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A B S T R A C T   

Bismuth telluride iodide (BiTeI) is a layered material known as Rashba semiconductor, which is promising for 
several applications such as spintronics, nonlinear optics, and energy-related devices. Due to its layered structure 
and low cleavage energy, BiTeI is particularly suitable for producing two-dimensional (2D) BiTeI crystals, 
allowing for the development of devices at the nanoscale. However, traditional methods of mechanically exfo-
liating BiTeI have encountered significant challenges. To address this, we used the so-called gold-assisted me-
chanical exfoliation to successfully obtain 2D BiTeI flakes. Through extensive characterization employing a range 
of techniques including Raman spectroscopy and second-harmonic generation (SHG) measurements, we examine 
the morphological, structural, and chemical properties of the gold-assisted mechanically exfoliated BiTeI flakes. 
We confirm their crystalline nature while also providing information about strain and defects present within the 
flakes. Moreover, SHG measurements revealed a significant nonlinear optical response, and the non- 
centrosymmetric structure observed in these flakes can be attributed to quantum confinement effects and the 
absence of phase-matching requirements typically found in bulk nonlinear crystals.   

1. Introduction 

In the pursuit of advancing electronic devices and pushing the 
boundaries of information processing, the focus has been directed to-
wards Rashba semiconductors, a fascinating class of materials charac-
terized by a pronounced spin-orbit coupling and associated with the 
Rashba effect [1,2]. These semiconductors have garnered significant 
interest due to their potential for revolutionizing spin-based electronics, 
quantum computing, and topological insulators [3]. One intriguing 
strategy to enable nanometer-scale spintronics operating at room tem-
perature and facilitate nanoscale piezoelectric and nonlinear optical 
applications is the realization of 2D materials with giant Rashba effect 
[2]. Among these materials, the polar semiconductor BiTeI stands out 
due to its giant Rashba splitting and extraordinary electronic properties 
[1,4]. The polar non-centrosymmetric or non-symmorphic structure of 
BiTeI, coupled with its significant spin-orbit interaction effects, arises 

from the mixed ionic-covalent character of the compound and the 
presence of heavy Bi atoms [1]. These distinctive features lift the 
Kramer’s spin degeneracy surface states, resulting in 
momentum-dependent spin splitting in the band structure even in the 
absence of an external magnetic field [5]. Ab initio calculations and 
angle-resolved photoemission spectroscopy studies on BiTeI have 
confirmed the direct consequences of the Rashba effect, such as complex 
Fermi surfaces and other related physical phenomena [6]. Notably, 
multiple-frequency Shubnikov-de Haas oscillations [7], 
temperature-robust Dirac Landau level structures [8], spin-polarized 
magneto photocurrents [9], and pressure-induced topological quan-
tum phase transitions toward non-trivial topological insulators with 
material side-dependent Dirac states have been observed [7]. The evo-
lution toward new quantum phases can lead to the fascinating 
pressure-dependent bulk photovoltaic effect and pressure-induced su-
perconductivity [10]. Additionally, the unique characteristics of BiTeI, 
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including the splitting of surface states from the bulk bands and the 
ability to control spin information through modulation of chemical po-
tential, doping, or mechanical stress, have the potential to revolutionize 
energy-related devices [4,11]. The possibility of generating free carriers 
in BiTeI monolayers through energy transfer presents exciting oppor-
tunities for the development of electrocatalytic systems [12]. This po-
tential is also observed in other bismuth-containing materials, which 
exhibit energy conversion and harvesting properties [13,14]. Conse-
quently, this breakthrough could lead to innovative approaches in areas 
such as photovoltaics, photoelectrochemical cells, and other energy 
conversion devices, where precise control and manipulation of free 
carriers play a crucial role in enhancing overall performance, as also 
demonstrated in other 2D materials [11,15,16]. In this context, pio-
neering and recent theoretical studies coupled with experimental ob-
servations have revealed that BiTeI exhibits a giant Rashba spin splitting 
of approximately 400 meV, which is among the largest reported to date 
[5]. The layered structure of BiTeI, consisting of ionically bound (BiTe)+

