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Abstract

Analysis of cardiovascular waveforms provides valuable clinical information about the state

of health and disease. The intrinsic frequency (IF) method is a recently introduced frame-

work that uses a single arterial pressure waveform to extract physiologically relevant infor-

mation about the cardiovascular system. The clinical usefulness and physiological accuracy

of the IF method have been well-established via several preclinical and clinical studies.

However, the computational complexity of the current L2 optimization solver for IF calcula-

tions remains a bottleneck for practical deployment of the IF method in real-time settings. In

this paper, we propose a machine learning (ML)-based methodology for determination of IF

parameters from a single carotid waveform. We use a sequentially-reduced Feedforward

Neural Network (FNN) model for mapping carotid waveforms to the output parameters of

the IF method, thereby avoiding the non-convex L2 minimization problem arising from the

conventional IF approach. Our methodology also includes procedures for data pre-process-

ing, model training, and model evaluation. In our model development, we used both clinical

and synthetic waveforms. Our clinical database is composed of carotid waveforms from two

different sources: the Huntington Medical Research Institutes (HMRI) iPhone Heart Study

and the Framingham Heart Study (FHS). In the HMRI and FHS clinical studies, various

device platforms such as piezoelectric tonometry, optical tonometry (Vivio), and an iPhone

camera were used to measure arterial waveforms. Our blind clinical test shows very strong

correlations between IF parameters computed from the FNN-based method and those com-

puted from the standard L2 optimization-based method (i.e., R�0.93 and P-value�0.005

for each IF parameter). Our results also demonstrate that the performance of the FNN-

based IF model introduced in this work is independent of measurement apparatus and of

device sampling rate.
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1. Introduction

General-purpose function approximators established by machine learning (ML) offer new per-

spectives in medical research [1]. Their accuracy, robustness and universality make them

appropriate building blocks for remote health monitoring and early diagnosis [2, 3]. The possi-

bility of developing effective ML algorithms, which could assist in the diagnosis of cardiovas-

cular diseases, has led to a quest for reliable yet efficient classification models of cardiovascular

waveforms [4–6].

Feedforward neural networks (FNNs) represent a widely-used class of neural networks

(NNs) that are trained for conventional ML tasks [7–9]. These simple NN architectures include

a few hidden layers connecting the input layer to the output one. While directly applying FNN

models on hemodynamic waveforms (i.e., arterial pressure waveforms) seems natural and

intuitive, the high dimensionality of the input signal renders naive FNN constructs as signifi-

cantly limited for practical data-driven diagnosis. Therefore, it is essential to introduce an

FNN architecture to extract key physiological information carried by input signals, serving as a

pre-prerequisite to achieve robust and efficient classifications on arterial pressure waves. There

exists a variety of reduced-order NN models due to a surging popularity in recent years that

has turned the construction of such models into an active area of research in recent years [10,

11]. Common reduced-order NN approaches (e.g., Active Subspace, Proper Orthogonal

Decomposition and Polynomial Chaos Expansion [12–14]) focus solely on the data and treat

the underlying physical/physiological dependencies as a black box—at the expense of relying

mostly on the training data. The proposed methodology of this work, on the other hand, lever-

ages the underlying physiological information of the waveforms. Indeed, we have adopted a

compressed FNN in our approach for diagnosing cardiovascular diseases based on a recently-

introduced signal analysis technique called the intrinsic frequency (IF) method (briefly over-

viewed in what follows and described in further detail in Section 2.1).

Traditional signal analysis methods such as Fourier transform have major limitations when

they are applied on waves/signals that arise from nonlinear and non-stationary systems. Time-

frequency analysis methods are effective tools for analyzing such signals [15–19]. The sparse

time-frequency representation (STFR) is a time-frequency method (inspired by empirical

mode decompositions, or EMD [18, 19]) that can preserve intrinsic physical characteristics of

a non-stationary and nonlinear wave [16, 17]. In addition, the STFR method is less sensitive to

noise and can be applied to sharp signals such as those found in arterial waveforms of the car-

diovascular system [20]. The mathematical formulation of an SFTR for a real signal p(t) is

given by pðtÞ ¼
PM

i¼1
aiðtÞcos yiðtÞ, where ai(t) is the envelope and θi(t) is the phase. The time-

derivative of ωi(t) = dθi/dt is called an instantaneous frequency. Pahlevan et al. [20] have

applied the SFTR method on arterial pressure waveforms and have shown that these instanta-

neous frequencies reveal physiologically relevant information about the dynamics of the left

ventricle (LV), the arterial system, and their coupling [20–26]. In particular, they have demon-

strated that the instantaneous frequency oscillates around a dominant frequency (ω1) during

systole (when the aortic valve is open) and subsequently switches to a different range and oscil-

lation around a second dominant frequency (ω2) during diastole [20] (when the aortic valve is

closed). These dominant frequencies are called intrinsic frequencies (IFs). Pahlevan et al. have

introduced a brute-force algorithm that extracts IFs from an L2 minimization problem, where

the minimization is solved for all possible values of frequencies in a domain. The correspond-

ing solution of such a formulation provides the pair of intrinsic frequencies, ω1 and ω2, that

has the minimum residual in the L2 optimization problem [20].

