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A B S T R A C T   

Residual stresses are one of the key factors for tuning the properties, microstructure, and reliability of thin films 
and nanomultilayers, but their measurement and evaluation are challenging. Residual stresses in nano-
multilayers with {110} out-of-plane texture exhibit a dependence on the in-plane crystal orientation, which 
complicates their evaluation using X-ray diffraction. The texture and residual stresses were investigated for two 
representative nanomultilayers of immiscible materials with fcc/bcc structure: Cu/Mo and Cu/Nb grown on Si 
substrate with an amorphous silicon nitride layer. Both multilayered structures exhibited Cu {111} // Mo, 
respectively Nb {110} out-of-plane fiber texture, and showed compressive stress. A modified crystallite group 
method for {110}, {111} fiber texture was used to determine residual stresses in the nanomultilayers. The 
method was proven to be a good tool to extract the residual stress in nanomultilayers with a strong fiber texture.   

1. Introduction 

The stress level in thin films plays a decisive role in the reliability and 
material properties. High residual tensile or compressive stress may lead 
to buckling or delamination of the film [1]. Moreover, tuning the re-
sidual stresses of a nanomultilayer (NML) is also an effective way to 
tailor thermal stability and conductivity [2]. For these reasons, 
analyzing residual stress in NMLs is a powerful tool to understand the 
material properties, reliability, and microstructure of nano-scaled 
multilayer films. 

The experimental techniques used for residual stress measurements 
in thin films such as curvature measurement and deformation tech-
niques, X-ray diffraction (XRD), neutron diffraction and specialized 
methods are concisely reviewed [3] and have been succesfully applied to 
various thin films and nanomultilayers [4–9]. Nonetheless, the mea-
surement of residual stress remains still a challenging task, especially in 
the case of strongly textured, complex multiphase, nanocrystalline, or 
amorphous materials and films [3]. 

In this study, XRD method was selected to approach the residual 
stresses in NMLs with a strong texture. Especially, the determination of 
residual stresses in thin films with texture along [110] is demanding, 
because {110} planes of a cubic crystal are mechanically non-isotropic 
and the residual stresses depend on in-plane crystallographic 

orientation. For this class of NMLs the residual stresses cannot be 
analyzed by a classical sin2Ψ method, since it is applicable only for 
polycrystalline untextured samples [10]. In this situation, Crystallite 
Group Method (CGM), which assumes that all the crystallites with the 
same orientation define a crystallite group and can be treated as one 
crystal [11] offers a solution. In the present work, a modified CGM for 
anisotropic layers with fiber texture [12] was applied to derive the in- 
plane residual stress of two immiscible metal systems of fcc/bcc struc-
tures. The chosen model systems are Cu/Mo, and Cu/Nb NMLs grown on 
Si substrate with amorphous silicon nitride overlayer. 

2. Material and methods 

Cu/Mo and Cu/Nb NMLs were prepared by DC magnetron sputter-
ing. Si (001) substrates with a 90 nm-thick amorphous silicon nitride 
were used as substrates for deposition. The substrates were ultrasoni-
cally cleaned with acetone, ethanol, and isopropanol for 3 min consec-
utively, followed by Ar drying after each solvent cleaning. RF cleaning 
process was performed before the deposition with Ar pressure 2 mTorr at 
50 W power for 2 min. DC magnetron sputtering in a high vacuum 
chamber (base pressure ≤ 10− 8 mbar) was used for deposition of Cu/Mo, 
Cu/Nb NMLs with gun power 80 W and Ar pressure 2 mbar. Cu10nm- 
Mo10nm and respectively Cu10nm-Nb10nm bi-layer structures were 
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repeated 10 times to make total 200 nm thick layers. 
TEM (Transmission electron microscopy) lamellas were prepared 

with an FEI Helios 660 FIB/SEM (Focused ion beam / Scanning electron 
microscopy) with a 2, 5, 30 kV Ga ion beam. Scanning transmission 
electron microscopy (STEM) was performed with JEOL2200FS oper-
ating at 200 kV. A Bruker D8 Discover X-ray diffractometer was used to 
measure the texture and residual stress of samples. Diffraction patterns 
were recorded using Cu target at 40 kV and 40 mA. Since the modified 
method utilizes fiber texture [12], the residual stress can be measured by 
averaging the in-plane dependence term considering all the crystallo-
graphic orientations contributing to diffraction. 

For the derivation of the equation for the residual stress, it was 
postulated that all the NML components have equibiaxial in-plane re-
sidual stress. Since the deposition process occurred at room temperature 
(RT), and the substrate temperature remained below 50 ◦C throughout, 

it is assumed that the effect of thermal stresses is negligible. In partic-
ular, for Cu thin films deposited at room temperature Pletea et al. [13] 
reported that the contribution of thermal stresses is approximately 4% of 
the total stress-thickness and thus can be neglected. 

