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Abstract. Effective integration of renewables is essential in the energy transition, which
necessitates efficient management of intermittent renewable energy generation, system cost
minimization and continuous balance between supply and demand. Due to the problem’s
multifaceted nature, tools with a simplified representation of energy system operation are
often used to ensure computational tractability, causing performance gaps between planning
and operation stages. This work quantifies the gaps focusing on the impacts of model fidelity
and dispatch strategy, such as the representation of physical constraints at different levels and
varying forecast horizons. More specifically, a real-world case study with three energy hubs is
considered. A Pareto front is first obtained considering the trade-offs between cost and carbon
footprint using the Ehub tool, a state-of-the-art energy system planning tool. Following that, the
cost-optimal and the emission-optimal designs are selected for evaluating the performance gaps,
using the dispatch strategies obtained from the Ehub tool as the baseline. Results show that
detailed considerations of physical constraints influence grid dependencies and fuel consumption
but there are no significant impacts on resultant total costs. The cost increase due to detailed
physical constraints is higher for the cost-optimal system than for the emission-optimal system.
Moreover, limiting the forecast horizon to 24 hours has significant impacts on the emission-
optimal system with an increase in total system cost by 20.3 %. In contrast, there is only a
marginal increase of 0.8 % for the cost-optimal system.

1. Introduction
Historically, energy system operations have been centralized and hierarchical with the goal
of continuous balance between energy supply and demand. Currently, the energy sector is
undergoing significant structural changes due to climate change mitigation plans and there has
been a substantial increase in integrating renewable energy resources into the energy system.
IRENA [1] estimates that in the European Union, the share of renewables in the energy mix can
increase from 17% in 2015 to 34% by 2030 cost-effectively, with renewable energy technologies
primarily installed in the existing built environment. Such structural changes require additional
modelling of distributed energy systems, which can be facilitated using the energy hub concept [2]
that establishes a multi-energy system model consisting of diverse energy production, conversion,
storage and network components. State-of-the-art energy system planning tools consider model
simplifications to reduce computational burdens [3]. For example, ramping limits, minimum
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run-time and device degradation are neglected and conversion efficiencies are assumed to be
constant. Additionally, planning tools assume full knowledge of energy demands and outputs
from renewables for the entire design period, whereas system operators have only partial
knowledge during dispatch. Despite the simplicity being an advantage, performance gaps exist
between energy system planning and operation. The main focus of this work is to explore the
impacts of model fidelity and dispatch strategy on the performance gaps. More specifically,
operational cost is used as the key performance indicator during the comparison.

2. Methodology
A schematic overview is depicted in Figure 1, which illustrates the overall workflow in four steps.
First of all, the Ehub tool [3], representing state-of-the-art planning tools, is utilized for system
design considering the boundary conditions of a case study system, such as heat and electricity
demands. With this tool, two design solutions to a multi-objective optimization problem are
obtained, considering the trade-off between minimizing financial investments and minimizing
environmental impacts. The dispatch strategies obtained from the Ehub tool are considered
as the baseline. Following that, a simplified Model Predictive Control (MPC) is formulated
to assess the impacts of shorter weather and demand forecasts on system costs and operation
patterns. While the Ehub modelling tool optimizes system operation with full knowledge of
demands and Renewable Energy Sources (RES) output for the entire design period, MPC
adopts a rolling-horizon optimization strategy using short-term forecast of system response and
boundary conditions such as energy demands. Subsequently, a more detailed dispatch strategy
is formulated to include realistic representation of physical constraints. Lastly, the performance
gaps are quantified by comparing the operational costs in all cases with the baseline. The

Ehub tool

Case study system

Step 2: generate a Pareto 
front and select designs

Step 3: detailed dispatchStep 1: baseline results

Step 4: compare and 
quantify performance gaps

Figure 1: Workflow of system design and generating baseline results using the Ehub tool,
the selection of system designs, the investigation into detailed dispatch and the evaluation
of performance gaps. Steps 1 and 2 together provide two system designs that supports the
investigation into detailed dispatch in step 3.