This work introduces an FNN workflow to calculate IF frequencies and other related IF

parameters directly from a signal (an arbitrary pressure waveform). The FNN approach is
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realized through a sequentially-reduced representation for computing IF parameters (i.e., ω1,

ω2) directly from pressure waveforms. In order to train, test, and validate our model, we have

employed both synthetic waveforms (reconstructed from exact IF values) and clinical wave-

forms. Our clinical training datasets include carotid waveforms measured by various devices

(i.e., tonometry, iPhone, Vivio) from two different clinical studies (FHS [27] and the HMRI

iPhone Heart Study [28]). After finalizing our model, we perform a blind clinical test by apply-

ing our model on noninvasively measured clinical carotid waveforms from 3009 patients from

the FHS database.

2. Materials and methods

2.1. Intrinsic frequency method

The Intrinsic Frequency (IF) method [20] is a recently-developed systems approach to investi-

gate the global dynamics of the cardiovascular system. As highlighted in the introduction (Sec-

tion 1), the IF method utilizes a modified version of the STFR [16] in order to extract the

dominant operating frequencies of the arterial blood pressure (BP) for both the coupled LV-

arterial system (systolic phase) as well as the decoupled aorta after aortic valve closure (diastolic

phase). In other words, the IF method models the cardiovascular dynamical system as an object

rotating around an origin by considering two independent and different dynamics representing

the cardiovascular system over one cardiac cycle: the coupled LV-arterial system and the decou-

pled LV/aorta dynamical system. In the coupled LV-aorta system, the average angular velocity

of rotation (average instantaneous frequency) is defined as ω1, while the average angular veloc-

ity during diastole is defined as ω2. The two dominant frequencies ω1 and ω2 are called the first

and second intrinsic frequencies, respectively. The IF method assumes that the instantaneous

frequency of a coupled dynamic system is piecewise constant over time with a step that occurs

at the time of decoupling (aortic valve closure). It should be noted that IF frequencies are funda-

mentally different than Fourier harmonics or any other resonance-type frequencies.

When applied to arterial waveforms, the IF method reveals clinically important information

about the dynamics of the LV and the arterial system (as well as their interactions) in both

healthy and disease conditions [21, 23, 24, 28–33]. Several clinical studies have confirmed the

clinical usefulness of cardiovascular IFs in both the diagnosis and prognosis of cardiovascular

diseases (CVDs) [23, 28, 30, 34]. One important advantage of the IF method for clinical appli-

cations is that the absolute magnitude of the arterial pressure wave is not required to extract

the IF parameters; only the waveform morphology is needed [20, 28]. As such, IFs can be easily

acquired noninvasively and inexpensively using a smartphone [24, 28], arterial applanation

tonometry, or a wearable sensor. In a notable study, the left ventricle ejection fraction (LVEF)

was accurately approximated by applying the IF method to the noninvasive carotid waveforms

measured by an iPhone camera [28].

2.1.1. Optimization-based IF approach (L2-minimization problem for calculation of

intrinsic frequencies). For an arterial waveform p(t) (e.g., of the aortic, carotid, or femoral),

the IF method solves [20, 35] a nonlinear optimization problem (L2-minimization) for a car-

diac cycle of length T through the objective function that is given by:

kpðtÞ � wð0;T0Þ½a1cosðo1tÞ þ b1sinðo1tÞ� � wðT0;TÞ½a2cosðo2tÞ þ b2sinðo2tÞ� � ck
2

2
ð1Þ

and minimized for variables ω1 and ω2, which represent the first (or systolic) and the second

(or diastolic) intrinsic frequencies, respectively, and a1, b1, a2, b2, c, which represent the corre-

sponding constant envelopes and intercept. Here, χ(a, b) is an indicator function defined by χ
(α, β) = 1 if α�t�β and χ(α, β) = 0 otherwise. The parameter T0 represents the decoupling

time (or the time to closure of the aortic valve, i.e., the dicrotic notch). Such an L2-
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minimization problem is subjected to two nonlinear constraints: continuity at the dicrotic

notch (T0) and periodicity of the waveform. These are formulated as

a1cosðo1T0Þ þ b1sinðo1T0Þ ¼ a2cosðo2T0Þ þ b2sinðo2T0Þ; and ð2AÞ

a1 ¼ a2cosðo2TÞ þ b2sinðo2TÞ; ð2BÞ

respectively. After solving the non-convex minimization problem defined by Eqs (1), (2A) and

(2B) for the seven optimization variables [a1, b1, ω1, a2, b2, ω2, c], optimum values of IF param-

eters are obtained. Fig 1A illustrates how the IF-reconstructed waveform represents the origi-

nal pressure waveform. Further details regarding the mathematical formulation,

computational procedure, scalability, convergence/accuracy, and applicability on non-invasive

measurements of the IF method have been provided in previous studies [20, 28, 35–37].