and I− layers, forms BiTeI trilayers held together by van der Waals forces 
[17]. Consequently, the plane between Te and I serves as a natural 
cleavage plane of the crystal, leading to Te- or I-terminated surfaces 
[17]. With the rapid advances in designing artificial van der Waals 
heterostructures by stacking 2D materials, exfoliated BiTeI flakes hold 
potential as architectural components in functional quantum systems, 
including the realization of time-reversal invariant topological insu-
lating phases such as the predicted Bi2Te2I2 sextuple layer composed of 
Te-faced BiTeI [18]. However, despite the layered structure of bulk 
BiTeI and the predicted low cleavage energy required to obtain its 
monolayer, the exfoliation of BiTeI into single- or few-layer forms re-
mains challenging. Approaches using electrochemical [12], and liquid 
phase exfoliation [4] have shown a lack of control over the thickness, 
resulting in films of BiTeI flakes having thicknesses ranging from 
monolayer to > 100 nm crystals for the exfoliated flakes. This lack of 
uniformity hampers the study of the electronic band structure of BiTeI 
and restricts the design and fabrication of devices with consistent and 
predictable performance characteristics. Furthermore, the optical 
properties of BiTeI are intricately linked to its thickness, and uncon-
trolled thickness distribution in flakes impedes accurate interpretation 
of experimental results and limits the exploitation of specific optical 
phenomena [4]. In another study [3], BiTeI monolayers were obtained 
by mechanically exfoliating the flakes onto an Au substrate. However, 
this methodology led to strong hybridization between the BiTeI mono-
layer and the Au substrate, altering the charge distribution on the BiTeI 
surface, resulting in substantial modifications of the electronic band 
structure and optical properties of the material [3]. 

In our work, we have successfully addressed these challenges by 
employing a gold-assisted mechanical exfoliation method that takes 
advantage of the strong affinity between BiTeI and gold, while allowing 
the transfer of the exfoliated flake onto a silicon substrate. This enables 
comprehensive investigation of the optical properties of BiTeI in the 
monolayer form, by achieving precise control over the thickness of the 
obtained monolayers. The structural and optical properties of mono-
layer BiTeI flakes were evaluated in this study using Raman spectros-
copy and second-harmonic generation (SHG). The concurrent presence 
of spin-orbit coupling and structural inversion asymmetry in Rashba- 
type materials gives rise to nonlinear optical signals. The absence of 
inversion symmetry and strong quantum confinement in these materials 
can lead to extraordinary second-order nonlinear optical effects. Addi-
tionally, the nanometric thickness of exfoliated materials allows them to 
bypass phase-matching constraints encountered in three-dimensional 
nonlinear crystals, as the coherence length of the second-harmonic is 
much larger than the thickness of the 2D materials. As a result, the 
measurement of SHG from few-layer BiTeI flakes reveals a significant 
nonlinear optical response. Consequently, 2D Rashba-type BiTeI offers a 
novel nanometer-thin platform for studying nonlinear optical 
phenomena. 

2. Materials and methods 

2.1. Gold-assisted mechanical exfoliation 

The BiTeI bulk crystal was purchased from HQ Graphene, the 
Netherlands, with a crystal size of up to 1 mm. As reported in Ref. [19], a 
150 nm thick layer of gold is deposited onto a silicon substrate with 285 
nm thermal oxide using sputter coater KS500 Confocal, Kenosistec. A 
solution of polyvinylpyrrolidone (PVP) was then spin-coated onto the 
gold film, followed by curing at 150 ◦C for 5 min to serve as a sacrificial 
layer, preventing contamination from tape residue. The PVP-coated gold 
film was applied gently onto a freshly cleaved bulk BiTeI crystal using 
thermal release tape, which could be removed at a temperature of 90 ◦C. 
This process allowed the monolayer 2D crystal attached to the gold 
surface to transfer onto a Si/SiO2 substrate. 

