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ABSTRACT   

Interface effects in metals-semiconductors heterojunctions are subject of intense research due to the possibility to exploit 

the synergy between their electronic and optical properties in next-generation opto-electronic devices. In this framework, 

understanding the carrier dynamics at the metal-semiconductor interface, as well as achieving a coherent control of 

charge and energy transfer in metal-semiconductor heterostructures, are crucial and yet quite unexplored aspects. Here, 

we experimentally show that thermionically injected carriers from a gold substrate can drastically affect the dynamics of 

excited carriers in bulk WS2. By employing a pump-push-probe scheme, where a push pulse excites direct transitions in 

the WS2, and another delayed pump pulse induces thermionic injection of carriers from the gold substrate into the 

semiconductor, we can control both the formation and annihilation of excitons. Our findings might foster the 

development of novel opto-electronic approaches to control charge dynamics using light at ultrafast timescales. 

Keywords: Exciton dynamics, Thermionic carrier injection, Metal-semiconductor heterojunction, Transition metal 

dichalcogenides, Ultrafast dynamics, Hot carriers, Pump-push-probe spectroscopy, van der Waals materials 

 

1. INTRODUCTION  

Light-driven electronics represents a great promise in overcoming the fundamental limits of standard electronics, since 

controlling electrons using light is at the same time less dissipative and much faster. Examples on how photonics, the 

science of light, can enable real life applications based on advanced materials and interfaces, has been reported in the 

past years, for instance for sensing1–6, photocatalysis and spectroscopy7–15, as well as data storage and processing16 and 

quantum technologies17. In this context, it is fundamental to unveil and understand light-matter interactions in novel 

materials able to combine both electronic and optical properties and, consequently, to work at significantly higher speeds 

than electronics18,19. After the development of femtosecond lasers for the generation of ultrashort light pulses20,21, it 

became clear that we can use such technology to drive ultrafast electronic processes at the nanoscale, including 

plasmonic excitations22–28. In this context, heterojunctions of metals and dielectric materials allow a lot of possibilities 

for the manipulation and exploitation of light-matter interactions, including ultrafast hot electrons dynamics, magneto-

optical effects and nonlinear optical processes18,29–38. In particular, if the dielectric material is replaced by a 

semiconducting transition metal dichalcogenide (TMD), we can further boost the control of nanoscale optical 

excitations39–42, including plasmonic-induced charge injection43–48, as well as enhance charge dynamics in transistors49 

and photovoltaic devices50. 

Excited electrons and holes in TMDs exhibit enhanced Coulomb interactions in both monolayer and bulk (> 5 layers) 

forms51, leading to room-temperature stable excitons, which dominate the optical and charge transport properties in these 

materials. Moreover, TMDs form clean and sharp interfaces with other materials52, and this feature makes them ideal 

candidates for opto-electronic applications where high-quality interfaces are essential. Finally, TMDs offer a superior 

alternative to other semiconductors, as TMD/metal interfaces show weak Fermi-level pinning53. For these reasons, the 
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exploitation of TMDs for opto-electronics is the subject of current intense research54 where different degrees of freedom, 

such as manipulation of the dielectric environment55 or exciton-plasmon interaction 47, have been studied so far. As well, 

the ultrafast charge dynamics in layered TMDs have been the focus of recent studies56–58. 

Here, we show a different perspective by studying the interplay between thermionic carrier injection and exciton 

dynamics at a van der Waals semiconductor/metal interface in view of future applications which exploits the ultrafast 

opto-electronic properties of TMDs. It has been shown theoretically that an excess of free electrons in the conduction 

band of TMDs compared to the density of free holes affects the probability to form neutral  and charged excitons, i.e. 

trions59. Also, experiments showing that an excess of electrons in the conduction band due to n-doping modulate the 

excitonic absorption have been reported60. Furthermore, recent studies revealed that at WS2/semimetal heterojunctions 

hot carriers injected from the semimetal into a TMD can affect the exciton formation dynamics by comparing the 

transient signal of pump-probe experiments for pumping above and below the optical bandgap of the TMD61–63. In our 

case, we designed an experiment to tune the effect of mutual interaction between injected and excited charge carriers on 

the transient signal in the absorption line of the exciton. We measure the ultrafast transient response of the heterojunction 

employing a three-pulse pump-push-probe (PPP) configuration, which enables us to disentangle the effect of thermionic 

carriers injection from the metallic substrate, from the direct excitations in the semiconductor, thus controlling the latter 

process through the former 

 