2.1.2. Reformulation of the intrinsic frequency method for the ANN-based IF

approach. Using trigonometric equations, the original formulation of the IF method (Eq (1))

can be reformulated as

Minimize : kpðtÞ � wð0;T0Þ½ðRssinðo1t þ φ1
Þ� � wðT0;TÞ½ðRdsinðo2t þ φ2

Þ� � ck2

2
; ð3Þ

where φ1 and φ2 are introduced as the initial intrinsic phases of the IF components associated

with ω1 and ω2, respectively (see Fig 1B). The parameters Rs and Rd represent the two regimes

of the piecewise constant envelopes for the systolic and diastolic IFs, respectively. These

parameters are related to the constants a1, b1, a2, b2 of Eq (1) respectively as

φ
1
¼ tg � 1ða1=b1Þ; φ2

¼ tg � 1ða2=b2Þ; Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1
þ b2

1

p
; Rd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
þ b2

2

p
ð4Þ

The non-dimensional ratio Rs/Rd of the two envelope constants is known as the envelope

ratio (ER) [21, 37]. The systolic IF parameters (ω1, φ1, Rs) are dominated by the dynamics of

the coupled LV-arterial system, whereas the diastolic IF parameters (ω2, φ2, Rd) are dominated

by the dynamics of just the arterial network [23, 24, 28, 30, 32, 38–41]. Fig 1B illustrates details

Fig 1. Illustration of the intrinsic frequency (IF) method. A) Reconstruction of a carotid pulse waveform using the IF method. The original

raw waveform in arbitrary units (dashed black) is overlaid on a waveform (blue) that is reconstructed from the IF method. B) IF visualization

during a cardiac cycle. The values ω1 and ω2 represent IFs during systole and diastole, respectively, and dθ/dt is the instantaneous frequency [20].

The location of the dicrotic notch is marked by the vertical green–dotted line. The values Rs and Rd are the envelopes of the IF reconstruction

associated with ω1 and ω2, respectively (note that, in general, Rs 6¼ Rd). The values φ1 and φ2 are the initial intrinsic phases associated with ω1 and

ω2, respectively.

https://doi.org/10.1371/journal.pone.0285228.g001
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about the above-mentioned mathematical reformulation through a visualization of ω1, ω2, φ1,

φ2, Rs and Rd during the systolic and diastolic phases.

2.2. Heterogeneous databases

In order to design our ANN model (i.e., train, validate, and test), we have used a mixture of

carotid waveform signals from 1) clinical databases (with waveforms measured by three dis-

tinct devices: Tonometry [30], Vivio [42], and iPhone camera [28]) and 2) a synthetic database.

The latter includes synthetically generated waveforms with exact IF values (ω1, φ1, Rs, ω2, φ2,

Rd, c) in order to ensure adherence to the mathematical formulation of IF during the training

process. The clinical databases enrich the training algorithm and subsequently the ANN

model for eventual clinical purposes (e.g., preparation for real-world physiological variations

and noise). Additionally, a portion of the clinical database is set aside before the design process

to facilitate a blind external test and thereby assess the robustness/accuracy of the final model

(see Section 2.7 for details).

2.2.1 Clinical database. Our clinical database for designing/blind-testing the model is

provided by two different clinical studies: the Framingham Heart Study (FHS) and the HMRI

iPhone Heart Study. Both studies include carotid artery waveforms of the participants. Since

these waveforms are from three distinct devices (Tonometry for FHS [27]; Tonometry, Vivio,

and an iPhone camera for HMRI [28]), all the waveforms are pre-processed through a normal-

ization procedure (Section 2.3.1) before being used by the ANN model.

2.2.1.1. Framingham Heart Study. In the Framingham Heart Study (FHS) Original, Off-

spring, Third Generation Cohorts, each participant underwent arterial tonometry data collec-

tion [27, 43, 44]. In this work, we employ the uncalibrated carotid waveforms that were

measured by applanation tonometry for a total number of N = 6697 (53% women) participants

in the study. The study protocol was approved by the Boston University Medical Campus and

Boston Medical Center Institutional Review Board (IRB), and the study participants were con-

sented prior to the study. The population/baseline characteristics are determined in terms of

mean ± standard error of the mean (SEM) as 50.6 ± 0.2 years, 129.0 ± 0.2 mmHg, 68.1 ± 0.1

mmHg, 60.9 ± 0.2 mmHg, 62.2 ± 0.2 bpm, and 27.1 ± 0.1 kg/m2 for age, brachial systolic BP,

brachial diastolic BP, brachial pulse BP, heart rate (HR), and body mass index (BMI),

respectively.

2.2.1.2.HMRI iPhone Heart Study. In the HMRI iPhone Heart Study [28], participants

underwent carotid artery waveform recordings using three different device platforms: a com-

mercial tonometry device (i.e., ATCOR Medical SphygmoCor [45]), an optical handheld

device (called Vivio [42, 46]), and a smartphone camera (i.e., an iPhone [28]). The study proto-

col was approved by the Quorum Review IRB. A total number of 2312 uncalibrated carotid

waveforms are selected from participants of the HMRI Heart Study for the database employed

in this work. These waveforms are normalized and resampled (as described later in Section

2.3) for constructing the ML model. The population/baseline characteristics are determined in

terms of mean ± SEM as 55.5 ± 2.2 years, 119.6 ± 1.7 mmHg, 75.9 ± 0.9 mmHg, 63.9 ± 1.2

bpm, and 25.6 ± 0.5 kg/m2 for age, cuff systolic BP, cuff diastolic BP, HR, and BMI,

respectively.