It is important to note that the adhesion between gold and Si/SiO2 
surfaces is weak due to the difference in their surface energies [20,21]. 
This difference in surface properties hinders direct adhesion between 
gold and Si/SiO2. To overcome this issue, surface functionalization is 
employed to modify the properties of the Si/SiO2 substrate. We used 
(3-Aminopropyl) triethoxysilane (APTES) as a surface functionalization 
agent. APTES promotes chemical bonding between the amino groups of 
APTES and the hydroxyl groups on the Si/SiO2 surface, thereby 
improving the adhesion between the two materials. APTES was prepared 
using atomic layer deposition (ALD). The Si/SiO2 substrate was placed 
inside the ALD chamber, which was purged with nitrogen gas. Subse-
quently, the APTES precursor was introduced into the ALD chamber. 
The APTES deposition was carried out at a temperature of 110 ◦C. The 
precursor was pulsed into the chamber, allowing it to react with the 
substrate surface. The specific deposition conditions, such as pressure, 
pulse duration, and purge duration, were optimized for APTES growth at 
this temperature. 

The thermal release tape was subsequently removed by heating at 
130 ◦C. The PVP layer was dissolved in deionized (DI) water for 2 h. The 
sample, covered with the gold layer, was rinsed with acetone and 
cleaned with O2 plasma for 3 min to eliminate any remaining polymer 
residues. Eventually, the gold layer was dissolved using a KI/I2 Au 
etchant solution composed of 2.5 g I2 and 10 g KI in 100 ml DI water. The 
resulting monolayer was then rinsed with DI water and isopropanol, and 
dried using N2. 

2.2. Material characterization 

Scanning electron microscopy (SEM) and energy-dispersive X-ray 
spectroscopy (EDX) measurements on the BiTeI flakes were performed 
using a Helios Nanolab 600 instrument from FEI Company along with an 
X-Max detector and INCA s system from Oxford Instruments for the 
acquisition and analysis of EDX spectra. The SEM measurements 
employed a 20 kV accelerating voltage and a beam current of 0.2 nA. 
The EDX measurement values were adjusted to 20 kV and 0.8 nA. The 
sample was imaged without the application of any conductive coating 
on the surface. 

Atomic force microscopy (AFM) images were acquired using an XE- 
100 AFM system from Park System, Korea. PPP-NCHR probes from 
Nanosensors, USA, with a nominal tip diameter of less than 10 nm and a 
drive frequency of approximately 330 kHz were used. Non-contact mode 
AFM images consisting of 512 × 512 data points were collected for areas 
of 25 × 25 μm2. The working setpoint was maintained above 65% of the 
free oscillation amplitude. The scan rate for image acquisition was set to 
0.2 Hz. Height profiles were processed using Gwyddion software. 

Raman spectroscopy measurements were conducted using a 
Renishaw micro-Raman InVia system equipped with a 100 × objective. 
The excitation wavelength employed was 514.5 nm, with a time expo-
sure of 1 s, and the incident power was set at 1 mW. 

Nonlinear optical measurements are performed on BiTeI flakes 
exfoliated onto a Si/SiO2 substrate. The optical excitation is provided 
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with an 80 MHz pulsed Chameleon OPO laser with tunable wavelength 
(OPO: 1070–1340 nm, fundamental: 680–1080 nm). The excitation 
wavelength used in the SHG measurement was 1200 nm. The excitation 
laser was coupled into IX83 Olympus microscope via a 1000 nm short- 
pass dichroic (DMSP1000R) and focused on the sample (BiTeI) with a 
40 × (N.A. 0.5) reflective objective (LMM40X-P01). The SHG light was 
collected by the same reflective objective, which was used for detection. 
The SHG light was filtered for the fundamental using a dichroic short- 
pass filter (DMSP1000R) and focused on the slit of a Czerny-Turner 
HRS-500 spectrometer (Princeton Instruments) to resolve the light 
spectrally. The spectrally resolved light was detected and read using a 
PIXIS CCD camera and Lightfield software (Princeton Instruments). The 
2nd order noise of the fundamental from the grating was checked by 
collecting a spectrum from a reflecting surface. 

3. Results 

Hexagonal crystals of BiTeI (space group P3m1, no. 156) have been 
exfoliated by gold-assisted mechanical exfoliation, as detailed in Section 
2. The inset in the crystal photograph, depicted in Fig. 1a, showcases its 
layered structure consisting of ionically bonded (BiTe)+ and I− layers. 
These layers form trilayers with I–Bi–Te stacking, interlinked by van der 
Waals forces. Based on the calculated cleavage energy required to obtain 
its monolayer (approximately 90 meV/atom [22]) by cleaving the 
crystals along the Te–I plane, we explored the exfoliation of bulk BiTeI 
crystals using the gold-assisted exfoliation method. The resulting flakes 
primarily exhibit monolayer crystals, but some bulk BiTeI crystals 
remained after exfoliation. The contour of the BiTeI flakes is clearly 
discernible in bare optical microscopy images, as exemplified in Fig. 1a. 
However, the presence of wrinkled regions within the flakes indicates 
the occurrence of discontinuities attributable to the forces experienced 
during exfoliation. These localized structural variations within the 
monolayer flakes could influence the material’s properties. 

