the model during the processing of datasets (D1-D4). The AE dataset 
collected with known labels was randomly divided into 70% for training 
and 30% for testing. During network training, the cross-entropy loss was 
utilized to punish the network for misclassifications. In addition, the 
magnitude of the cross-entropy loss was used to update the weights of 
CNNs through back-propagation. CNNs were trained using a batch size 
of 256 and a learning rate of 0.01 for 100 epochs. Nvidia Titan RTX GPU 
was used to expedite the training process. A cosine annealing-based 
learning rate scheduler was employed to find the optimal learning rate 
across each epoch. The training loss values for all four CNN models 
decreased over the course of 100 training epochs, indicating that they 
have successfully learned how to map the AE signals and classify the 
three LPBF regimes. Table 6 presents the confusion matrix that provides 
a clear and concise summary of the model’s predictive accuracy and 
errors. The overall prediction accuracy of the four CNN models ranged 
between 95.3% and 96.9%. However, the global accuracy on different 
datasets suggests that the proposed CNN architecture could be scaled to 
similar classification tasks. 

3.2.2. CNN- Saliency maps 
Saliency maps are a visualization technique used in CNNs to high-

light the most relevant parts of the input data for making a prediction. 
These maps are created by calculating the Gradient of the output class 
score with respect to the input data, which shows how sensitive the 
network is to changes in the input data. For time series data, saliency 
maps indicate which regions of the waveform the network is focusing on 
when making its classification decision (Assaf et al., 2019). The 

magnitude of the gradient at each time series datapoint indicates the 
importance of that datapoint for the final prediction (Pandiyan et al., 
2022b). The resulting saliency map has values between 0 and 1, where 
higher values indicate more salient data points. The saliency map’s size 
corresponds to the input signal’s length. 

The saliency analysis depicted in Fig. 11 (a-d) provides insight into 
the relative importance of the median saliency, which was computed per 
IMF, on the test datasets for each of the four models (CNN-1, CNN-2, 
CNN-3 and CNN-4). The analysis specifically focuses on predictions that 
were correctly classified. By examining the saliency scores of each IMF, 
the study demonstrates the relative significance of different frequency 
components present in the input data. The findings suggest that certain 
IMFs (from 3 to 7), particularly those with lower frequency components 
below 40 kHz, contribute more significantly to the decision-making 
process. The saliency score computed for the four models was normal-
ized to 1 across all seven levels of IMFs as depicted in Fig. 11. The 
analysis revealed that IMFs ranging from level 3 to level 6 played a more 
significant role in the decision-making process, contributing over 70% to 
the final decision for all four cases. Moreover, these IMFs contained 
frequency components between 0 and 40 kHz, which suggests the 
importance of the frequency window of the sensor in these ranges for 
accurate monitoring of LPBF regimes during the processing of 316 L. 
These results suggest that identifying the relative significance of 
different frequency components can enhance the accuracy of predictions 
and decision-making in LPBF processes, leading to more efficient and 
effective LPBF-based manufacturing. 

The study found that the input tensors’ dimensions, specifically IMFs 
3–7, containing frequency ranges below 40 kHz, played a dominant role 

Fig. 10. Illustration of the proposed CNN network.  

Table 5 
Training parameters for training CNN-1, CNN-2, CNN-3 and CNN-4.  

Training parameters CNN-1, CNN-2, CNN-3 and CNN-4 

Objective Supervised classification 
Solver type ’adam’ 
Rate of learning 0.01 
Epochs 100 
Size of the batch 256 
Dropout 5% 
Loss function Cross-entropy loss 
Shuffle Every-epoch 
Scheduler used Cosine annealing 
Training dataset 70% 
Testing dataset 30% 
Trainable weights 46,395 parameters  

Table 6 
Confusion matrix from the CNNs on four datasets (D1, D2, D3, and D4).  

True class 
Predicted class 

LoF Conduction mode Keyhole 

LoF 97.4 2.6 0.0 
98.0 1.6 0.4 
96.8 3.2 0.0 
94.7 5.3 1.0 

Conduction mode 5.2 93.8 1.0 
4.9 94.0 1.1 
2.2 96.3 1.5 
2.4 96.1 1.5 

Keyhole 2.2 0.7 97.1 
1.3 1.0 97.7 
1.2 1.2 97.6 
2.4 2.2 95.3 

The four datasets are represented in a confusion matrix that displays the clas-
sification accuracies, with the classification outcomes arranged in descending 
order within each cell: D1, D2, D3, and D4. All values are in %. 
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in the prediction process. However, it is essential to note that the 
number of IMFs containing overlapping information below 40 kHz was 
relatively high compared to the IMFs carrying information above 
40 kHz. Therefore, it is also crucial to validate the sensor frequency 
dependence for decision-making using other classical classification 
techniques that do not have such biasing and overlapping but look at 
discrete statistical information. To achieve this goal, the study used 
energies for the fifteen frequency bands computed in 3.1 as features to 
train classifiers such as XGBoost and SVM as shown in Fig. 12. Eventu-
ally, the feature metrics’ importance was evaluated to check if any 
coherence was found with saliency results. By cross-validating these 

