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Proteomic-based stratification of intermediate-risk
prostate cancer patients
Qing Zhong1,* , Rui Sun2,3,*, Adel T Aref1,* , Zainab Noor1,*, Asim Anees1,*, Yi Zhu2,3, Natasha Lucas1 ,
Rebecca C Poulos1, Mengge Lyu2,3, Tiansheng Zhu2,3, Guo-Bo Chen4 , Yingrui Wang2,3, Xuan Ding2,3,
Dorothea Rutishauser5 , Niels J Rupp5, Jan H Rueschoff5, Cédric Poyet6 , Thomas Hermanns6, Christian Fankhauser6,7,
Marı́a Rodrı́guez Martı́nez8 , Wenguang Shao9, Marija Buljan10,11, Janis Frederick Neumann12, Andreas Beyer12 ,
Peter G Hains1 , Roger R Reddel1 , Phillip J Robinson1, Ruedi Aebersold13,14 , Tiannan Guo2,3 , Peter J Wild15,16

Gleason grading is an important prognostic indicator for prostate
adenocarcinoma and is crucial for patient treatment decisions.
However, intermediate-risk patients diagnosed in the Gleason
grade group (GG) 2 and GG3 can harbour either aggressive or non-
aggressive disease, resulting in under- or overtreatment of a
significant number of patients. Here, we performed proteomic,
differential expression, machine learning, and survival analyses
for 1,348 matched tumour and benign sample runs from 278
patients. Three proteins (F5, TMEM126B, and EARS2) were iden-
tified as candidate biomarkers in patients with biochemical re-
currence. Multivariate Cox regression yielded 18 proteins, from
which a risk score was constructed to dichotomize prostate
cancer patients into low- and high-risk groups. This 18-protein
signature is prognostic for the risk of biochemical recurrence and
completely independent of the intermediate GG. Our results
suggest that markers generated by computational proteomic
profiling have the potential for clinical applications including
integration into prostate cancer management.
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Introduction

Prostate cancer (PCa) is the third most common cancer among men
by incidence (14.1%) and the fifth in terms of cancer-related

mortality worldwide (among men, 7%) (1). In Australia, Western
Europe, and North America, PCa is the most commonly diagnosed
cancer among men and the second most common cause of cancer-
related death (1). PCa is a highly heterogeneous disease, and so far,
most of the treatment-decision algorithms depend on risk strati-
fication based on the tumour stage, the prostate-specific antigen
(PSA) level at the time of diagnosis, and the Gleason grade group
(GG) (2). Although this clinical risk stratification has been shown to
be of the prognostic and predictive value (3), better biomarkers are
still required to improve patient stratification.

The Gleason score (GS) is a grading classification of the growth
pattern of prostatic adenocarcinoma. The total GS (from 6 to 10)
represents the summation of the two most common predominant
scores (from 1 to 5) within the specimen (4). Despite its proven
prognostic value, there was major heterogeneity within the GS7,
with a differential prognosis observed between the GS7 (3 + 4) and
GS7 (4 + 3) patterns (5). Because of this, the International Society of
Urological Pathology (ISUP) developed a modification to the GS
system in 2014 and created a new grading of five groups, with the
aim of differentiating the GS7 (3 + 4) (termed GG2 in ISUP 2014) from
the GS7 (4 + 3) (GG3) (6). The prognostic value of the GG system was
validated in multiple cohorts, although its accuracy did not sig-
nificantly differ from the older GS system (7). In addition, for the new
GG system there is controversy regarding the value of incorporating
the percentage of the GS4 within the GG2 and GG3, among other
questions (8). This was addressed in the ISUP 2019 modification for
PCa grading, which recommends reporting the percentage of GS4
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patterns in any GG2 or GG3 case (9). Despite all of these modifi-
cations, both the GS and GG systems still have several limitations,
including relatively long processing time, subjectivity, inter-observer
variability, and unsatisfactory prediction of outcomes (10, 11, 12, 13, 14,
15, 16).

Therefore, there is a need to develop better prognostic bio-
markers that can be interpreted either alone or when integrated
with clinicopathologic features. There have been several ongoing
efforts that aim to identify better molecular- and genetic-based
prognostic biomarkers. These include metabolomic-based bio-
markers (17), mRNA-based biomarkers such as SelectMDx and
ExoDx Prostate IntelliScore, urine biomarkers such as PCA3, and
genetic tissue–based biomarkers such as Oncotype DX, Confirm
MDx, Prostatype (18, 19, 20), and Prolaris (21). Of note, only PCA3 and
Prolaris are FDA-approved for specific indications (21). More re-
cently, Proclarix showed better accuracy in detecting clinically
significant PCa compared with free PSA percentage alone (22), with
its utility in clinical practice yet to be confirmed.

During the last decade, proteogenomics has revealed a range of
intra-patient network effects across multi-omic layers (15), and has
described novel regulated pathways that are related to PCa pro-
gression (23) and PCa aggressive phenotypes (24, 25). Proteoge-
nomics appears to have the potential to provide a deep and
dynamic interpretation of the underlying pathways related to
cancer development, classification, and progression (26). However,
the lack of robust proteomic analyses of large cancer cohorts (27)
has limited the incorporation of proteomic-based biomarkers into
clinical practice (28, 29).

To address this limitation, we have compiled a cohort of 290
patients procured from the Prostate Cancer Outcomes Cohort Study
(30) to generate large-scale proteomic measurements of PCa tissue
samples using data-independent acquisition mass spectrometry
(DIA-MS). The data have been analysed through purpose-built
computational workflows at the Australian Cancer Research Foun-
dation International Centre for the Proteome of Human Cancer
(ProCan) in Westmead, Australia (31, 32, 33, 34, 35, 36, 37). We have
identified differentially expressed proteins and pathways involved in
PCa development and biochemical recurrence (BCR), including the
identification of possible new therapeutic targets. Furthermore, we
have built a protein-based signature, which showed better prog-
nostic power than the GG and was completely independent of it.