2. MATERIALS AND METHODS 

The TMD employed in our study is tungsten disulfide (WS2), a promising material for applications given its superior 

charge transport performance compared to other TMDs64. It is also worth noticing that it displays a single and very 

strong primary exciton feature which dominates the optical spectrum even in the bulk form and at room temperature. In 

bulk WS2, the A-exciton exhibits a binding energy of about 50 meV, and an electronic band gap at the K-point of 2.1 

eV51,65. We chose to work on bulk WS2 instead of monolayer due to the higher absorption as well as lower contact 

resistance at the TMD/metal interface55. After optical excitation, the ultrafast dynamics in inorganic semiconductors are 

dominated by carrier-carrier (c-c) scattering, that involves electron-electron, electron-hole and hole-hole scattering, 

promoting exciton formation, which typically happens below one ps58. For the metal we employ gold, since it displays a 

large work function (WF) of 5.1 eV, thus leading to a lower Fermi level pinning effect and oxidation that otherwise 

would introduce additional resistance during the charge injection process we want to study66. Figure 1a shows the steady 

state spectra of WS2/Au (red curve – ‘pump blocked’) in reflection and transmission. The dip at 618 nm (2.01 eV) 

corresponds to the absorption of the A-exciton. From the spectral position of the etalon mode at 730 nm (1.70 eV), due 

mainly to the presence of gold as substrate, we can determine the thickness of the WS2 flake, which is about 20 nm42. In 

our experiments, we focus on the neutral A-exciton absorption spectral region, thus detecting the probe signal by using a 

band-pass filter centered at 610 nm (2.03 eV) with a spectral width of 10 nm. The WS2 sample is directly exfoliated on 

Au (Figure 1b), leading to weak electronic coupling. This results in the formation of a Schottky junction67 with 

distribution of metal electronic states and band bending in the WS2
66

 in proximity of the interface. In our case, an 

important parameter affecting the contact resistance is the so called Schottky barrier height (SBH), which is the potential 

barrier that the hot carriers need to overcome in order to be injected from the gold into the semiconductor. For the 

WS2/Au junction the SBH is approximately 1 eV66. To ensure a flat surface of the gold back reflector rather than the 

rough surface of the evaporated Au, an epoxy-based peeling procedure was applied to the 100 nm-thick Au film 

evaporated on a clean polished Si wafer (parent wafer) using an e-beam evaporator (Kurt J. Lesker PVD 75). A piece of 

silicon wafer (transfer wafer) was glued to the Au film using a thin layer of thermal epoxy (Epo-Tek 375, Epoxy 

Technology) and then peeled upwards after the epoxy layer achieves its final hardness (curing), resulting in stripping of 

the Au film from the parent wafer. WS2 was mechanically exfoliated from bulk crystal (HQ-graphene) using Scotch 

Tape and transferred onto the Au substrate. 

In the PPP experiments (see Figure 2), we generated the second harmonic of a Yb:KGW amplified laser, operating at 50 

kHz repetition rate, to produce pulses centered at 515 nm (2.4 eV), with a duration of 150 fs, as a push pulse, whose 

fluence was set to 200 μJ/cm2. This fluence excites an electron-hole density on the order of 1013 cm-2 on the surface layer 

of the WS2 sample, which is two orders of magnitude higher than in other studies on ultrafast dynamics in TMDs56–58. 

Since the aim of this work is to study the effect of injected carriers on exciton dynamics, a large cross section between 

the injected and directly excited charge carriers can be realized with a high density of excited carriers. This excitation 

density has been chosen since it is below the regime where the excitons would be ionized due to band gap 

renormalization, where the transient vanishing of the excitonic resonance in the range of few hundreds of fs after 
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excitation is identified as a hallmark of this regime68. The pulse duration of the fundamental (pump pulse) at 1030 nm 

(1.2 eV) was 220 fs. In contrast to our previous study, where we were mainly interested in understanding the thermionic 

carriers injection effect on the exciton formation19, in the present work this pulse is coming after the push pulse, since 

here we aim to understand effects of thermionic carriers injections on a system where the excitons are already formed. 

The first pulse arriving at the interface is the “push” pulse, and it is the previously mentioned second harmonic at 515 nm 

(2.4 eV) with a fluence of 200 mJ/cm2. Thus, it has sufficient photon energy to excite an electron-hole plasma in the 

WS2. The subsequent pulse, referred here as “pump”, is the fundamental wavelength of the laser amplifier at 1030 nm 

(1.2 eV), with a fluence of 1.7 mJ/cm2 and a temporal duration of 220 fs. The purpose of this pulse is to increase the 

electronic temperature of gold and promote the thermionic injection of electrons into the WS2
19

. With a photon energy of 

1.2 eV, this pulse cannot directly excite carriers in the semiconductor. Furthermore, we do not observe an ionization of 

the A-exciton due to thermionically injected electrons. Also, the contribution of two-photon absorption is negligible 

since the signal scales linearly with the fluence ranging from 0.8 mJ/cm2 to 7.2 mJ/cm2, as previously demonstrated19.  

 

 
Figure 1 – (a) Absorption spectra of WS2/Au in push-probe experiments (without pump pulse) at different push-probe delays.  (b) 

AFM measurement of gold substrate: amplitude image (upper panel) and roughness (lower panel). 