Optimal Control Problem (OCP) for the MPC is formulated compactly in Equation 1. It
concerns the optimal operation of all energy generators and storage systems to minimize system
costs within the horizon considering constraints on load, supply, generator capacity, and ramping
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rates.

minimize
Pk,Qk ∀k∈{0,...,N−1}

N−1∑
k=0

Cgas
k Fimp

k + Cimp
k Pimp

k − Rexp
k Pexp

k

subject to PT
k · 1 = P̂k, ∀k ∈ {0, . . . , N − 1},

QT
k · 1 = Q̂k, ∀k ∈ {0, . . . , N − 1},

X0 = X̂t, Xk+1 = AXk + BUk, ∀k ∈ {0, . . . , N − 1}, (1)

Pk = f1(F
gas
k ), Pk ∈ P, ∀k ∈ {0, . . . , N − 1},

Qk = f2(F
gas
k ), Qk ∈ Q, ∀k ∈ {0, . . . , N − 1},

∆Pk ∈∆, ∀k ∈ {0, . . . , N − 1}.

where N is the time horizon, k is the index of time step within the horizon, Pk and Qk are
the vectors of electricity and heat outputs, P̂k and Q̂k are the estimated electricity and heat
demands, t is the time stamp, Cgas

k ∈ R+ denotes the cost of gas, Cimp
k ∈ R+ denotes the

cost of imported electricity, Rexp
k ∈ R+ denotes the remuneration of electricity export, A and

B describe the state evolution of the storage systems, Uk denotes the inputs into the storage
systems, Fgas

k denotes the vector of fuel consumption, Fimp
k denotes the total fuel consumption,

f1(·) and f2(·) represent the energy conversion, P and Q are the constraint sets of electricity
and heat outputs, 1 denotes the vector of ones, ∆Pk describes the power differentials between
adjacent time-steps, ∆ denotes the set of ramping limits, X0 is the vector of the initial states
(e.g., state-of-charge of batteries), and X̂t is the vector of estimated states. This work assumes

that the electricity demand P̂k, the thermal demand Q̂k and the initial states X0 are exactly
known. The optimization aims at minimizing total costs subject to energy balances of heat
and electricity, operational limits of all technologies and initialization, with Pk and Qk being
the decision variables. Note that slack variables are introduced wherever suitable to ensure
feasibility but are omitted for simplicity.

3. Case study
The energy hubs were based on a case study carried out for the village Rolle in Switzerland and
more information can be found in reference [4]. In this case study area, buildings were clustered
into hubs and the multi-hub energy system represents a district-scale application, in which
demands represent aggregated electricity and heat loads of a couple of hundred buildings. The
heat demand patterns of hub A, B and C as well as the temperature levels during four typical
weeks in all seasons are exemplified in Figure 2. Specifically, electricity and heat demands
were considered inflexible in this study. The simplified MPC adopts same techno-economic
characteristics as the Ehub tool and the comparison concerns the impacts of forecast horizon.
The detailed MPC considers realistic representation of techno-economic characteristics, allowing
assessment of the impacts of model fidelity. The remaining section describes the additional
considerations that differentiate the detailed dispatch from the simplified dispatch strategy. The
operational characteristics of Combined Heat and Power (CHP) was considered using a piece-
wise approximation of its operational area. Additional ramping rates and minimum run-time
constraints [5] were included in the detailed dispatch. Battery degradation was incorporated by
considering the marginal aging cost of each battery cycle [6]. A dynamic tariff was considered
with higher grid tariffs on weekdays between 7 a.m. and 8 p.m. and Saturdays from 7 a.m. to
13 p.m. with 0.27 CHF/kWh and 0.22 CHF/kWh for the rest of the time [7]. The tariffs were
adjusted in magnitude to match the grid tariff assumption in the Ehub tool, which is crucial to
ensure comparable results. Furthermore, the MPC implementation was conducted for prediction
horizons of 4 hours, 12 hours and 24 hours. Note that perfect foresight of price, load patterns
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and weather conditions were assumed. Additionally, a connection to the external power grid
was assumed allowing electricity import when there was insufficient energy supply within the
hubs.

(a) Hub A (b) Hub B

(c) Hub C (d) Temperature

Figure 2: Temperature patterns and corresponding heat demand patterns in all energy hubs.