Results

Proteomes of prostate tissue samples

A total of 290 PCa patients representing the full range of GGs from
the GG1 to GG5 were selected from the Prostate Cancer Outcomes
Cohort Study retrospective cohort (30). Proteomes of 1,348 matched
tumour and benign prostatic hyperplasia tissue sample runs from
278 patients were acquired and analysed with 12 patients being
removed due to quality control (QC) steps. In each of the 31 batches,
two controls (CTRL-A and CTRL-B) in duplicate were added to in-
vestigate technical variation, control quality, and assess repro-
ducibility (Fig 1A; see the Materials and Methods section; Table S1;

Fig S1). In this cohort, 198 of 278 patients had BCR data with a
median follow-up of 59 mo and the range of time to recurrence is
11.37 to 72.8 mo (Table S1; Data Availability). Overall, most patients
belong to the GG2 (n = 135), followed by the GG3 (n = 70; Fig 1A).
Although there was a significant difference in outcome for GGs (P =
0.002), no significant difference was observed between the GG2 and
GG3, and the GG4 unexpectedly showed the worst prognosis
compared with all other GGs (Fig S2), reflecting the limitations of the
GG system.

Proteomic profiles of all samples including controls were acquired
by DIA-MS in technical duplicate at ProCan (36) using operating
conditions that enable reproducible and high-throughput data ac-
quisition across six SCIEX TripleTOF 6600mass spectrometers (31, 35).
We quantified 5,803 proteins (Fig S3A), with tumour samples showing
a higher number of quantified proteins (average proteins per
sample = 3,922) compared with benign samples (average proteins per
sample = 3,587) (Fig S3A). The technical reproducibility of the cohort
was evaluated by the Pearson correlation coefficient (Pearson’s r)
among the sample replicates. There was a high degree of correlation
between technical replicates of all samples with an average Pearson
r of 0.94 (Fig S3B). Of the 5,803 proteins identified, >2,200 proteins
were quantified in >90% of the samples and around 800 proteins
were quantified in <20% of the samples (Fig S3C).

The t-distributed stochastic neighbour embedding (tSNE) analysis
did not show batch effects from sample preparation. No batch
effects from different mass spectrometers could be observed after
DIA-NN normalization (see the Materials and Methods section; Fig
S3D and E). The tSNE analysis also showed a clear difference be-
tween benign and tumour samples (Fig 1B). As expected, CTRL-A and
CTRL-B samples are distinct from one another (Fig 1B), implicating
variation from both themass spectrometer and sample preparation
(CTRL-A) and variation from the mass spectrometer alone (CTRL-B).
Tumour samples of high GGs (GG4 and GG5) were only partially
separated from other groups, and separation of intermediate
groups (GG2 and GG3) was barely visible (Fig S3F). A heatmap of
the protein matrix showed distinct expression patterns of tumour
and benign samples; however, no patterns were observed for
GGs, which indicates that the GG system alone does not explain
the proteomic heterogeneity (Fig 1C). Tumour and benign sam-
ples were compared by differential expression analysis as a data
pre-processing step (Fig 1D), resulting in the identification of 512
tumour-enriched proteins. These proteins were employed for the
subsequent differential expression analysis, machine learning,
and survival analysis (Fig 1E).

Pre-processing by differential expression analysis between
tumour and benign samples

To build a protein-based prognostic signature that stratifies GG2
and GG3 patients, we selected tumour-enriched proteins by per-
forming a differential expression analysis between tumour and
benign samples. In this pre-processing step, all tumour andmatched
benign samples were used with the full set of 5,803 proteins. The
analysis resulted in 512 tumour-enriched proteins, of which 368 were
up-regulated and 144 were down-regulated in tumour samples (Fig
1D). The expression patterns of these differentially expressed pro-
teins are shown in Fig S4A where proteins in the top cluster (up-

Proteomic-based stratification of prostate cancer patients Zhong et al. https://doi.org/10.26508/lsa.202302146 vol 7 | no 2 | e202302146 2 of 15

https://doi.org/10.26508/lsa.202302146


Figure 1. Proteomic analysis of PCa samples.
(A) Overview of the study design. The dataset consists of prostatic tumour and matched benign tissue samples from 278 patients. Proteomic data were collected for 277
tumour samples and 278 benign samples in duplicate from 278 patients. A total of 1,475 MS runs were analysed in 31 batches, including tumour, benign, CTRL-A, and CTRL-B
samples. The raw proteomic data were analysed by DIA-NN, quantifying 5,803 proteins. Scale bar = 100 μm. (B) tSNE projection of protein data superimposed with colour
annotation of sample types. (C) Heatmap representation of the protein matrix with samples shown on the y-axis and proteins shown on the x-axis. The protein
intensities were sorted first by the mass spectrometers, followed by tissue types and GGs. MS1–MS6 indicate the six mass spectrometers. (D) Volcano plot showing the up-
regulated (n = 368) and down-regulated (n = 144) proteins in tumours with fold change (FC) > 1.5 and < 0.67 and the Benjamini–Hochberg (BH)-adjusted P < 0.01. Significant
proteins are presented in red and blue colours, whereas other proteins are coloured in grey. (E) Analysis pipeline employed in this study and the number of proteins
identified in each analysis. A total of 512 tumour-enriched proteins were identified from the comparison between tumour and benign samples, followed by stratification
of the GG2 and GG3 using differential expression analysis and machine learning, and identification of a prognostic signature using survival analysis. Finally, pathway
enrichment analyses were conducted for the significant sets of proteins.
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regulated proteins) exhibited considerably higher expression in
tumour samples compared with benign samples. Proteins in the
bottom cluster were down-regulated in tumour samples.

Pathway enrichment analysis and protein–protein interaction
(PPI) networks (38) revealed that most of the up-regulated path-
ways were related to ribosomal RNA processing, mitochondrial
transmembrane transport, and protein folding (Fig S4B and C).
When searched within the hallmark gene sets (38), the up-regulated
proteins were also found to be enriched in the MYC (proto-
oncogene) target V1 and V2 gene sets, which are known to be
associated with tumour aggressiveness (Fig S4D).