2.2.2. Synthetic database. A synthetic database is created using waveforms with exact IF

frequencies and parameters (i.e., ω1, φ1, Rs, ω2, φ2, Rd, c) and following the below procedure:

1. Application of a normalized IF analysis (described later in Section 2.3.1) to all the carotid

waveforms of both HMRI and FHS databases

2. Determination of the normalized IF parameters and their physiological ranges
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3. Determination of two-dimensional regions for different pairs of the scaled IF parameters in

order to distinguish the pairwise physiological regions and relationships

4. Generation of a uniform synthetic dataset using uniform meshing on the normalized IF

parameters within the pairwise physiological regions. Normalized waveforms P̂ðtÞ are gen-

erated by substituting the normalized IF parameters (described later in Section 2.3.1) into

the reformulated version of the IF method (Eq (3)).

Such a synthetic database is employed in order to expand the parameter set and improve

training of the IF method. Although the real-world clinical databases used here are tremen-

dously valuable for developing ML models, they are not uniformly distributed within physio-

logical ranges of interest. Indeed, the majority of the clinical waveforms in this work (Section

2.2.1) represent those IF parameters which tend to aggregate near the center of physiological

regions. Therefore, the areas closest to the margins (which are more likely associated with car-

diovascular diseases) are represented by fewer data points. As such, the synthetic database gen-

erated in this study, which can uniformly cover the whole physiological region of the

normalized IF parameters (based on the previously reported range of physiological IF parame-

ters), is ultimately needed to supplement the clinical database in order to achieve a more glob-

ally-accurate ML model. A fixed size of N = 500 datapoints is considered as the standard

waveform size for the generated synthetic waveforms (see Section 2.3.2).

2.3. Data pre-processing

2.3.1. Waveform normalization procedure. The IF parameters are not dependent on the

unit of the recorded signal; however, when it comes to the collection, archiving, or analysis of

a substantial number of datapoints for the IF method (e.g., towards machine learning, deep

learning, etc.), it is naturally highly effective to reduce the size of the archive via a normaliza-

tion of the waveforms without loss of generality (which can save enormous storage and time

especially in the big-data studies). Such a normalization is important to ensure that the devel-

oped model is sensor (or device) agnostic, especially since the heterogeneous clinical databases

contain measurements taken by different apparatus (whose raw waveforms can be of arbitrary

units). As such, a new standard coordinate system has been proposed [37] for arterial wave-

forms through which measurements of different devices (and even different species [37]) fall

within the same range of signals and IF parameters, enabling the inclusion of any arbitrary raw

arterial signal. In this spirit, a further normalization in time enables the mapping of all arterial

waveforms onto the same length of the cardiac cycle (T0 = 1). The normalization procedure is

as follows:

1. Subtract the minimum value Pmin = P(t) of the signal (given in any arbitrary measuring

unit) from the measured P(t) at all times of the entire cardiac cycle (i.e., P(t)−Pmin, 0�t�T)

2. Divide the resulting waveform by its range over the entire cardiac cycle (i.e.,

P̂ðtÞ ¼ ðPðtÞ� PminÞ=ðPmax� PminÞ; 0 � t � TÞ

3. Normalize in time by scaling t with the length T of the entire cardiac cycle (i.e.,

P̂ðtÞ ¼ P̂ðtðtÞÞ; t ¼ t=T; 0 � t � 1)

The procedure results in a scaled waveform P̂ðtÞ corresponding to the original signal P(t).
The IF method can then be applied to the scaled waveform, thereby extracting new (non-

dimensional) IF parameters as a result. Together with Eqs (1) through (4), the non-dimen-

sional normalized IF parameters can be expressed in terms of the original (main) IF
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parameters as follows:

ô1 ¼ o1T; ô2 ¼ o2T; ĉ ¼
c � Pmin
Pmax � Pmin

; T̂ 0 ¼
T0

T
;

R̂s ¼
Rs

Pmax � Pmin
; R̂d ¼

Rd
Pmax � Pmin

; ÊR ¼
R̂s
R̂d
; φ̂

1
¼ φ

1
; φ̂

2
¼ φ

2
: ð5Þ

The overall procedure yields a normalization of the range of waveform values as well as the

length of the cardiac cycle. Hence this technique enables cross-platform comparisons of IF

applied to any arterial waveform (measured by an arbitrary sensor platform), regardless of car-

diac cycle length and initial measuring units. Furthermore, a model developed based on this

normalization can be used for any species or any sensor platform with any arbitrary sampling

rate.