results, the study can better understand the importance of sensor fre-
quency ranges in LPBF monitoring and further improve the accuracy of 
predictions and decision-making. 

3.3. XGBoost and Feature Importance 

Ensemble learning is often employed to mitigate the issues of bias 
and variance commonly found in individual models (Zhou and Zhou, 
2021). This approach involves creating a model that leverages the pre-
dictions of multiple individual models. By doing so, the ensemble model 
becomes more adaptable (less biased) and less susceptible to changes in 

Fig. 11. Saliency analysis per decomposition level for four datasets (D1, D2, D3, and D4) using four CNN models (CNN-1, CNN-2, CNN-3 and CNN-4).  

Fig. 12. Schematic flow for classifying LPBF regimes in 316 L using two ML models with 15 frequency features for computing feature importance on four datasets 
(D1, D2, D3, and D4). 
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the input data (less variance). XGBoost, which stands for eXtreme 
Gradient Boosting, is an example of an ensemble model that uses 
boosting and decision trees as multiple individual models. It is a ver-
satile tree-boosting system that can be used for classification and 
regression tasks in machine learning and is known for its scalability 
(Chen et al., 2015). XGBoost involves creating a prediction model 
comprising an ensemble of weaker prediction models, such as decision 
trees. The model is built incrementally, and its generalization is ach-
ieved by optimizing an arbitrary differentiable loss function. Essentially, 
XGBoost helps reduce overfitting, improving its overall performance. 
XGBoost has several notable advantages over other algorithms, 
including its exceptional speed relative to algorithms like AdaBoost and 
the effectiveness of its regularisation parameter in reducing variance. In 
addition to this parameter, XGBoost employs a learning rate (shrinkage) 
and subsampling of features, similar to random forests, further 
improving its generalizability. However, compared to AdaBoost and 
random forests, XGBoost is more challenging to comprehend, visualize, 
and fine-tune. In addition, it has a multitude of hyperparameters that 
can be adjusted to enhance its performance. The energies for the fifteen 
frequency bands computed using the periodogram method, as discussed 
in Section 3.1, form a dataset that the classifier will learn. The imple-
mentation was carried out using the Python scikit-learn libraries 
(Pedregosa et al., 2011). The hyperparameters for training the XGBoost 
Classifier are trained using the settings listed in Table 7. Synonymous 
with the training of four CNN models on four datasets (D1-D4), the en-
ergies calculated from the fifteen frequency bands from each of the four 
datasets were used to create feature spaces for training four XGboost 
classifiers. These classifiers were named XG-1, XG-2, XG-3, and XG-4, 
and for training them, the respective datasets computed with known 
ground truth were randomly divided into 70% for training and 30% for 
testing. 

The average performance of the four XG boost models was evaluated 
based on stratified-fold cross-validation. Table 8 presents the confusion 
matrix that provides a clear and concise summary of the predictive ac-
curacy and errors of the model. The overall prediction accuracy of the 
XGBoost model on the six datasets ranged between 90% and 94.3%. 
Overall, the results suggest that XGBoost-based classifiers are a prom-
ising approach for LPBF monitoring. Current work demonstrates that the 
appropriate choice of the sensor with a wide range can significantly 
impact the classification of the LPBF regime with minimal features, and 
this finding is a departure from what has been reported in the literature. 

Using a gradient-boosted model facilitates the retrieval of the 
importance score for each feature after the boosted trees have been built. 
The XGBoost permutation-based feature importance method, which in-
volves randomly shuffling each feature and evaluating the resulting 
model performance change (Minhas and Singh, 2021), was used to 
retrieve the importance score for each feature after building the 
gradient-boosted model. Using this method, the study identified the 
features that significantly impacted the performance of the four models 
(XG-1, XG-2, XG-3, and XG-4) trained on the four datasets. Fig. 13 (a-d) 
shows the corresponding plots with the most informative content for the 
classification performance for the four XGboost classifiers. The signifi-
cant features that contributed more to the four models’ performance 

came from the frequency components in signals below 50 kHz. Energies 
for frequency bands below 50 kHz were deemed the most critical in 
decision-making, ranking higher with a high feature importance score. 
These findings are consistent with the saliency maps computed on CNNs, 
as discussed in Section 3.2.1. Based on the results of feature importance, 
the study emphasizes the importance of sensor frequency response at 
lower frequencies in monitoring LPBF regimes when processing 316 L. 