Pathways and gene ontology (GO) processes that were signifi-
cantly enriched in benign samples compared with tumour samples
included muscle structure development, supramolecular fibre
organization, and response to elevated platelet cytosolic Ca2+ (Fig
S4B–D). Of the top 20 differentially expressed proteins identified in
tumour samples, four (MDH2, FASN, EPCAM, and HSD17B10) are
targetable by FDA-approved drugs, whereas two (AMACR and
GLYATL1) are potentially targetable (39) and are of potential interest
for future research.

The protein complexes identified in the PPI network, using the
Molecular Complex Detection (MCODE)method showed up-regulation
of a large set of ribosomal proteins (both large and small subunits)
that promote the process of protein translation, up-regulation of
proteins actively involved in the RNAmetabolic process (RRS1, RPF2,
BRIX1, RSL1D1), ribosome biogenesis (FTSJ3, DDX56, NPM3, GNL3,
SNU13), and protein folding (HSPD1, HSPA9, HSPA5, PUM3) (Fig S4E).
This is consistent with previous work showing the overexpression of
proteins associated with cell adhesion, mitochondrial and ribo-
somal biogenesis, and translation in PCa tissue samples (40). Thus,
we identified a list of differentially expressed proteins within tu-
mour tissues for use in the downstream analyses, and identified a
number of potentially important proteins and pathways in PCa.

Stratification of GG2 and GG3 patients

To characterize the PCa samples from the GG2 and GG3, we per-
formed a differential expression analysis between the two GGs
using the 512 tumour-enriched proteins. Of these, 35 proteins were
significantly enriched in the GG2 and one protein was enriched
in the GG3 (FC > 1.5 and < 0.67, P < 0.05; Fig 2A). The significantly
differentially expressed proteins formed two clusters based on
their expression in GG2 and GG3 samples (Fig 2B). As the set of
significantly up- and down-regulated proteins was small, no sig-
nificantly enriched pathway between the GG2 and GG3 was iden-
tified. However, of the 35 up-regulated proteins in the GG2, two
(TGFB1 and FLNA) are involved in androgen receptor pathways,
three (FLNC, DES, and LMOD1) have previously been associated with
better prognosis in PCa (25, 41, 42, 43, 44, 45), four (PRKCA, ACTN1,
AOC3, and LDHB) are targets for FDA-approved drugs (39), and three
(MYLK, FLNA, and FLNC) are potential drug targets (39). The results
suggested likely biological differences between the GG2 and GG3
and identified several potential diagnostic and prognostic bio-
markers that could be further investigated.

To stratify GG2 against GG3 patients by machine learning, a
dataset containing only GG2 and GG3 patients and the 512 tumour-
enriched proteins was used. The results, aggregated over 1,000Monte

Carlo cross-validation runs of an XGBoost classifier with 80% training
and 20% testing splits, demonstrate that the difference between the
GG2 and GG3 can be predicted from protein intensities with high
accuracy (Fig 3A). The receiver operating characteristic (ROC) curve of
the best model had an area under the ROC (AUROC) of 0.89, with a
mean AUROC of 0.74 (Fig 3A). To obtain a reproducible list of the top
20 most significant proteins in separating GG2 and GG3 samples,
SHapley Additive exPlanations (SHAP) values were calculated over
the entire cohort (Fig 3B; see the Materials and Methods section).

To study the dysregulated biological pathways in the GG2 and
GG3, a total of 127 proteins were selected by taking the union of 36
differentially expressed proteins (Fig 2A) and the top 100 proteins
from the machine learning that contains the top 20 proteins in Fig
3B. Pathway enrichment analysis and PPIs from Reactome pathways
(38) for these proteins highlighted an overrepresentation of pro-
teins involved in muscle structure, ECM organization, and response
to elevated platelet cytosolic Ca2+ pathways (Fig 4A). When com-
pared against the hallmark gene sets, enrichment for proteins in
the epithelial–mesenchymal transition gene sets was observed (38)
(Fig 4A). The significant protein complexes identified in the PPI
network using MCODE (Fig 4B) included proteins involved in smooth
muscle contraction (CALD1, TLN1, TPM2, TPM1, four myosin proteins),
actin cytoskeleton proteins (ACTN4, MYO1C, FLNA), and mitochon-
drial translation (ribosomal subunit proteins). Most of these PPI
proteins had highmean importance scores when GG2 samples were
compared to GG3 samples. Our findings extend upon previous
research showing that CALD1, TPM2, and TPM1 can be used as
potential diagnostic biomarkers for PCa (46). Although these
findings are of biological interest, further modelling is required to
better understand the biological pathways associated with each GG,
and thus improve the GG prognostic performance.

Protein-based prognostic signature for BCR

To overcome one of the limitations of the GG system, exemplified in
an inability to differentiate prognosis between the GG2 and GG3 in
our dataset (Fig S2), a protein-based signature was constructed.
First, 100 runs of multivariate Cox regression (47) with least absolute
shrinkage and selection operator (LASSO) regularization were
performed on the 512 tumour-enriched proteins using 20-fold
cross-validation (see the Materials and Methods section). For each
run, a list of significant proteins was obtained, and a merged list
of these proteins was collated and ranked according to the
descending order of mean significance of individual proteins over
all the 100 runs. A subset comprising the top 25 of these proteins
was then used to model multivariate Cox regression with recursive
feature selection, yielding a final list of 18 proteins (Fig 5A). Almost
all of the 18 proteins were significantly associated with BCR with a
concordance index (C-index) (48) of 0.95 (Fig 5A), indicating robust
prognostic power from these proteins.

