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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Frequency spectrum characteristics are 
extracted for anomaly identification. 

• Anomaly frequency, location, duration 
and intensity can be captured. 

• The spectrum-based source apportion-
ment solution of PM2.5 pollution is 
obtained. 

• Spectrum characteristics can provide 
explanations for source information. 

• Spectral analyses can assist PMF for 
reliable source apportionment solution.  
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A B S T R A C T   

Characteristics extraction and anomaly analysis based on frequency spectrum can provide crucial support for 
source apportionment of PM2.5 pollution. In this study, an effective source apportionment framework combining 
the Fast Fourier Transform (FFT)- and Continuous Wavelet Transform (CWT)-based spectral analyses and Pos-
itive Matrix Factorization (PMF) receptor model is developed for spectrum characteristics extraction and source 
contribution assessment. The developed framework is applied to Beijing during the winter heating period with 1- 
h time resolution. The spectrum characteristics of anomaly frequency, location, duration and intensity of PM2.5 
pollution can be captured to gain an in-depth understanding of source-oriented information and provide 
necessary indicators for reliable PMF source apportionment. The combined analysis demonstrates that the sec-
ondary inorganic aerosols make relatively high contributions (50.59 %) to PM2.5 pollution during the winter 
heating period in Beijing, followed by biomass burning, vehicle emission, coal combustion, road dust, industrial 
process and firework emission sources accounting for 15.01 %, 11.00 %, 10.70 %, 5.31 %, 3.88 %, and 3.51 %, 
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respectively. The source apportionment result suggests that combining frequency spectrum characteristics with 
source apportionment can provide consistent rationales for understanding the temporal evolution of PM2.5 
pollution, identifying the potential source types and quantifying the related contributions.   

1. Introduction 

In recent years, China is persistently suffering from serious haze 
episodes along with the rapid economic growth and excessive human 
activities (Lv et al., 2021; Park et al., 2022). The haze episodes have 
negative influences on climate changes owing to the absorption and 
scattering of solar radiation, as well as human health due to prolonged 
exposure to the associated pollutions (Almeida et al., 2020; Chen et al., 
2022). The fine particulate matter (PM2.5) acts as a key inducement of 
haze episodes and originates from multiple anthropogenic sources (Tao 
et al., 2017; Kim et al., 2018; Chen et al., 2023). It is crucial to identify 
the chemical composition characteristics and reveal the source-oriented 
information from potential multiple sources of PM2.5 pollution for a 
comprehensive source apportionment (Balachandran et al., 2013; Alias 
et al., 2020). With the development of data-driven technologies and 
accumulation of high-time resolution observations, the receptor-based 
source apportionment method associated with substantial source- 
oriented spectrum information can provide reasonable source charac-
teristics and facilitate understanding of their contributions for atmo-
spheric pollution monitoring and control (Stanek et al., 2011; Yu et al., 
2019). 

Receptor-based models have recently attracted considerable atten-
tions, and have become prevalent in the field of source apportionment of 
PM2.5 pollution (Crilley et al., 2017; Taghvaee et al., 2018; Almeida 
et al., 2020). Positive Matrix Factorization (PMF), as a receptor-based 
source apportionment tool, can provide quantitative contribution in-
formation without prior knowledge of sources, especially using high- 
time resolution measurements of PM2.5 chemical components (Yu 
et al., 2019; Bland et al., 2022), which has been widely applied to 
multiple Chinese urban regions (Lei et al., 2019; Yu et al., 2019; Rai 
et al., 2021; Lv et al., 2021) and other countries (Masiol et al., 2017; 
Park et al., 2019; Tobler et al., 2020; Veld et al., 2021; Manousakas et al., 
2022). The high-time resolution observations of PM2.5 chemical com-
ponents can provide more robust PMF source apportionment results as 
they can help PMF obtain a well-defined relationship between the 
driving factors and sources even if using short-period time-varying sig-
nals (Vedantham et al., 2014; Feng et al., 2016; Zhang et al., 2023a). 
However, the inherent uncertainty and complexity of atmospheric 
environmental systems make it difficult to identify the driving factors 
contributing to haze episodes and associated source information (Sri-
vastava et al., 2021). Therefore, the PMF source apportionment of PM2.5 
pollution under time-domain patterns faces strong challenges. 