 

As a probe pulse we used visible white light generated by the fundamental laser pulses in a YAG crystal with a fluence 

of about 40 μJ/cm2. Due to the narrowband detection, temporal compression of the probe pulse is not necessary. The 

temporal overlap between pump and probe t2 = 0 is defined as the time when the normalized signal is equal to 0.5. The 

temporal overlap between pump and push t1 = 0 was determined by generating a nonlinear optical signal between the two 

pulses. Modulation of the exciting pulse (515 nm) was achieved with a Pockels cell. The sensitivity of our setup allows 

to detect a variation of the transient signal given a root-mean-square of the noise floor on the order 10-4 to 10-5. 

 

 
 

Figure 2 – Left panel: sketch of the experimental approach used in our work. A first push pulse excites electrons from the valence 

band in WS2 to the conduction band, and exciton (electron-hole pairs) are formed. After this first pulse, a second (pump) pulse (red 

color) comes and start a process in gold where hot carriers are injected into the semiconductor. Right panel: sketch of the real 

experiment with an optical microscopy image of the sample measured. The flake lateral dimension is around 10 μm. 
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3. RESULTS AND DISCUSSION 

The measured spectra of our WS2/Au samples for push-probe delays (t2) in the range of 0.2 ps to 0.8 ps (Figure 1a) show 

that the absorption associated with the A-exciton does not disappear for a fluence of 200 μJ/cm2, which implies that the 

transition from an excitonic to a fully plasma dominated regime does not take place in our case. In case of strong 

interaction between the injected carriers from Au and the excited carriers in WS2, it is reasonable to expect a significant 

change in the excited carrier dynamics especially when the ratio between the density of injected and excited carriers is 

varied. As shown theoretically in Ref. [59], the probability to form excitons in TMDs is modulated as a result of varying 

the density ratio between electrons in the conduction band and holes in the valence band. Therefore, we expect a 

modulation of the ultrafast dynamics in the absorption line of the A-exciton by varying this carrier ratio.  

 

 

Figure 3 – PPP experiment displaying the transient reflection signal at different delays between pump and push pulses. The pump 

pulse arrives after the push pulse has excited carriers in the semiconductor, so after the excitons have been formed. 

 

The introduction of an additional pump pulse with photon energy below the electronic bandgap of the WS2 is essential as 

it injects excess charges in the WS2. Furthermore, our PPP technique enables us to change the ratio between injected and 

excited charges by changing the fluence or by adding a temporal delay between the pump and push pulse (see for 

instance the inset in Figure 3, where we varied the pump fluence at t1 = 0 ps, that is at the overlap between pump and 

push pulses). It is important to note that changes of this ratio imply that we can explore a different environment for c-c 

scattering in WS2 which would affect the dynamics of processes occurring after exciton formation. In Figure 3 we show 

the transient reflection of our sample when the pump pulse excites the sample after 1 and 2 ps the arrival of the push 

pulse for different fluence values. As it can be inferred, after the push pulse has triggered the formation of excitons, hot 

carriers from gold start to trigger a process where the exciton population is reduced (compare the transient reflection 

signal for different fluences at a fixed pump-push delay time). This observation, in combination with the fact that exciton 

formation is accelerated at the overlap between pump and push pulses (see inset in Figure 3), confirms that optically 

pumped thermionic carrier injection represents a valid way to affect both excitons formation dynamics and their 

annihilation. A possible drawback of our approach is that the first push pulse might excite hot carriers also in gold, thus 
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in the first process is difficult to disentangle the effects of directly excited carriers in WS2 and thermionically injected 

carriers, as proved by a simple pump-probe experiment on the same sample in comparison with a simple semiconductor-

insulator system19. Nevertheless, electron dynamics due to gold is decaying very fast (within few hundreds of fs), so in 

the current experiment we can reasonably expect that the system, in particular at the metal-semiconductor interface, is 

mainly dominated by excitons population dynamics. 

 

4. CONCLUSIONS  

We used a pump-push-probe scheme to explore thermionic carrier injection effects at a metal-semiconductor interface by 

measuring the transient signal associated with the A-exciton relaxation dynamics in the semiconductor. Different 

dynamics are observed by varying the time delay between pump and push pulses, thus enabling to actively modulate the 

fast decay of the excitons population. The effect of optically excited carriers from gold induces a change in the rate of c-c 

scattering in WS2 and consequently modifies the dielectric environment and the probability to form/destroy excitons 

and/or charged excitons (i.e., trions), intrinsically affecting the overall charge dynamics in the semiconductor. 

Interestingly, one effect that was observed in our experiments and that can be attributed solely to the effect of charge 

injection is a qualitative tendency for the rise time to decrease as the pump fluence increases, while the maximum 

transient signal amplitude remains unchanged. To the best of our knowledge this effect, which turns out to be 

independent of the ratio between injected and excited charges, has not been predicted by any theoretical model. Our 

findings introduce an alternative approach to couple opto-electronic properties at a metal-semiconductor interface by 

controlling and exciton dynamics through electron injection across the Schottky barrier induced by an optical pulse. We 

foresee a potential impact of our studies on research fields that target the exploitation of ultrafast opto-electronic 

processes. 
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