A patient’s risk score was calculated as the sum of the intensities
of each of the 18 proteins, multiplied by the corresponding re-
gression coefficients (Fig 5B and see the Materials and Methods
section). The midpoint of risk scores was used as the threshold to
dichotomize patients into either a high-risk or a low-risk group. This
two-step process gave rise to an 18-protein signature. To assess the
prognostic power, the 18-protein signature was benchmarked with
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another signature calculated from the top 20 proteins identified by
a random survival forests (RSF) (49) model and with other clinico-
pathologic variables including theGG, clinical risk, PSA, surgicalmargin,
age at diagnosis, and pathological T stage (pT stage). The 18-protein
signature showed the strongest association with BCR among all var-
iables in the univariate Cox regression analysis (Fig 5C). This was also
true in a multivariate Cox regression analysis after adjusting for the
clinicopathologic variables and the 20-protein RSF signature inde-
pendent of recursive feature selection (Fig 5D). This confirms that the
18-protein signature is not confounded by other clinicopathologic
variables and can be considered an independent prognostic factor.
The stable concordance index of all thesemodels further suggests that
the 18-protein signature can explain most of the association with BCR.

Moreover, our 18-protein signature was compared with the 20-
protein RSF signature using a time-dependent ROC analysis, which
measures how well an independent variable can differentiate

between target classes at different time points in the study. The
comparison of time-dependent ROC curves after 60mo for both risk
scores showed an AUROC of 0.95 for the 18-protein signature and an
AUROC of 0.82 for the RSF signature (Fig S5A). Further comparison
demonstrated the higher predictive power of the 18-protein sig-
nature over time compared with the RSF signature (Fig S5B). RSF
uses bootstrapped samples in each tree to avoid overfitting and
generalizes well on unseen test datasets (49). For this reason, it is
noteworthy that our 18-protein signature outperformed the RSF
signature even in the absence of a validation dataset.

The dichotomized Kaplan–Meier curve with the low P-value
(<0.0001) indicated substantial predictive power by the 18-protein
signature (Fig 6A). Overall, there were more patients with the GG2
and GG3 in our cohort compared with the GG1, GG4, and GG5. In-
terestingly, the number of patients with the GG2 and GG3 was
equally distributed between the low-risk and high-risk groups (GG2:

Figure 2. Differentially expressed proteins in the GG2 versus GG3.
(A) Volcano plot showing the GG2 (n = 35) and GG3 (n = 1) enriched proteins in tumours. Significant proteins are presented in red and blue colours, whereas other
proteins are coloured in grey. Only a small number of proteins were found to be significant using differential expression analysis, whereas most of them showed low FC.
(A, B) Heatmap representation of the expression levels of differentially expressed proteins between GG2 and GG3 samples shown in (A). Expression data are converted to
z-scores. Samples are shown on the x-axis, whereas proteins are clustered on the y-axis.

Figure 3. Machine learning of the GG2
versus GG3.
(A) ROC curves for the best and average
models for predicting GG2 and GG3 samples
based on 1,000 Monte Carlo runs by
XGBoost. The red dashed line represents
the random guess, the blue solid curve
shows the mean ROC curve over 1,000
Monte Carlo runs, the blue band represents
one SD of the curves, and the orange curve
shows the best ROC curve. (B) SHAP
values of the top 20 most significant
proteins to distinguish between GG2 and
GG3 samples, sorted (from top to bottom)
by their respective absolute mean SHAP
values. SHAP values of proteins in different
samples are shown on the horizontal
axis; the top 20 proteins are sorted (by
importance) from top to bottom on the
y-axis. The colours from blue to red

indicate protein expression levels from low to high. The vertical zero line (SHAP value = 0) is the line that has no impact on prediction, whereas the values on the left and
right sides represent negative and positive impacts on prediction.
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55 and 50; GG3: 22 and 24, respectively), indicating that our protein-
based signature is independent of the GG. To confirm this, we
applied the 18-protein signature within the group of patients in-
cluding both the GG2 and GG3 (Fig 6B), with the GG2 only (Fig 6C),
and with the GG3 only (Fig 6D). The 18-protein signature was able to
identify a subgroup of patients with a higher risk of developing BCR
within each GG, confirming its independence of the GG, and sug-
gesting potential clinical utility.

By taking the union of the 18 signature proteins (Fig 5A) and 26
proteins that were significantly associated with BCR in a univariate
Cox regression model (P < 0.05), a total of 39 unique proteins (Table
S2 and Fig S6) were analysed to study the association between
biological pathways and BCR. Among these 39 proteins, five (F5,
CALD1, RRP9, MUC2, and AGR3) were identified in common (see the
Materials and Methods section), and six were related to androgen-
regulated genes (F5, CALD1, TPM1, PUM3, ANXA4, and MYLK) (50).
Most of the 18 signature proteins were not involved in common
biological pathways and thus contribute unique biological infor-
mation. However, when including all 39 proteins, several enriched
pathways were identified. This included muscle structure devel-
opment (CALD1, MYL9, MYLK, TPM1) and rRNA metabolic processes
(RRP9, PUM3, EARS2, RPF2, FTSJ3) (Fig 7A and B). Of the total 39
proteins, two (F5 and ANXA4) (39) are targetable by FDA-approved
drugs and three (TMEM126B, EARS2, and MYLK) are potentially
targetable (39). Among the list of 26 proteins associated with BCR in
the univariate Cox regression modelling, F5 (HR 1.7, 95% CI [1.2, 2.4]),
TMEM126B (HR 1.5, 95% CI [1.1, 2.0]), and EARS2 (HR 1.9, 95% CI [1.1, 3.2])
were associated with an increased risk of BCR, suggesting potential
utility for further investigation as drug targets in clinical practice.

Discussion

We performed a large-scale quantitative proteomic analysis from
278 PCa patients with primary tumour and matched benign tissue

samples, each analysed in technical duplicate. We identified dif-
ferentially expressed proteins and multiple signalling pathways
related to PCa development and progression. In addition, we built
an 18-protein signature that overcomes the limitations of the GG in
distinguishing between intermediate-risk PCa patients and that has
a higher prognostic value compared with the standard classifica-
tion. We were also able to identify potential therapeutic targets that
can be explored for their utility in the treatment of PCa. The main
finding of this study is that patients with GG2 adenocarcinomas of
the prostate (clinically the most common subgroup) could be
significantly and independently divided into two subgroups with a
differential risk of BCR by our proteomic-based survival analysis,
albeit an exploratory investigation.