To further examine the flakes, we performed atomic force micro-
scopy (AFM) measurements on the selected sample. Fig. 1b shows an 
AFM image of the analyzed flake as depicted in Fig. 1a. By measuring 
step heights at various positions, and employing different PID control 
parameters, we obtained step heights in the range of approximately 1.3 
nm. This value closely aligns with the bulk lattice parameters of BiTeI in 
the out-of-plane direction, which have been reported as 6.5 Å [23] and 
6.8 Å [24], as well as to the measured thickness of the BiTeI flake in a 
prior investigation conducted on an Au substrate (8.5 Å [3]). Therefore, 
we conclude that the measured step height corresponds to a single-layer 
crystal of BiTeI. It is worth noting that this slight discrepancy could be 

attributed to the fact that height measurements on different substrates 
may deviate by a few Angstroms in AFM profiles [25]. We further 
investigated the wrinkles present on the flake, which manifest as folds in 
the surface morphology. Height variations associated with these wrin-
kles were measured, yielding values ranging from 1 nm to 3 nm. These 
measurements indicate the presence of substantial structural de-
formations on the surface of the BiTeI flake. The observed wrinkles are 
likely a consequence of strain or stress relaxation processes that occur 
during the exfoliation and transfer of the flake onto the substrate. Based 
on our findings, monolayer BiTeI can indeed be obtained through the 
gold-assisted mechanical exfoliation technique, thereby showcasing its 
potential as a robust method for producing large-size 2D crystals beyond 
graphene and transition metal dichalcogenides. 

The structural properties of the BiTeI flakes were evaluated using 
Raman spectroscopy. Fig. 1c illustrates the Raman spectra of both the 
BiTeI flakes and bulk crystals. Group theory predicts four active Raman 
modes with the irreducible vibrational representation Γ = 2A1 + 2E (i.e., 
two E modes and two A1 modes) [26]. In contrast to previous studies on 
monolayer BiTeI, the presence of distinct Raman peaks in our exfoliated 
sample indicates the high crystallinity of the BiTeI flakes [3,12]. 
Compared to the bulk crystal, the monolayer counterpart exhibits peaks 
at 90 and 147 cm− 1, assigned to A1(1) and A1(2) modes, respectively, 
while E(1) and E(2) are observed at 51 and 100 cm− 1. It is worth noting 
that the A1(1) peak in the bulk is redshifted compared to the A1(1) peak 
in the monolayer, whereas the A1(2) peak in the bulk is blueshifted 
compared to the A1(2) peak in the monolayer. This suggests the poten-
tial involvement of several phenomena, including stress or strain effects, 
which can affect the crystalline structure and molecular vibrations, 
interatomic interactions, and quantum confinement effect, influencing 
molecular vibrations, as well as changes in the interlayer interaction 
strength. In addition, the presence of wrinkles and folds in the mono-
layer introduces local perturbations in the material’s structure, which 
influence the Raman response. The increase in peak intensities and the 
slight redshift observed in A1(1) peak can be attributed to these 
strain-induced displacements, as also demonstrated for other 2D mate-
rials [27]. 

Additionally, Fig. 2a displays a SEM image of exfoliated BiTeI crystal. 
The SEM-coupled energy-dispersive X-ray spectroscopy analysis, as 
depicted in Fig. 2b–d, show that the exfoliated BiTeI crystals have a non- 
ideal stoichiometry with ratios of 0.86:1:0.89 for Bi, Te, and I, respec-
tively. These deviations in stoichiometry can indicate local variations in 
the crystal phase of the exfoliated material, thereby affecting the crystal 
structure and leading to shifts in the frequencies of molecular vibrations, 
as reflected also by the Raman analysis. It is worth noting that the Bi, Te 