Source-oriented frequency features can be extracted by analyzing the 
spectrum characteristics corresponding to the PM2.5 chemical compo-
nents. These frequency-domain features can provide inherent informa-
tion about the emission patterns and anomaly levels of the potential 
sources, and help effectively distinguish the various source types and 
contributions. Thus, incorporating spectrum information into PMF 
source apportionment can be a valuable approach to enhance the un-
derstanding of PM2.5 pollution sources. The relationships between PM2.5 
chemical components and source characteristics are usually determined 
by various factors and complex interactions. It is necessary to reasonably 
retrieve the complex relationships based on the extracted spectrum in-
formation of PM2.5 pollution under frequency-domain patterns (Chi and 
Lin, 2021). Generally, spectral analyses, as signal process technologies, 
including the Fourier transform and wavelet analysis (Rai and Mohanty, 
2007; Li et al., 2013), can analyze the periodic and aperiodic features of 
the original time-varying signals for feature extraction (Jiang et al., 
2020). Fast Fourier Transform (FFT) algorithm is generally used to 
transfer the original time-varying signals of PM2.5 chemical components 

from the time domain to the frequency domain for the related periodic 
feature extraction. Since it assumes that the frequency information of 
the original signals does not change with time, FFT is unable to capture 
transient variations of non-stationary signals occurring at a specific 
time. In contrast, Continuous Wavelet Transform (CWT) algorithm, 
which performs well in capturing the localization variation features of 
non-stationary signals, can analyze the relationship between the time 
domain and frequency domain, and thereby efficiently identify regional 
anomaly features (Chen et al., 2020; Ma et al., 2022). Barmpadimos 
et al. (2011) used FFT algorithm to examine the periodic patterns using 
time-varying signals of PM10 and PM2.5 concentrations; Yu et al. (2022) 
adopted FFT algorithm to extract the periodic features of PM2.5 and 
assessed spatial-temporal heterogeneity; Chen et al. (2020) applied CWT 
algorithm to extract useful localization features for understanding the 
temporal evolution characteristics of PM2.5 pollution; Li et al. (2021) 
identified the anomaly features based on CWT algorithm for multi-scale 
evaluation of PM2.5 pollution. The frequency spectrum information can 
enhance our understanding of the source types in PMF, exhibit a clearer 
link between factors and sources, and provide explanatory evidence for 
potential source information of PM2.5 pollution. However, existing 
studies have estimated pollution source types and their contributions by 
receptor models only based on temporal variation from the time domain, 
neglecting spectrum information from the frequency domain (Chen 
et al., 2020; Ma et al., 2022). In order to comprehensively understand 
and explain the source information of PM2.5 pollution, it is necessary to 
develop a hybrid source apportionment framework incorporating the 
spectrum characteristics in addition to the temporal variations. 

Therefore, the objective of this study is to develop a hybrid source 
apportionment framework combining the spectral analysis and receptor 
model to capture the periodic and aperiodic spectrum characteristics, 
identify the potential source types and quantify their contributions for 
spectrum-based source apportionment of PM2.5 pollution. The FFT- and 
CWT-based spectral analyses are used to extract periodic and aperiodic 
spectrum characteristics of PM2.5 pollution. The PMF-based receptor 
model is used to analyze the potential source types and their contribu-
tions assisted by the spectrum characteristics. The developed framework 
is then applied to Beijing in China to analyze the related source contri-
butions based on spectrum characteristics during the winter heating 
period. The developed framework could be a promising pathway to 
harmonize the spectral analysis and receptor model for a comprehensive 
source apportionment. And the spectrum-based source apportionment 
results could demonstrate a new understanding of the relationship be-
tween emission sources and PM2.5 pollution. 