One of the limitations of using a gradient-boosted model in inter-
preting the overall feature importance score is that it does not give 
insight into which categorical dependent variable is being influenced. In 
other words, it is unclear which categorical variables drive the model’s 
predictive power. To address this limitation, SHapley Additive exPla-
nations (SHAP) values, which provide more detailed and relevant in-
formation on the categorical dependent variable, are explored in the 
upcoming Section 3.4 on Support Vector Machine (SVM). SHAP values 
measure the contribution of each feature to the final prediction, taking 
into account the interactions between features and providing a more 
nuanced understanding of how the model makes its predictions. 

3.4. SVM and Shapley Additive Explanations 

Support Vector Machine is a popular supervised learning algorithm 
used for classification and regression analysis. The SVM aims to find the 
best hyperplane that separates the different classes in a dataset (Hearst 
et al., 1998). The hyperplane is chosen to maximize the margin between 
the closest points of different classes, also known as support vectors 
(Cervantes et al., 2020). It can handle non-linearly separable data by 
transforming the original feature space into a higher dimensional space 
where the classes are separable (Pandiyan et al., 2018). The SVM has 
several advantages over other classification algorithms, including its 
ability to handle high-dimensional data and its effectiveness in handling 
small to medium-sized datasets. However, due to its computational 
complexity, SVM may not perform well on very large datasets. The 
optimization problem of SVM involves finding the parameters of the 
hyperplane that minimize the classification error and maximize the 
margin. This is done by solving a quadratic programming problem 
where the objective function is the sum of the squares of the weights of 
the hyperplane subject to the constraint that the data is classified 
correctly. If the data is not linearly separable, SVM uses a kernel function 
to map the original feature space into a higher dimensional space where 
the classes are separable. This allows SVM to handle non-linear decision 
boundaries. Standard kernel functions used in SVM include linear, 
polynomial, Radial Basis Function (RBF), and sigmoid. Similar to the 
training of the four CNN models and four XGBoost classifiers, the en-
ergies computed from the fifteen frequency bands from each of the four 
datasets (D1-D4) were utilized to create feature spaces for training four 
SVM classifiers. These classifiers were named SVM-1, SVM-2, SVM-3, 

Table 7 
XGBoost classifier training parameters.  

Training parameters XG Boost (XG-1, XG-2, XG-3, and XG-4) 

Rate of learning 0.3 
Tree_method auto 
Depth 6 
Sampling method uniform 
gamma 0.1 
subsample 1 
colsample_bytree 1 
Objective classification 
Validation method Stratifiedfold cross-validation  

Table 8 
Confusion matrix from the XGBoost on four datasets ( D1, D2, D3, and D4).  

True class 
Predicted class 

LoF Conduction mode Keyhole 

LoF 91.0 8.0 1.0 
96.0 3.0 1.0 
88.0 12.0 0.0 
95.0 4.0 1.0 

Conduction mode 10.0 89.0 1.0 
7.0 91.0 2.0 
9.0 87.0 4.0 
10.0 88.0 2.0 

Keyhole 1.0 4.0 95.0 
2.0 2.0 96.0 
2.0 3.0 95.0 
3.0 3.0 94.0 

The four datasets are represented in a confusion matrix that displays the clas-
sification accuracies, with the classification outcomes arranged in descending 
order within each cell: D1, D2, D3, and D4. All values are in %. 
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and SVM-4. For training these classifiers, each dataset was randomly 
divided into 70% for training and 30% for testing, with known ground 
truth. The implementation was carried out using the Python libraries 
scikit-learn (Pedregosa et al., 2011). The hyperparameters used for 
training the SVM classifier are listed in Table 9. 

Table 10 presents a confusion matrix summarising the model’s ac-
curacy and errors concisely and easy to understand. The SVM models 
(SVM-1, SVM-2, SVM-3, and SVM-4) that were trained on the four 
datasets individually exhibited an overall prediction accuracy ranging 
from 85.0% to 89.6%. These results indicate that SVM-based classifiers 
could be a promising method for monitoring LPBF using a feature space 
with only 15 dimensions. The current study demonstrates that the 
appropriate choice of a sensor with a wide range can significantly impact 

the classification of the LPBF regime with minimal features, which is a 
departure from what has previously been reported. 