The pathway enrichment analyses on tumour-enriched proteins
showed that pathways were related to protein folding, rRNA pro-
cessing, ECM organization, mitochondrial translation initiation, and
PCa development. Among the top 20 differentially expressed
proteins, several proteins (AMACR, MDH2, FASN, HSD17B10) were
involved in metabolic-related pathways (51, 52, 53). Although few
proteins were related to androgen (HSD17B10, F5, PUM3) (54) and
DNA damage repair (NPM1, FEN1) (54) pathways, 16% of our 512
differentially expressed proteins overlapped with the overex-
pressed genes in PCa (55). In addition, AMACR, FASN, IGFBP2, and
PHB identified in our analysis are among biomarkers previously
suggested for PCa diagnosis (40).

Four of the top 20 differentially expressed proteins (MDH2, FASN,
EPCAM, and HSD17B10) are targetable with FDA-approved drugs,
whereas two are potentially targetable proteins (AMACR and
GLYATL1) (39). AMACR was the top significantly up-regulated protein
in the tumour tissue. AMACR has a major role in fatty acid oxidation
and has previously been found to be overexpressed in PCa at the
proteomic and transcriptomic levels, confirming its validity as a
potential biomarker (56, 57, 58, 59). Among the four FDA-approved
targetable proteins, MDH2 is known to be overexpressed in PCa and
castrate-resistant PCa, highlighting its role in PCa progression (23)

Figure 4. Differentially expressed proteins and pathways in GG2 and GG3 PCa.
(A) GO biological processes, Reactome pathways, and hallmark gene sets enriched for the selected significant proteins. (B) PPI network components obtained using the
MCODE algorithm, showing the enriched biological processes and proteins. Proteins are coloured according to the absolute mean SHAP values. The width of the edge
(between nodes) indicates the strength of the connection. A functional description is provided beside each component.
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and resistance to chemotherapy (60). FASN is a key enzyme in de
novo fatty acid synthesis and has been found to be overexpressed
in castrate-resistant PCa and many other types of solid tumours
(51). It is also associated with PCa progression, mainly through the

activation of the PI3K/Akt/mTORC1 pathway, with a recent study
suggesting the potential therapeutic benefit of its inhibition to
overcome resistance to anti-androgen treatment (52). EPCAM is a
marker for cancer stem cells that are associated with cancer

Figure 5. Survival analysis of BCR-free
survival (BCRFS) of PCa.
(A) Forest plot showing the 18 proteins with
their individual hazard ratios, P-values, 95%
CIs, and C-index of the final multivariate
Cox model. (B) Heatmap showing protein
intensities sorted by a risk score and
clustered for each of the two groups: risk
and protective proteins. The column
denotes patients, and the row indicates the
18 proteins. PCa samples with positive
regression coefficients expressed risk
proteins, whereas samples with negative
regression coefficients expressed
protective proteins. (C) Forest plot
comparing the importance of the 18-protein
signature with RSF-based risk score and
with other clinical variables using
univariate Cox models: pT stage (pT1 versus
pT2), surgical margin (positive versus
negative), and age at diagnosis (<64 versus
≥64). (D) Forest plot showing a simple
multivariate Cox model that includes the
18-protein signature, RSF-based risk score,
and other clinical variables. With recursive
feature selection, the 18-protein
signature remains the most important
variable, with a stable C-index (from 0.96 to
0.95).
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Figure 6. Kaplan–Meier (KM) curves for BCRFS.
KM curves with 95% CIs of the low- and high-risk groups based on the 18-protein risk score, along with respective numbers of samples corresponding to each GG.
Vertical lines illustrate patients who were censored at the time of their last clinical follow-up visit. The P-value shows the significance of the difference between survival
estimates evaluated by the log-rank test. Coloured values represent the number of patients in each group under risk. (A) KM curves for PCa patients in all GGs. (B) KM curves
for PCa patients in the GG2 and GG3. (C) KM curves for PCa patients in the GG2 only. (D) KM curves for PCa patients in the GG3 only.

Proteomic-based stratification of prostate cancer patients Zhong et al. https://doi.org/10.26508/lsa.202302146 vol 7 | no 2 | e202302146 8 of 15

https://doi.org/10.26508/lsa.202302146


proliferation, adhesion, and differentiation, and it is overexpressed
in different types of cancer, including PCa (61). In a meta-analysis,
EPCAM overexpression was associated with a higher risk of BCR and
the development of bone metastasis (62). Finally, HSD17B10 is in-
volved in different metabolic pathways, has an important role in
regulating tissue androgen levels, and may be involved in PCa
progression through androgen-independent pathways (53). Further
studies will be required to confirm the value of these potential
therapeutic targets in PCa management.

Our analyses identified 39 proteins significantly associated with
BCR, of which five were listed in the Human Protein Atlas database
(63) either as FDA-approved targetable proteins (F5 and ANXA4) or
as potentially targetable proteins (TMEM126B, EARS2, and MYLK)
(39). None of these proteins overlapped with a published list of
potential biomarkers for PCa aggressiveness or treatment resis-
tance (56). This may be due to the nature of our study cohort being a
treatment-naı̈ve patient population that was not yet exposed to
anti-androgen treatment. However, three proteins (HNRNPA2B1,
MRPS22, and PUM3) from our analysis were identified within The
Cancer Genome Atlas (TCGA) list of genes associated with poor
prognosis (64). Our results suggest the potential usefulness of F5,
TMEM126B, and EARS2 as potential therapeutic targets. Using PPI
network analysis and tissue-specific gene co-expression network
analysis, F5 was identified as one of the core genes in PCa (65).
Interestingly, F5 was also associated with an increased risk of breast
cancer and the activation of the immune microenvironment (66).
TMEM126B is a complex I assembly factor that is critical for oxidative
stress and inflammatory response (67). Previous studies have
demonstrated its role in response to chronic hypoxia through HIF-
1–dependent mechanisms (68). Although the role of TMEM126B in
PCa is not fully explored, its interaction with HIF-1–dependent
pathways, which play a critical role in PCa progression (69, 70),
warrants further exploration. EARS2 is involved in mitochondrial
protein synthesis and was found to be associated with breast,
pancreatic, renal, and colorectal cancers (71, 72). There is some
evidence of the co-expression of EARS2 with PALB2 in breast and
pancreatic cancer and the association of their overexpression with
poorer outcomes (72). This finding suggests that PALB2 may also be
involved in PCa progression and response to treatment (73, 74, 75).