2.3.2. Waveform resampling procedure. The ANN model proposed in this work (Sec-

tion 2.4) is constructed so as to require a normalized dicrotic notch time and a scaled

carotid waveform as the input; the outputs of the model are the correspondingly scaled IF

parameters (i.e., ô1; ô2; R̂s; φ̂1
; ĉ). In particular, the ANN model inputs the discrete data-

points of a scaled carotid waveform. Since different measurement devices have different

sampling rates, the cardiac cycle period is neither the same for different individuals nor for

the same individual (e.g., beat to beat variations). Therefore, the normalized carotid wave-

forms are not of the same datapoint (vector) size. To resolve such sampling discrepancies

towards building a global ANN model, a fixed size of N = 500 datapoints per cardiac cycle is

considered as the standard waveform size that is input into the model. Hence, all considered

waveforms are down/over-sampled before being employed in the model, thereby generating

inputs of uniform dimension for the network. This facilitates consideration of signals from

any measurement device with any arbitrary sampling rate (in addition to any arbitrary unit

via the scaling procedure of Section 2.3.1). The waveform down/over-sampling process is

performed by the use of spline interpolation to temporal discretization space of R500 (using

the MATLAB Interp1 function).

2.4. Sequentially-reduced ANN model for solving the IF L2 optimization

Since the L2 optimization formulation originally introduced for IF calculations [20] is compu-

tationally expensive, we devise a sequentially-reduced ANN to effectively map the decoupling

time (the notch time) and the waveforms to IF parameters (e.g., ω1, ω2). There are several net-

work architectures that can be considered for this regression task [7], including FNNs, recur-

rent neural networks (RNNs), or temporal convolutional neural networks (TCNNs). The

training of FNN is much more efficient and less prone to overfitting when compared with

RNNs or TCNNs, although it requires inputs of a fixed size (unlike, e.g., RNNs). This, how-

ever, has been addressed by the proposed resampling of waveforms into uniform dimensions

(Section 2.3.2).

As illustrated in Fig 2, an FNN structure consists of one input layer, L hidden layers, and

one output layer. The target FNN should map the high-dimensional input vector x into an out-

put vector y of a significantly lower dimension (size). This results in a network of a sequen-

tially-reduced structure, with uniformly decaying numbers of neurons (i.e.,

W0 �W1 �W2 � . . . :: �WL �WLþ1 for a widthWl corresponding to layer l for 0�l�L+1).

In our implementation, the number of neurons is reduced by half in each hidden layer (i.e.,Wl

=W1/2l−1 for 1�l�L). For such an FNN structure, the forward propagation of the network is
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given by:

yð0Þ ¼ x;

yðlÞ ¼ factðw
ðlÞyðl� 1Þ þ bðlÞÞ; l ¼ 1; 2; . . . ; L;

y ¼ yðLþ1Þ ¼ wðLþ1ÞyðLÞ þ bðLþ1Þ
; ð6Þ

where w(l) are the weight matrices, b(l) are the bias vectors, and fact is the nonlinear activation

function. In this work, we use the Swish activation function fact(x) = x*sigmoid(x) [47].

The inputs of the network are the normalized notch time and the 500-point interpolated

waveform, leading to a space of dimensionality R501. The outputs of the model are the scaled

IF parameters ô1; ô2; R̂s; φ̂1
and ĉ. Other IF parameters can be analytically computed from

these five outputs (using the continuity and periodicity constraints) as

φ̂
2
¼ tan� 1 sinðφ̂

1
Þsinðô2T̂ 0Þ � sinðô1T̂ 0 þ φ̂1

Þsinðô2Þ

sinðô1T̂ 0 þ φ̂1
Þcosðô2Þ � sinðφ̂

1
Þcosðô2T̂ 0Þ

 !

and

R̂d ¼
R̂ssinðφ̂1

Þ

sinðô2 þ φ̂2
Þ
: ð7Þ

Since the output variables have different scales (ranges), it is necessary to perform feature

scaling [48] in order to train a network to have uniform accuracy across all output variables.

The feature scaling for a variable y is given by ŷ ¼ ðy � y Þ=sy; where y and σy are the mean

Fig 2. Structural schematic of the sequentially–reduced feedforward ANN model for predicting the IF method outputs from a single carotid

waveform with a given dicrotic notch time (the decoupling time). Here, L is the number of hidden layers.

https://doi.org/10.1371/journal.pone.0285228.g002
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and standard deviation of y, respectively. During the training, the weights and biases of the

network are adjusted by minimizing a loss function. The loss function employed here is the

mean squared error (MSE). An L1 (resp. L2) weight regularization term, which is the sum of

absolute (resp. squared) values of the weights, is added to the loss function to avoid overfitting.

The amount of regularization is controlled by using a hyper-parameter λ. The optimal weights

and biases are obtained by employing the Adam stochastic optimizer [49]. In each epoch, the

training data set is shuffled and then divided into several mini-batches. The weights and biases

are updated every time the loss function is minimized on the mini-batch. The network param-

eters converge after the training is performed on a sufficiently large number of epochs. The

convergence speed of the training is controlled by the learning rate (default value of 10−3).

Each network is trained with 10 restarts in order to avoid the influence on training of the ran-

dom initialization of weights and biases [50].

The hyper-parameters employed in the network training of this work are listed in Table 1.