4. Results
This section first presents the results of system designs followed by discussing the control results
in all cases, where the same system designs were used. A variety of technologies were considered
in system design, namely Ground Source Heat Pump (GSHP), Photovoltaic (PV), micro-CHP,
CHP, Thermal Photovoltaic (PVT), gas boiler, water-based thermal storage and batteries. A
range of designs with diverse cost and emission levels were obtained using the Ehub tool. For
a concise discussion of performance gaps, the rest of the paper focuses on two Pareto-optimal
solutions when implementing MPC-based dispatch: the cost-optimal system and the emission-
optimal system, as shown in Figure 3.

The cost-optimal design represented a system design with a highly-dispatchable capacity
(large gas-fuelled CHP units) and a high share of RES in power supply. The emission-optimal
design featured a system design with high shares in both the heat and the power supplies, large
batteries and thermal storage within all energy hubs. More specifically, Hub A operated a large
and a micro-CHP. Each of the three energy hubs operated a GSHP and PV in the cost-optimal
design. In the emission-optimal design, Hub A relied heavily on PVT that produced electricity
and heat simultaneously. In the emission-optimal design, all energy hubs operated large storage
devices as shown in Table 1. In contrast, only the largest Hub A operated a short-term storage
and Hub B operated a negligible thermal storage in the cost-optimal design. In both designs, the
energy hubs also partially relied on gas boiler. With the system designs presented in Figure 3,
the simplified MPC and the detailed MPC were implemented and the comparison with the
baseline is exemplified for Hub A in Figure 4.
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Figure 3: Technology mix and the corresponding capacities in energy hubs A, B and C.

Table 1: Storage system sizing in the cost-optimal design (denoted as PP1) and the emission-
optimal design (denoted as PP8).

Hub A Hub B Hub C Hub A Hub B Hub C
Storage PP1 PP1 PP1 PP8 PP8 PP8
Hot water tank [kWhth] 14340 2 - 147106 4275 249
Battery [kWhel] 840 - - 4907 2124 297

(a) Cost-optimal design. (b) Emission-optimal design.

Figure 4: Total operational cost of the largest Hub A calculated for the Ehub dispatch, a
simplified MPC control and the MPC control with detailed physical constraints. The comparison
is made for horizons of 4 hours (grey), 12 hours (yellow) and 24 hours (red).

In the cost-optimal design, reducing the forecast horizon to 24 hours only led to marginal
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increase in total cost by 0.8 %, since there were highly-dispatchable generator capacities.
However, the reliance on CHP units increased along with more fuel consumption when grid
imports were limited. Further consideration of weather-induced performance degradation of PV
panels, physical constraints of gas boilers and CHP units reduced system flexibility in the cost-
optimal design and the total cost increased by 2.9% compared to the Ehub tool. In the emission-
optimal design, there were high shares of renewables in both heat and power supplies. The
system costs and heat mismatches increased significantly when reducing the horizon. Concretely,
limiting the forecast to 24 hours greatly affected the total cost resulting in an increase by
20.3 %. Detailed consideration of operational constraints further reduced system flexibility in
the emission-optimal design leading to cost increase by 20.9 % compared to the baseline.

5. Conclusion
The energy systems are experiencing system-wide changes due to large-scale integration of
renewables and decision makers need to consider system planning and operation holistically.
The existing energy system planning tools, such as the Ehub tool, commonly consider simplified
representation of the operational stage to mitigate computational burdens. This introduces
performance gaps between design and operation stages. This work aims to quantify such gaps
using a real-world case study system and focuses on the impacts of model fidelity and dispatch
strategies. A comparison between the simplified MPC and the dispatch strategy from the Ehub
tool shows the impacts of forecast horizon length. Instead of full knowledge within the entire
design period, MPC implementations with horizons of 4 hours, 12 hours and 24 hours are
evaluated. The performance gaps are quantified for two selected system designs: the cost-optimal
design and the emission-optimal design. Results show that limiting the horizon of forecast to
24 hours has larger impacts for the emission-optimal system than for the cost-optimal system.
Additionally, detailed considerations of physical constraints influence grid dependencies and fuel
consumption but there are no significant impacts on resultant costs. Nonetheless, a number of
limitations must be noted. The study assumes perfect foresight of load patterns and prices,
which is not realistic. Future work includes examining the impacts of forecast errors. Second,
the results obtained have implication on improving system design. This information feedback to
the design stage needs to be further investigated. Lastly, heating demand is considered inflexible
in this work and exploring their impacts on system operation can be further investigated.
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