Despite the established prognostic value of the GG system and
its use in PCa management, its limitations are well-recognized (8, 9,

12). Previous studies have illustrated the differences between the
GG2 and GG3 on the metabolomic level, with a higher intensity of
phosphatidylcholines, and cardiolipins, among others, within GG3
samples, suggesting the involvement of the differential biological
pathway (17). Similarly, Kawahara et al performed proteomic
analysis on 50 PCa tissue samples and identified a panel of 11
proteins that were associated with high-grade (GG4 and GG5)
versus low-grade (GG1 and GG2) PCa (25). Interestingly, this 11-
protein panel was not able to distinguish samples within the GG3
(25). In another study, a five-gene signature was constructed using
data from the GEO and TCGA datasets, which was independent of
the Gleason score when dichotomized as less or more than 7 (76).
However, the prognostic power of this signature was not explored
within each GG (especially the intermediate groups, GG2 and GG3).

In our analysis, there was an overlap between the GG2 and GG3 in
terms of their risk of developing BCR (Fig S2), reflecting the limi-
tations of GG stratification. Our study identified 35 up-regulated
proteins in the GG2 compared with the GG3. These proteins were
related to muscle structure development, epithelial-to-mesenchymal
transition, metabolic pathways, and ECM interaction. As expected,
most up-regulated proteins are related to cancer genes (39), with
seven of them known to be enhanced in PCa (SYNM, DES, MYH11,
TAGLN, CNN1, LMOD1, and PGM5) (39). Four up-regulated proteins
within the GG2 are FDA-approved drug targets (PRKCA, ACTN1, AOC3,
and LDHB) (39), and three are potential drug targets (MYLK, FLNA,
and FLNC) (39). In addition, several proteins that were up-regulated
in the GG2 can be used as potential prognostic biomarkers that
need further investigation. Of these, FLNC, a potential drug target
that is involved in cell–extracellular matrix interaction, has been
associated with progression-free survival and a lower risk of BCR
(41, 42). DES, a cancer-enhanced gene that is involved in Aurora B
signalling and striated muscle contraction, has been found to be
underexpressed in PCa and is associated with better prognosis (43,
44, 45). Finally, LMOD1, a PCa-enhanced gene, has lower expression
in high-grade and metastatic PCa (25). Further research is required
to determine the utility of those proteins as prognostic biomarkers
at the time of PCa diagnosis.

To overcome the limitations of the GG, we have built a protein-
based signature and explored its prognostic power together with
and in comparison with the GG. Our 18-protein signature identified
patients at a higher risk of developing BCR with high accuracy.

Figure 7. Significant biological pathways identified from a univariate Cox regression model.
(A) GO biological processes, Reactome pathways, and hallmark gene sets enriched for the selected significant proteins. (B) PPI network components obtained using the
MCODE algorithm, showing the enriched biological processes and proteins. Proteins are coloured according to the P-values from the BCRFS analysis. The width of the
edge (between nodes) indicates the strength of the connection. A functional description is provided next to each component.
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Its prognosis was maintained even after adjusting for other clinical
variables, including the GG, pT stage, and baseline PSA. In addition, the
18-protein signature was independent of the GG, being able to identify
patients at a higher risk of developing BCR within each of the GG2 and
GG3 separately. This distinction is of considerable clinical importance,
considering the recent BCR management guidelines, which depend
only on the GG and PSA doubling time (77). Further exploration of this
protein-based signature for patients planned for active surveillance
would be useful considering its potential ability to identify patients at
a higher risk of progression independent of their clinical risk score
(PSA, GG, and pT stage) (3). Our results both complement and extend
upon recent proteomic studies in PCa (27). First, the novel contribution
of our work is to present a substantially larger cohort size (n = 278)
than previous studies, which typically comprise <100 patients (27).
Second, our study is able to identify potential novel therapeutic
targets and build a prognostic signature that is completely inde-
pendent of the GG, with the ability to identify patients at a higher risk
of developing BCR within the relatively indolent GG2.

Although BCR is a problematic endpoint (78), evidence suggests
that patients who develop BCR are at a higher risk of developing
clinical progression (79). The incidence of BCR after radical pros-
tatectomy can reach up to 40% (79), and it is significantly associated
with clinical recurrence, metastasis, and cancer-specific death (80).
Consequently, predicting a BCR risk using various clinical indicators
to guide clinical work-up is classically based on ISUP grouping, PSA
at diagnosis, clinical stage, etc. The effectiveness of combining
radiological and clinical parameters to measure the BCR risk was
also evaluated, and it was shown to increase the predictive ac-
curacy of the risk stratification method (81). It will be important to
further investigate and validate the utility of our 18-protein sig-
nature on selecting the group of patients at a higher risk of clinical
progression and poorer survival. Finally, our dataset will serve as an
important public resource for the scientific community seeking to
understand the proteomic landscape in PCa.

This study is hampered by the unavailability of metastatic re-
lapse and mortality data and the smaller number of patients within
the GG1, GG4, and GG5, which prevented us from confirming the
prognostic value of the 18-protein signature within these GGs. In
addition, it remains to be determined to what extent this signature
will be transferrable to other proteomic platforms and whether it
can be detected reliably by semi-quantitative techniques such as
multiplexed immunohistochemistry. Although we did not have
access to a validation cohort to verify our findings at the time of
these analyses, our data will become an important resource for any
future work requiring a validation dataset. Showing that our 18-
protein signature had higher significance and AUROC as compared
to the 20-protein RSF signature does provide a level of confirmation
because the RSF model works on selecting bootstrapped samples
in each tree while computing the importance of proteins. This
process mimics internal cross-validation, avoids overfitting, and
has been shown to generalize well on future data (49).