2. Material and methods 

2.1. Sampling site and data collection 

2.1.1. Sampling site 
The sampling site at the Institute of Atmospheric Physics (IAP) of the 

Chinese Academy of Sciences (116.39◦ E, 39.98◦ N), located in the 
Chaoyang District in the northeast of Beijing representing a typical 
urban location, is selected to demonstrate the developed source appor-
tionment framework shown in Fig. S1. The measurements of the related 
PM2.5 elements, which span from 7:00 am on January 15, 2021 to 6:00 
am on February 20, 2021, were collected with 1-h time resolution during 
the winter heating period. 

2.1.2. Chemical analysis 
The water-soluble ions of PM2.5 sample, including nitrate (NO3

− ), 
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sulfate (SO4
2− ), ammonium (NH4

+), and chloride (Cl− ), were analyzed by 
Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM, Aerodyne 
Research Inc., Billerica, Massachusetts, USA). The metallic elements, 
including Si, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Pd, Ag, Cd, 
Sn, Sb, Ba, Hg, Tl, and Pb, were measured by Xact 625i Ambient Metals 
Monitor (X625i, Cooper Environmental Services, Beaverton, OR, USA). 
The black carbon (BC) component was measured by Aethalometer 
(AE33, Magee Scientific, Berkeley, CA, USA). A more detailed infor-
mation about the calibration methods of the monitoring instruments can 
be found in Section 1 of the Supporting Information. In addition, the 
concentrations of PM2.5 and other gaseous pollutants, such as CO, SO2, 
NO2, and O3 were also collected with 1-h time resolution at the Olympic 
Sports Center station (116.41◦ E, 39.99◦ N, Chaoyang District, 2.04 km 
from the sampling site) during the same sampling period using the gas 
analyzers. The meteorological data, including air temperature (AT), 
relative humidity (RH), and wind speed rate (WSR) were measured at 
Beijing Capital International Airport station (116.60◦ E, 40.08◦ N, 
Chaoyang District, 21.08 km from the sampling site). A more detailed 
information about the geographical location of sampling site can be 
found in Section 2 of the Supporting Information. 

2.1.3. Mass concentration of OC and EC 
The absorption signal at near-infrared range (880 nm) is adopted to 

calculate the concentrations of BC mass (Lei et al., 2019). The concen-
trations of elemental carbon (EC) mass can be assumed to be equivalent 
to the concentrations of BC mass (Hsiao et al., 2021). Meanwhile, the 
absorption signal at near-UV range (370 nm) is regarded as ultraviolet 
particulate matter (UVPM). The difference between UVPM and BC is 
denoted as △C, which can be calculated as follows (Liu et al., 2020; 
Chang et al., 2022): 

△C = UVPM − BC (1) 

Generally, the concentrations of organic carbon (OC) mass can be 
assumed to be equivalent to △C (Olson et al., 2015). 

2.2. Spectrum-based analysis for anomaly feature extraction 

2.2.1. FFT algorithm for periodic characteristics analysis 
FFT algorithm can decompose the different components contained in 

the original discrete signals into the sum of countless sinusoidal signals 
with different frequencies. For the original discrete signals f(n), the 
spectrum information of the original signals F(k) can be expressed as 
follows (Cooley and Tukey, 1965): 

F(k) =
∑N− 1

n=0
f (n)⋅e− i2πkn/N (k = 0, 1, 2, …, N − 1) (2)  

where n is the size of the data samples; ei2π/N is a primitive Nth root of 1. 
FFT algorithm can ensure a fast calculation speed by reducing the 
complexity from O

(
n2) to O(nlogn) for a computation process with size n 

(Rajaby and Sayedi, 2022). 