Fig. 1. a) Optical micrograph of an exfoliated monolayer BiTeI crystal produced via gold-assisted mechanical exfoliation. The crystal structure (space group P3m1, 
no. 156) of the BiTeI crystals is also depicted in the inset. The red box indicates the region considered for atomic force microscopy measurements in b. b) Atomic 
Force Microscopy image of a monolayer BiTeI flake. The dashed white line represents the flake thickness profile (inset). c) Raman spectra (excitation wavelength of 
514 nm) of BiTeI bulk crystal, monolayer, and wrinkles. The panel displays the Raman modes associated with the hexagonal P3m1 structure of the BiTeI crystals. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and I EDX signal is clearly present in the bulk region, whereas the high 
accelerating voltage required for signal collection decreases the proba-
bility of interaction between high accelerated electrons and the surface, 
thus preventing any signal from the monolayer region. 

BiTeI crystals, which possess intrinsically broken inversion symme-
try, exhibit ultrastrong, nonlinear susceptibilities, as evidenced by their 
intense SHG. Hence, to verify the crystalline quality and non- 
centrosymmetric structure of BiTeI crystals, we assess their nonlinear 
optical properties using SHG. Fig. 3 illustrates the emission of SH light 
from BiTeI flakes obtained through gold-assisted mechanical exfoliation, 
which are deposited onto a Si/SiO2 substrate. The excitation is per-
formed using pulsed light at the 1200 nm wavelength. The absence of a 
phase-matching requirement at sub-wavelength thicknesses implies that 
the nonlinear conversion efficiency reported below does not exhibit 
strong dispersion, allowing for broadband operation. Considering the 
absence of an SH response from the Si/SiO2 substrate, the experimental 
results demonstrate that the BiTeI flake exhibits a nonlinear response in 
both the monolayer and bulk counterparts (Fig. 3a). Despite the absence 
of discernible data within the monolayer region on the SHG map, it is 
important to note that the signal-to-noise ratio is notably low in these 
specific regions (Fig. 3a). This is attributed to the limited integration 
time for mapping, which was set to 3 s. However, upon analyzing in-
dividual spectra obtained from the monolayer with an extended inte-
gration time of 10 s, a more pronounced signal-to-noise ratio is 
observed, and the signal becomes clearly detectable (Fig. 3b). In 
monolayer BiTeI, SHG response is primarily influenced by the 
constructive interference of adjacent layers. This coherent enhancement 
is made possible by the negligible phase mismatch that occurs over 
nanometer distances. As expected, the bulk material demonstrates a 
significantly larger nonlinear response, surpassing the monolayer 
response by more than one order of magnitude. Therefore, as the lattice 
thickness increases, the coherent response continues to increase, as 
illustrated in Fig. 3b. Second-order nonlinear susceptibility χ(2) is pro-
portional to the square root of the detected power of the SHG (Pdet), 
inversely proportional to the power of the fundamental light (I(ω)) and 

the volume of the crystal (V) as shown in Equation (1) [4]: 

χ(2) ∼

̅̅̅̅̅̅̅̅
Pdet

√

I(ω)⋅V (1)  

Considering the volume of bulk is 100 fold more than the monolayer 
gathered from the height profile of the AFM data, χ(2) of the monolayer is 
at least 11 fold more than the bulk which is consistent with the literature 
[4]. 

4. Conclusions 

To summarize, we present a method for the exfoliation of monolayer 
BiTeI single crystals, which serve as a model for layered Rashba-type 
materials. We assessed their morphological, structural, optical, and 
chemical characteristics using a combination of microscopic and spec-
troscopic techniques, demonstrating that the gold-assisted mechanical 
exfoliation of monolayer BiTeI crystals maintains their crystalline 
integrity, as confirmed by AFM imaging and Raman characterization. 
Furthermore, the non-centrosymmetric structure and crystallinity of 
both bulk and exfoliated BiTeI were confirmed through their nonlinear 
optical response. In this work, we also demonstrated the nonlinear fre-
quency up-conversion of NIR light, which has significant technological 
relevance as it enables detection using silicon-based devices. This 
highlights the potential of monolayer BiTeI for advanced solution- 
processed applications, including spin(orbi)tronic, thermoelectric, 
piezoelectric, and nonlinear optical systems, as well as other energy 
conversion devices. 
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