A grid-search of the hyper-parameters is performed to find the optimal network configuration

[7]. Training is implemented in Keras with Tensorflow as the backend [51]. The trained net-

work with the smallest validation error is ultimately selected for our model.

2.5. Training data size and sensitivity analysis

We employ a total number of N = 6000 clinical waveforms (i.e., a combination of the entire

HMRI database and 55.1% of the FHS database) as well as N = 8208 synthetically generated

waveforms to design (i.e., train, validate, and generalize) our proposed FNN model. For the

training data, 80% of the clinical waveforms (N = 4800) and 100% of the synthetic waveforms

(N = 8208) are used. Of the remaining clinical waveforms, 10% (N = 600) are employed as the

validation data for the model selection, and the final 10% (N = 600) are reserved for the test

data in the estimation of generalization accuracy. The rest of the clinical data (remaining

44.9% of FHS) is used for a blind clinical test.

Sensitivity analysis is performed to assure that the training data size is sufficient. To this end,

the training data size is decreased gradually from a total training data size corresponding to

N = 13,008 cases (i.e., 4,800 clinical waveforms and 8,208 synthetic waveforms). The mean squared

error (MSE) for both training and validation losses is correspondingly measured. We use the same

validation population (N = 600 clinical waveforms) to compare the accuracy of the trained models.

As described previously, our clinical pressure waveform database is provided by measure-

ments from different devices subject to different resolutions. Since the input size of the pres-

sure waveform is set to n = 500 in our proposed ANN model, all waveforms are down/over-

sampled to n = 500 (as described in Section 2.3.2) prior to being fed into the model. The effects

of this resampling on our model’s predictions are studied in Section 3.4.

2.6. Analysis and statistical methods

Fig 3 presents a flowchart diagram summarizing both the (standard) L2 optimization-based

approach and the proposed ML-based approach for computation of the IF parameters. The

Table 1. Values of the training hyper–parameters employed in this work.

Hyper-parameter Notation Range

Number of hidden layers L 3, 4, 5

Number of neurons of the first hidden layer W1 128, 256, 512

Regularization type Reg L1, L2

Regularization coefficient λ 10−5, 10−6, 10−7

https://doi.org/10.1371/journal.pone.0285228.t001
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agreement level, bias, and precision between the ANN-based IF predictions and the L2 optimi-

zation-based IF parameters (presented in Section 3) are assessed by employing different met-

rics: a regression (Pearson correlation coefficients), root mean square errors (RMSE), relative

errors of the ensembles, point-wise average relative errors, Bland-Altman analysis [52, 53], and

a histogram analysis of the absolute errors.

2.7. Blind clinical test

We further test the developed model using the stratified blind test technique. The model is

blindly tested on N = 3009 additional Framingham Heart Study (FHS) clinical waveforms that

are set aside prior to our ML model development (a so-called “external validation”).

Fig 3. Flowchart diagram summarizing the standard optimization–based IF approach and the proposed ML–based IF

approach.

https://doi.org/10.1371/journal.pone.0285228.g003
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3. Results

3.1. Training

The optimal network obtained in this work contains four hidden layers (L = 4) of widths

W = 256, 128, 64, and 32 neurons. The training performed with the L2 loss function employs a

value of 10−6 as the coefficient of the regularization. The generalization test error of the final

model is presented in Table 2.

3.2. Sensitivity of the network design

The sensitivity of the accuracy to the training data size is shown in Fig 4. MSE loss decreases

gradually for both training loss and validation loss after increasing the relative training size

from 20% to 100% of the training data (Fig 4). The 100% of the training data corresponds to

N = 13,008 waveforms. It is noteworthy that MSE is in absolute units corresponding to its cal-

culation from the normalized outputs.

3.3. Blind clinical test

Here, we use the blind clinical test to assess the efficacy of our proposed ML-based IF model

with different indices and figures. The resulting RMSE and relative errors of the blind clinical

test (described in Section 2.7) are presented in Table 3. To investigate and confirm the agree-

ment between the FNN-based IF parameter predictions and the standard L2-based IF calcula-

tions, we also used blind test data and plotted different statistical analysis figures (i.e.,

Table 2. Generalization accuracy results for the optimal ANN model.

Output Range RMSE (ML-based Vs. Optimization-based Approach) Relative Error of the Ensemble (ML-based Vs. Optimization-based Approach)

ô1 [60.4, 143.5] 0.63 0.71%

ô2 [26.9, 152.3] 1.49 2.44%

R̂s [0.49, 0.94] 0.006 0.84%

φ̂
1

[-1.06, 0.16] 0.014 4.74%

ĉ [0.14, 0.51] 0.005 1.55%

https://doi.org/10.1371/journal.pone.0285228.t002

Fig 4. Sensitivity of precision in terms of mean squared error (MSE) loss (for training and validation) versus the

relative training data size. Here, 100% of the training size corresponds to N = 13,008 waveforms. MSE is in absolute

units corresponding to its calculation from the normalized outputs.

https://doi.org/10.1371/journal.pone.0285228.g004
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regression plots, Bland-Altman plots, and error histograms) for the scaled IF parameters

(Figs 5 and 6). The diagonal dotted line in the regression plots represents equality. In the

Bland-Altman plots, limits of agreement (LoA) are shown by the two horizontal solid lines in

purple. The Bland-Altman analysis helps with confirming a low bias for the ML-based IF

parameter predictions. The error histograms also help with investigating and confirming low

occurrence of high errors for the ML-based IF parameter predictions.