We conclude that PCa proteomic analysis is a promising tool for
understanding the biological pathways associated with PCa de-
velopment and progression. Our analysis has identified several
novel therapeutic targets, and possible diagnostic and prognostic
biomarkers that can be further investigated in pre-clinical and
clinical studies. Importantly, we have also built an 18-protein

signature that was predictive of BCR and is independent of the GG.
Further work is required to first validate our findings in an inde-
pendent cohort and then to integrate them into clinical practice.

Materials and Methods

Biospecimen collection and pathology and clinical data

The sample collection of this study was approved by the Cantonal
Ethics Committee of Zürich (KEK-ZH-No. 2008-0040). Detailed in-
formation on the patients and samples is provided in Table S1 and
Fig S7. Tumour tissue samples were fixed with formalin and em-
bedded with paraffin.

Sample preparation and mass spectrometric acquisition

About 0.5 mg of FFPE tissue was punched from the sample, weighed,
and processed for each biological replicate via the workflow as
described previously (34).

An Eksigent nanoLC 425 HPLC system operating in a microflow
mode, coupled online to a TripleTOF 6600 system (SCIEX), was used
for the analyses. The peptide digests (2 μg) were injected onto a C18
trap column (SGE TRAPCOL C18 G 300 μm× 100mm) and desalted for
5min at 8 μl/min with solvent A (0.1% [vol/vol] formic acid). The trap
column was switched in line with a reversed-phase capillary col-
umn (SGE C18 G 250 mm × 300 μm ID 3 μm 200 Å), maintained at a
temperature of 40°C. The flow rate was 5 μl/min. The gradient
started at 2% solvent B (99.9% [vol/vol] acetonitrile, 0.1% [vol/vol]
formic acid) and increased to 35% over 69 min. This was followed by
an increase of solvent B to 95% over 4 min. The column was washed
with 95% solvent B for 5 min, then decreased to 2% solvent B over
3 min followed by a 13-min column equilibration step with 98%
solvent A. For SWATH acquisition, peptide spectra were analysed
using the TripleTOF 6600 system (SCIEX), equipped with a DuoSpray
source and 50-μm internal diameter electrode and controlled by
Analyst 1.7.1 software. The following parameters were used: 5500 V ion
spray voltage; 25 nitrogen curtain gas; 100°C TEM, 20 source gas 1, 20
source gas 2 with 100 variable windows, as per a SCIEX technical note
(Supplemental Data 1). The parameterswere set as follows: lowerm/z
limit, 350; upper m/z limit, 1250; acquisition time, 150 ms; and window
overlap (Da), 1.0; CES was set at 5 for the smaller windows, then 8 for
larger windows, and 10 for the largest windows. MS2 spectra were
collected in the range of m/z 100 to 2,000 for 30 ms in a high-
resolution mode, and the resulting total cycle time was 3.2 s.

Proteomic data analysis

We analysed 278 of 290 PCa patients whose malignant tissue
samples were classified by pathologists alongside the matched
benign tissue. A total of 12 patients were removed after QC. The
entire cohort was then divided into 31 batches, with each containing
between 15 and 29 samples including two control samples (CTRL-A,
n = 62; and CTRL-B, n = 62) for QC and the evaluation of repro-
ducibility (Fig S1). The samples were analysed in technical duplicate
in different mass spectrometers in ProCan (31, 36).
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From each patient, a malignant tissue sample and its matched
benign sample were processed using the pressure cycling tech-
nology (82) in technical duplicate, and randomly selected samples
were processed with both biological replicates and technical
replicates. The samples were processed in 31 batches, each con-
taining a reference sample (CTRL-A) of a homogeneous PCa tissue
sample that could account for technical variation introduced
during the entire pressure cycling technology–SWATH-MS sample
processing methodology, and a reference sample of a homoge-
neous prostate tissue digest (CTRL-B) that could account for
technical variation introduced during SWATH-MS.

DIA-based spectral library generation
DIA-MS data in wiff file format were collected for 1,475 runs and
were processed using DIA-NN (version 1.8) (83). A spectral library
was generated using 1,475 DIA-MS runs and consisted of 9,230
proteins and 89,408 peptides. The spectral library was used to
search the complete cohort of 1,475 runs.

Data extraction
DIA-NN was implemented using RT-dependent normalization and
with parameters given below:

-report-lib-info --out step3-out.tsv --qvalue 0.01 --pg-level 1 --mass-
acc-ms1 40 --mass-acc 40 --window 9 --int-removal 1 --matrices
--temp. --smart-profiling --peak-center.

Data were then filtered to retain only precursors from proteo-
typic peptides with Global.Q.Value ≤ 0.01. Proteins were then
quantified using MaxLFQ, with default parameters (84), and
implemented using the DIA-NN R package (https://github.com/
vdemichev/diann-rpackage). Data were then log2-transformed.
There were 1,475 mass spectrometry runs with 669 benign and 679
tumour samples. For downstream analysis, a final protein matrix
with only benign and tumour samples (n = 1,348 samples) was used.
The protein matrix showed an average of 35% missingness per
individual sample. Missing values in this dataset were then imputed
with a constant lower than the minimum value of the whole protein
matrix to maintain the distinction between missing values and
protein intensities. Sample replicates were merged. The imputed
protein matrix was z-score–standardized and was then used as
input for further analyses.

Batch effect analysis
The tSNE analysis of the data was performed on the final protein data
matrix with 5,803 proteins. The instrument batch effect was observed
as samples were run on six different mass spectrometers. The tSNE-
based two-dimensional visualization of protein data showed that the
instrument batch effect was corrected after the built-in normaliza-
tion method in the software suite DIA-NN (Fig S3D and E).