The SHAP is a popular approach for explaining the output of machine 
learning models. SHAP is based on the concept of Shapley values, which 
are used in game theory to determine the contribution of each player to a 
cooperative game (Nohara et al., 2019). In ML, SHAP values are used to 
explain each feature’s contribution to a model’s output for a specific 

Fig. 13. Permutation-based feature importance for four datasets (D1, D2, D3, and D4) with four models (XG-1, XG-2, XG-3, and XG-4).  

Table 9 
Training parameters on SVM models trained on four datasets ( D1, D2, D3, and 
D4).  

Training parameters SVM-1, SVM-2, SVM-3, and SVM-4 

Analysis Supervised classification 
Validation method Stratifiedfold cross-validation 
Kernel Radial Basis Function 
Kernel scale Automatic 
Features 15 features 
Classifiers 3 (LPBF regimes) 
Multiclass method One-vs-One 
Training dataset 70% 
Testing dataset 30%  

Table 10 
Confusion matrix from the SVM on four datasets ( D1, D2, D3, and D4).  

True class 
Predicted class 

LoF Conduction mode Keyhole 

LoF 90.0 9.0 1.0 
95.0 4.0 1.0 
86.0 12.0 2.0 
90.0 8.0 2.0 

Conduction mode 15.0 83.0 2.0 
12.0 88.0 0.0 
14.0 81.0 5.0 
14.0 86.0 0.0 

Keyhole 9.0 8.0 83.0 
10.0 4.0 86.0 
4.0 8.0 88.0 
10.0 5.0 85.0 

The four datasets are represented in a confusion matrix that displays the clas-
sification accuracies, with the classification outcomes arranged in descending 
order within each cell: D1, D2, D3, and D4. All values are in %. 
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input. SHAP provides a unified framework for explaining the output of a 
wide range of models, including tree-based models, linear models, 
neural networks, and more. SHAP computes each feature’s contribution 
to the model’s output by assigning a score to each feature that reflects its 
impact on the model’s prediction. SHAP values are computed using a 
variant of the LIME (Local Interpretable Model-Agnostic Explanations) 
approach, which generates local models to approximate the behaviour 
of the original model around a specific input. SHAP combines the local 
models to obtain a global explanation of the model’s behaviour. SHAP 
has several advantages over other model interpretation methods. It 
provides a unified framework for interpreting a wide range of models 
and can handle both individual instances and entire datasets. SHAP also 
provides a measure of feature importance that takes into account the 
interaction between features, which is especially useful for non-linear 
models. By using SHAP, you can gain insights into how each feature 
contributes to the model’s predictions and understand the importance of 
each feature in the context of the entire dataset. This can help you to 

identify which features are most important in predicting house prices 
and make more informed decisions based on the model’s output. 

The results on the SHAPley values, which significantly impacted the 
performance of the four models (SVM-1, SVM-2, SVM-3, and SVM-4) 
trained on the four datasets, are illustrated in Fig. 14. The SHAPley 
values that provided the most informative content for better perfor-
mance of the four models came from the frequency components in sig-
nals below 40 kHz. The magnitude of SHAPley values indicated that 
energies for the frequency bands below 40 kHz had the most influence 
on the decision-making process. Further looking for insights into which 
categorical dependent variable is being influenced as plotted in colour 
code (red, blue and green) in Fig. 14 (a-d), it is evident that all three 
regimes (categories) have an equal magnitude and are significantly 
important. Based on these SHAPley value results, the study emphasizes 
the importance of sensor frequency ranges (0–40 kHz) in monitoring 
LPBF regimes when processing 316 L. This finding is similar to the sa-
liency maps computed on CNNs discussed in Section 3.2.1. and the 

Fig. 14. SHAPley values on features in the four datasets (D1, D2, D3, and D4) computed over trained SVMs (SVM-1, SVM-2, SVM-3, and SVM-4).  
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permutation-based feature importance with XGBoost, as discussed in 
Section 3.3. 

4. Discussion 

The current study underscores the significance of airborne AE sensor 
selection based on its sensitivity to LPBF dynamics and its effect on the 
accuracy of LPBF regime classification, an aspect that previous studies 
did not explore or did not consider. The selection of an airborne AE 
sensor with poor sensitivity resulted in the utilization of a more signif-
icant number of features in the classification task, as reported by the 
author’s previous work (Drissi-Daoudi et al., 2022). However, this work 
highlights the significance of selecting an AE sensor with a wide fre-
quency response window, which is critical in achieving high accuracy 
with minimal features. These findings suggest that sensor selection 
should be a critical consideration in LPBF process monitoring, and 
further research may be necessary to identify the most optimized sensors 
for this task. The study’s extensive exploration, involving two strategies 
on four datasets, contributes to the robustness and credibility of these 
findings. 