3.4. Effects of measurement device and sampling rate

As mentioned earlier, the ML model requires that every waveform undergoes a normalization

and a resampling to 500 samples (datapoints) per cardiac cycle. However, the model depen-

dency on the original sampling rate of the waveform or the measurement device should be

assessed to ensure that the model stays accurate across different sampling rates and measure-

ment devices. The effects of measurement device and signal sampling rate on IF parameter

predictions produced by the model are shown in the scatter and box-whisker plots of Figs 7

Table 3. Errors and ranges of the blind clinical test results for proposed ANN design (N = 3009).

Output Range RMSE (ML-based Vs. Optimization-based Approach) Relative Error of the Ensemble (ML-based Vs. Optimization-based Approach)

ô1 [75.0, 155.2] 1.81 1.82%

ô2 [19.2, 71.3] 2.70 5.62%

R̂s [0.43, 0.89] 0.0139 2.01%

φ̂
1

[-1.269, -0.008] 0.0349 9.99%

ĉ [0.18, 0.58] 0.0144 4.00%

https://doi.org/10.1371/journal.pone.0285228.t003

Fig 5. Statistical analysis of the blind clinical tests in terms of regression plots (left column), Bland–Altman plots (middle column), and error

histograms (right column) of the scaled IFs ô^
1 (top row: a1, a2, and a3, respectively) and ô2 (bottom row: b1, b2, and b3, respectively).

https://doi.org/10.1371/journal.pone.0285228.g005
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and 8 where errors are presented for ô1; ô2; R̂s; φ̂1
; and ĉ computed from the ANN model

using all the clinical data that are used in the design process. The vector size of these wave-

forms ranges from 50 to 169 (for iPhone measurements), 150 to 619 (for Tonometry measure-

ments), and 558 to 1560 (for Vivio measurements). The box-whisker plot here displays a five-

index summary of error for each device by showing the minimum, first quartile, median, third

quartile, and maximum.

4. Discussion

An ML framework provides a viable alternative to the mechanistic models in health monitor-

ing and disease diagnosis. However, model objectives should be designed carefully in order to

achieve robust and successful ML implementations that can extract crucial physiological infor-

mation. In order to avoid high-dimensional classification settings arising from diagnosing car-

diovascular diseases, we have posed the problem of such clinically-relevant analysis in terms of

the intrinsic frequency (IF) domain. In particular, we have introduced a sequentially-reduced

Fig 6. Statistical analysis of the blind clinical tests in terms of regression plots (left column), Bland–Altman plots (middle column), and error

histograms (right column) of the scaled first intrinsic envelope (R̂s; top row: a1, a2, and a3, respectively), the scaled first intrinsic phase (φ̂
1
; middle

row: b1, b2, and b3, respectively), and the scaled fitting constant (̂c; bottom row: c1, c2, and c3, respectively).

https://doi.org/10.1371/journal.pone.0285228.g006
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FNN model which directly extracts IFs of arterial pressure waveforms. The model has been

designed (i.e., trained, validated and tested) using a heterogeneous database that includes both

clinical pressure waveforms as well as synthetic waveforms. The clinical dataset employed has

been generated from two different clinical study cohorts (FHS and HMRI) with carotid wave-

forms measured using three different device (sensor) platforms: traditional tonometry devices

(with piezoelectric sensors), an optical wireless tonometer (Vivio), and an iPhone camera. We

have performed an external blind test on the model using 3009 clinical waveforms, where our

presented results demonstrate excellent agreement between the FNN-based IF and the stan-

dard non-convex optimization formulation (i.e., the brute-force L2 method).

The FNN-based IF model proposed in this work has been constructed using four sequen-

tially-reduced hidden layers with 256, 128, 64, and 32 neurons at the first, second, third, and

fourth layer, respectively. A total of 13008 waveforms (N = 4800 clinical waveforms and

N = 8208 synthetic waveforms) have been used to train, validate, and test the designed model.