Reuss model is adopted which assumes that crystallite possesses 
identical stress tensors, from which an equation < σ >= σ (1) can be 
obtained. With these assumptions, in the case of a cubic crystal, {110} 
out-of-plane texture, residual stress can be determined by the following 
equation [12]: 

< ∊L
33 >= [(

s44

2
+

s0(1+ < cos2(Φ + β)〉 )
4

)sin2Ψ +
1
2
(4s12 + s0)]σ (2)  

where σ is in-plane residual stress, ∊L
33 is lattice strain in laboratory 

coordinates, and s11, s12, s44 are compliance coefficients of cubic crystal 
and bracketed terms refer to an average over crystallites oriented 
properly to contribute to the diffraction peak, Φ, and β are rotational 
angles for the transformation of the coordinates (see Fig. 1). Equation 
(2) was derived by setting the crystal coordinates as X’

1 = [001], X’
2 =

[110], X’
3 = [110]. By setting Φ = 0, < cos2β > depends on the 

diffraction plane and inclination angle of Ψ. With the crystal coordinates 
set to derive equation (2), the crystallographic planes (200) and (020) 
have coordinates Ψ = 45◦ and β = − 90◦, 90◦, respectively. This can be 
checked by (110) stereographic projection. Then, < cos2β >=

cos90◦
+cos− 90◦

2 = 0 is used in the equation. The elastic response of mate-
rials with a cubic crystal structure and {111} out-of-plane texture does 
not show this complexity, since it does not depend on in-plane orien-
tation. The detailed methodologies for the determination of residual 
stresses applied in this study, including {111} fiber texture, are dis-
cussed in Supplementary Data. 

3. Results and discussion 

Fig. 2 shows cross-sectional bright-field scanning transmission 

Fig. 1. Coordinates of specimen P, crystal X’, and laboratory L. The 3 axes are 
indicated by blue, yellow, and red arrows respectively on the sample. 

Fig. 2. Bright-field STEM images of NMLs: a) Cu/Mo b) Cu/Nb.  
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electron microscope (BF-STEM) images of Cu/Mo and Cu/Nb NMLs. 
Both NMLs exhibited a 10 nm− 10 nm double-layer stack repeated 10 
times without a large deviation of layer thickness. The initially depos-
ited layers are flat and planar, however, their become roughened as the 
NMLs grow. 

Fig. 3 shows the pole figures of fcc Cu {111}, bcc Mo {110}, and bcc 
Nb {110}. Fig. 3a and b indicate that Cu/Mo NML exhibits Cu {111} // 
Mo {110} fiber texture. The amorphous silicon nitride blocked the 
epitaxial growth on Si. The (red) center of the two pole figures shows Cu 
{111} // Mo {110} out-of-plane texture, and the homogeneous (red) 
ring structure (Ψ = 70.53, 60◦ in Cu and Mo pole figures, respectively. 
See Figs. S2, S3) indicates the in-plane random crystallographic orien-
tation. The black arrows in Fig. 3a result from the Si peak. Similarly, 
Fig. 3c, and d display the Cu {111} // Nb {110} fiber texture of Cu/Nb 
NML. 

Table 1 lists the residual stresses of the investigated NMLs (including 
Cu/W NML [2] for comparison) as determined from Figs. S4, S5. All 
components of NMLs exhibit compressive stresses. Sufficient power and 
reduced Ar-pressure increase the target atom’s kinetic energy, intensi-
fying atomic peening or adatom diffusion into film grain boundaries 
leading to compressive residual stress [14]. The compressive stress of 
Mo (in Cu/Mo) and Nb (in Cu/Nb NML) is considerably lower than that 
of Cu in Cu/W [2], which resulted from higher target power during the 
deposition. Since W is low diffusion atomic species, compressive growth 
stress increased through the atomic peening effect. The large compres-
sive residual stress of stiff W is then transmitted to the much softer 
copper nanolayers, resulting in a superposition of stresses. 

4. Conclusions 

This work presents a methodology to extract residual stress in 
anisotropic bcc materials with strong texture. Two NMLs (Cu/Mo and 
Cu/Nb) were prepared using magnetron sputtering. Both exhibited fiber 

texture with the orientation relationship: fcc Cu {111} // bcc Mo, Nb 
{110} out-of-plane. The NMLs show a significant variation of the in- 
plane compressive stress depending on the bcc metals present. This 
analysis is useful to extract the stress state in thin films and multilayers 
which is critically affecting and tailoring material properties. 
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