Differential proteomic analysis

Differential expression analysis between tumour and benign
samples was performed on all 5,803 proteins, and analysis between
GG2 and GG3 samples was performed on 512 tumour-enriched
proteins. Empirical Bayes moderated t-statistics, packaged in the
Limma R package, version 3.54.1, was performed to compute the P-
value of the protein intensity between the two classes. Tumour-

specific significantly expressed proteins were selected at the
Benjamini–Hochberg (BH)-adjusted P < 0.01 and with log fold change
(FC) (expressed as the difference in the group means) cut-off of ±0.5
(FC > 1.5 and < 0.67), whereas the GG2- and GG3-specific differentially
expressed proteins were selected at P < 0.05 and with log FC
(expressed as the difference in the group means) cut-off of ±0.5 (FC >
1.5 and < 0.67). Heatmaps were generated using the R package
pheatmap, version 1.0.12. The complete linkage clustering algorithm
was used along with the Euclidean distance as the distancemeasure.

Survival analysis

Finding a proteomic signature
The protein dataset, containing the 512 tumour-enriched proteins,
was used as the input for the survival analysis. To reduce the number
of important proteins, 100 runs of multivariate Cox regression with
LASSO regularizationwere executed on the whole dataset. The LASSO
regularization hyperparameter in each run was tuned using 20-fold
cross-validation. Each run returned a list of proteins with non-zero
coefficients. These lists were then combined into a list of unique
proteins, which was then ranked according to the mean importance
of the individual proteins (average absolute coefficient over 100 runs)
in descending order. The top 25 of these proteins were then used in a
multivariate Cox model with recursive feature selection, which
yielded the final 18 proteins. These 18 proteins were then used to
construct the proteomic risk score (Sj), for the jth patient, as below:

Sj = �
n

i = 1

�
βiXji

�
;

where n is the total number of proteins; βi is the coefficient of the ith
protein; and Xji is the intensity of the ith protein, in the jth patient.

Analysing performance of the proteomic risk score
The performance of the risk score was analysed in multiple ways.
First, patients were dichotomized into low- and high-risk groups
using the midpoint of the risk scores as a threshold, and their
Kaplan–Meier (KM) curves were then plotted. Differences between
survival estimates were evaluated by the log-rank test, and P-
values were reported. The number of samples corresponding to
each GG falling in both low- and high-risk groups was counted to
analyse how well the KM curves justified categorization based on
the GG. Furthermore, to check its performance in GG2 and GG3
patients, KM curves for the dichotomized risk score were plotted in
both combined and separate GG2 and GG3 patients.

The C-index is ameasure of rank correlation between the predicted
risk score and the observed time points. For instance, if the predicted
risk score of a sample is higher than that of another, and the observed
time point of that sample is earlier than that of the other sample, then
the predictions and observations are said to be concordant.

Functional enrichment analysis

Functional and pathway enrichment analyses of significantly
expressed proteins were performed using Metascape (38) along
with the entire set of 5,803 proteins as the background gene set. The
gene ontology (GO) biological processes, Reactome pathways, and

Proteomic-based stratification of prostate cancer patients Zhong et al. https://doi.org/10.26508/lsa.202302146 vol 7 | no 2 | e202302146 11 of 15

https://github.com/vdemichev/diann-rpackage
https://github.com/vdemichev/diann-rpackage
https://doi.org/10.26508/lsa.202302146


hallmark gene sets enriched in dysregulated proteins were ac-
quired. The input parameters were P < 0.05, minimum gene count of
3, and enrichment factor > 1. The P-values are calculated based on
accumulative hypergeometric distribution and are adjusted using
the BH correction. For tumour versus benign comparisons, statis-
tically significant enriched terms were selected at an adjusted P-
value (q-value or FDR) of 0.05 (−log10 FDR > 1.3), whereas for GG2
versus GG3 comparisons, statistically significant enriched terms
were selected at a P-value of 0.05 (−log10 P > 1.3).

PPI enrichment analysis

PPI enrichment analysis was performed using theMetascape (38) by
incorporating the data from STRING and BioGRID databases. As a
result, a network of subsets of proteins is formed where proteins in
the input list form physical interaction with at least one other
member in the list. To identify the functional protein complexes for
the differentially expressed proteins, the MCODE algorithm was
applied within the Metascape (38). MCODE detects and generates
the significant protein complexes (P < 0.05) with minimum three
proteins and maximum 500 proteins and provides the functional
description for each complex. Using the MCODE algorithm, proteins
and protein complexes that are enriched in the significantly dys-
regulated pathways were identified. The protein networks were
visualized using Cytoscape (85) where nodes represent the proteins
and edges represent the connections between the nodes. The size
of the node in a complex shows the MCODE score, whereas the
width of the edge shows the strength of the connection.

Machine learning

The protein dataset with 512 tumour-enriched proteins was used as
the input in this analysis. Because the number of patients is not
large, a single train and test split of the dataset will lead to biased
conclusions. Therefore, we decided to draw our conclusion based
on results aggregated from multiple Monte Carlo runs of an
XGBoost classifier with random train and test splits. We used 1,000
runs of Monte Carlo cross-validation on a random XGBoost clas-
sifier with 300 base learners and the rest of the hyperparameters
set to defaults (Python package “XGBoost”). In each Monte Carlo
run, the dataset was split randomly into 80% training and 20% test
sets, stratified by the target variable GG (GG2 versus GG3). The test
results from all the 1,000 runs were then aggregated, and the
expected performance was reported.

Data Availability

All proteinmeasurements are available in Supplemental Data 2. The
clinical and survival data can be downloaded from https://doi.org/
10.7910/DVN/1RORIX by accepting the “Terms of Access for Re-
stricted Files” agreement at Harvard Dataverse. The mapping file is
in Supplemental Data 3. The rawmass spectrometry proteomic data
and accompanying files have been deposited in the ProteomeXchange
Consortium via the PRIDE (86) partner repository with the dataset
identifier PXD041005.
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Supplementary Information is available at https://doi.org/10.26508/lsa.
202302146
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