Each waveform goes through a pre-processing step (Section 2.3) that includes normalization

and resampling (500 timesteps per cycle). These pre-processed waveforms are used as input

Fig 7. Effects of the original sampling rate and measurement device on predictions of IFs from the ANN model. Scatter plots and box–whisker

plots of the error for the scaled IFs ô^
1 (top row: a1 and a2, respectively) and ô^

2 (bottom row: b1 and b2, respectively). The measurement devices

include Tonometry (shown by blue circles), Vivio (shown by red circles), and iPhone (shown by orange circles).

https://doi.org/10.1371/journal.pone.0285228.g007
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for the FNN model. The corresponding outputs of the network are the two scaled intrinsic fre-

quencies ô1; ô2 and associated envelope and phase parameters R̂s; φ̂1
; ĉ (other IF parameters

can be computed analytically from these five outputs, as described in Section 2.4). These scaled

Fig 8. Effects of the original sampling rate and measurement device on predictions of related IF parameters from the ANN model. Scatter

plots and box–whisker plots for the scaled first intrinsic envelope (R̂^
s; top row: a1 and a2, respectively), the scaled first intrinsic phase (φ̂

1
^; middle

row: b1 and b2, respectively), and the scaled fitting constant (ĉ^; bottom row: c1 and c2, respectively). The measurement devices include Tonometry

(shown by blue circles), Vivio (shown by red circles), and iPhone (shown by orange circles).

https://doi.org/10.1371/journal.pone.0285228.g008
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IFs can get translated back to the unscaled (dimensional) IF parameter values for each individ-

ual waveform using Eq (5). As shown in Table 2, ô1 computed from the designed FNN-based

IF model results in an RMSE of 0.6 (over a range of 60 to 143) with a relative error of 0.71%.

The corresponding relative error for ô2 was 2.4% with an RMSE = 1.49 (over a range of 27 to

152). The sensitivity to the training data size on the accuracy attained by the proposed model

has been tested by gradually increasing the relative size of the training data (from 20% to 100%

of the data). As shown in Fig 4, additional data after 80% of the relative size has negligible effect

on the improvement of the network accuracy (<0.001).

We have also performed an external (stratified) blind test on the model using a random

assortment of clinical pressure waveforms from FHS clinical database that were set aside

before constructing and training the model. The resulting correlation coefficients in this blind

test were R = 0.98 for the first IF (ô1) and R = 0.93 for the second IF (ô2). The correlation

coefficients are higher than R = 0.95 for all other IF-related parameters (other outputs). Such

high correlations attest to the efficacy of our proposed ML-based IF model. As shown in

Table 3, the intrinsic frequencies ô1 and ô2 demonstrate low relative errors of 1.82%

(RMSE = 1.81; range: 75–155) and 5.62% (RMSE = 2.70; range: 19–71), respectively. The

Bland-Altman plots of Figs 5 and 6 additionally confirm the excellent agreement between the

FNN-based IF parameter predictions and the standard L2-based IF calculations.

Our models only require that every waveform undergoes a normalization and a resampling

to n = 500 samples (datapoints) per cardiac cycle. Figs 7 and 8 assess the performance of the

model as a function of different sampling rates and measurement device platforms. As demon-

strated in such scatter and box-whisker plots, the error is independent of the sensor platform

and sampling rate. Hence, any arterial waveform acquired from any arbitrary measurement

device with any arbitrary sampling rate can be used as an input to the FNN-based IF model.

Although the model performed very well for majority of waveforms with low original vector

size, over-sampling of the waveforms during preprocessing can cause error as most of the rela-

tively high errors occurred for the waveforms with lower original vector sizes. In addition to

its accuracy and independence from chosen measurement apparatus, the devised FNN algo-

rithm is computationally efficient (which is a particular motivation of the present work). The

online predictions are almost real-time for each resampled waveform in blind clinical tests

(3.94e-5 seconds on a laptop with a 2.3 GHz Quad-Core Intel Core i5 CPU). The offline train-

ing takes around 14 minutes per network (100% training dataset; maximum 5 layers; 512, 256,

128, 64 and 32 possible neurons; one restart). In contrast, the L2 optimization for IF computa-

tions takes multiple seconds per waveform (around 9 to 40 seconds depending on the optimi-

zation settings via the same laptop).

In this manuscript, we have presented an FNN for determining IF parameters of a coupled

system with only one decoupling point (the time of the dicrotic notch, i.e., when the aorta and

the heart decouple). The methodology can be easily extended to coupled systems with multiple

(two or more) decoupling times in more physically complex systems. As is the case for only

two IFs, extracting more IFs from such systems is computationally expensive when a brute-

force L2 minimization technique is used. However, the computational times demonstrated for

the FNN-based IF-model of this work imply that an ML-type model may also be able to extract

multiple IFs of interest within a fraction of a second.

4.1. Limitations and future work

The main limitation for the current study is that the clinical value of the IF parameters pre-

dicted by our proposed FNN-based approach (for diagnostic and prognostic cardiovascular

diseases) has not been assessed. This will be studied in our future work. Furthermore. the
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methodology proposed in this work will be extended and applied to other complex systems

with multiple (two or more) decoupling times.

5. Conclusions

In this work, a sequentially-reduced FNN model has been proposed for the prediction of IF

parameters without the need to directly solve the standard IF non-convex optimization prob-

lem (and corresponding L2 minimization). The model inputs a normalized carotid waveform

and produces IFs and envelope/phase parameters as the output. The FNN-based IF parameters

demonstrate excellent agreement with the L2-based IF parameters in an external blind test on

the clinical data. Since a normalized waveform is used as the model input, any carotid wave-

form recorded by any sensor platform and from any species (e.g., rat or rabbit) can be accepted

by the model. Hence the model is compatible with any device that collects invasive or non-

invasive waveforms.
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