Additionally, a framework for an airborne AE sensor selection 
strategy for monitoring LPBF during the processing of 316 L is devel-
oped. The study found that selecting a sensor from 0 to 40 kHz with good 
sensitivity response would suffice in real-time build quality monitoring 
of 316 L. The proposed strategy of computing saliency over the IMFs and 
estimating feature importance over handcrafted features have enhanced 
the knowledge of the correlation of LPBF dynamics with airborne AE 
signatures. Furthermore, the proposed framework is scalable and could 
be expanded to identify the significant frequencies for optimizing sensor 
selection that is good in sensing process zone perturbations of other 
materials during LPBF processing. Additionally, the proposed frame-
work is not limited to a specific application and can be applied to other 
scenarios with similar sensing requirements. By identifying the signifi-
cant frequencies most effective in detecting anomalies in the process 
zone, the framework can help researchers and engineers optimize their 
sensor selection and improve the accuracy and efficiency of their process 
sensing. 

5. Conclusion 

The paper analyses the AE signals captured during the LPBF process 
under three different regimes using two distinct distributions of 316 L 
stainless steel powders. The experiments were conducted on a com-
mercial LPBF machine equipped with a custom-designed monitoring 
system for capturing and interpreting the AE signals. To understand the 
AE thoroughly, the study collected data for two different powder dis-
tributions of 316 L stainless steel, namely those with particle sizes 
greater than 45 µm and less than 45 µm, using two different parameter 
sets that encompassed a broad range of process conditions. In addition, 
the paper performed statistical quantification of the acoustic signals 
corresponding to three different regimes using frequency domain and 
Empirical Mode Decomposition (EMD) analysis. The resulting data were 
then visualized to help better understand the underlying physics of the 
AE on LPBF dynamics. The experimental results led to the following 
generalized conclusions:  

• The energies of the AE waveform signal were visualized by dividing 
them into fifteen equally distributed bands from 0 Hz to 150 kHz. 
The results showed that the three LPBF dynamics being studied had 
distinct energy levels that were statistically significant across all the 
fifteen bands.  

• Most of the energy components for the LPBF regimes were observed 
to be concentrated in the frequency range below 100 kHz. Compared 
to other regimes, the keyhole regime had a higher peak energy of the 
AE waves on frequency ranges between 0 and 10 kHz. The fifteen 

bands’ discrete energy levels could be leveraged as input to train an 
ML classifier for process monitoring. 

• Moreover, EMD was employed to decompose the AE signals corre-
sponding to different LPBF regimes into their constituent signals, 
which were subsequently compared. The characterization and visu-
alization of the intrinsic mode envelopes in FFT for seven levels 
revealed the existence of mode mixing and a substantial level of 
statistical dissimilarity.  

• The monitoring approach proposed in this study entails the creation 
of a 1D CNN classifier that can differentiate between various LPBF 
regimes based on the extracted IMFs for seven levels on AE wave-
forms. The time window for this approach was set to 12.5 ms. Upon 
computing saliency on the test data, it was found that the lower 
frequency components in the intrinsic modes, particularly those 
below 40Khz, contained the most informative content for decision- 
making.  

• The computation of feature importance and Shapley scores on the 
XGBoost and SVM classifiers enabled the identification of the fre-
quency ranges in the AE data that are critical in distinguishing be-
tween different LPBF regimes. These results were consistent with the 
findings of the saliency computation on the 1D CNN, indicating that 
the lower frequency ranges contain the most informative content. 

Moving forward, an important avenue for future research involves 
expanding the scope of exploratory data analysis to encompass a broader 
spectrum of process parameters, as the current study was limited to only 
three process parameters. This would enable a comprehensive under-
standing of the intricate behaviour of AE signatures and their dynamic 
response to diverse parameters, further enhancing our insights into their 
impact and magnitude. The proposed framework has the potential to be 
expanded to identify frequencies associated with other types of events, 
such as delamination, crack propagation, and microstructure evolution, 
an ongoing research direction. Exploring frequencies associated with 
process zone perturbations in materials other than those currently being 
studied is also part of our future work. The data and code used for this 
work can be found in the following repositories (https://c4science.ch/ 
diffusion/12858/). 
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