2.2.2. CWT algorithm for aperiodic characteristics analysis 
CWT algorithm compares the original time-varying signals f(t) to the 

wavelet at various scales, which can be obtained as follows (Munoz 
et al., 2002; Tary et al., 2018): 

C(a, b, f (t) , ψ(t) ) =
∫ ∞

− ∞
f (t)

1
a

ψ*
(

t − b
a

)

dt (3)  

where a is the scale parameter (a > 0), and b is the position parameter of 
a reference wavelet ψ. ψ* denotes the complex conjugate of the reference 
wavelet. By continuously varying the values of the scale parameter a and 
the position parameter b, the wavelet coefficients C(a, b) of CWT al-
gorithm can be calculated. A more detailed description of the spectrum- 
based analysis algorithm can be found in Section 3 of the Supporting 

Information. 

2.3. PMF receptor model for source apportionment 

PMF, as a factor-based receptor model, decomposes an original data 
matrix (X) into two separated data matrices, including the source profile 
matrix (F) and the source contribution matrix (G), which can be 
expressed as (Paatero and Tapper, 1994; Paatero, 2007; Paatero et al., 
2014): 

xij =
∑p

k=1
gikfkj + eij (4)  

where xij is the concentration of jth species measured in the ith sample 
(time), p is the number of factors, the factor profile fkj is the concen-
tration of jth species from the kth source, and the factor time series gik is 
the contribution of the kth source to the ith sample (time). Meanwhile, 
the residual matrix eij is the error of the jth species measured in the ith 
sample (time). In this study, the signal-to-noise ratio (S/N) is used to 
select the optimal input variables. A total of 22 species are selected by 
the PMF receptor model, including EC, OC, NO3

− , SO4
2− , NH4

+, Cl− , Si, K, 
Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Sn, Sb, Ba and Pb. A more detailed 
description of the PMF receptor model can be found in Section 4 of the 
Supporting Information. 

2.4. The hybrid source apportionment framework 

The hybrid source apportionment framework is developed 
combining the spectral analyses for spectrum characteristics extraction 
and the PMF receptor model for source contribution assessment of PM2.5 
pollution. A graphical scheme of this hybrid source apportionment 
framework is shown in Fig. 1. The steps of the source apportionment 
process are presented as follows:  

(1) Spectrum characteristics extraction. 

Step1 Select the input data with high-time resolution measurements 
of PM2.5 chemical components; 

Step2 Perform FFT- and CWT-based spectral analyses for the spectral 
conversion of PM2.5 chemical components; 

Step3 Analyze the periodic and aperiodic spectrum characteristics as 
necessary indicators for reliable source features;  

(2) Source contribution assessment. 

Step4 Apply the PMF receptor model for PM2.5 source 
apportionment; 

Step5 Obtain the p Factors and their contribution information; 
Step6 Perform the FFT- and CWT-based spectral analyses for the 

spectral conversion of the Factors; 
Step7 Assess the resultant Factors comparing with the spectrum 

characteristics of the Factors and PM2.5 mass for an optimum solution by 
the hybrid framework. 

3. Results and discussion 

3.1. Periodic characteristics of PM2.5 pollution 

The periodic spectrum characteristics of CO, SO2, NO2, O3 and PM2.5 
extracted by FFT algorithm at the sampling site are illustrated in Fig. S2. 
It can be inferred that only NO2 and O3 reflect obvious periodic features, 
and show the diurnal periodic pattern. Generally, NO2 is primarily 
emitted from motor vehicle and coal combustion activities (Yu et al., 
2019). Consequently, the periodic feature of NO2 may be affected by the 
periodic features of vehicle emission and coal combustion under human 
activity patterns. Compared with NO2 and O3, the periodic features of 
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CO, SO2, and PM2.5 cannot be observed in Fig. S2. Meanwhile, most of 
the concentrations of PM2.5 chemical components present basically 
consistent trends with the concentrations of PM2.5 over time. Therefore, 
the periodic spectrum analysis of PM2.5 chemical components can reflect 
the periodic characteristics of PM2.5 pollution and the potential in-
teractions of pollution sources. As the typical tracers with respect to 
traffic-related activities (Massimi et al., 2020), the metallic elements Sb 
and Sn present significant periodic characteristics in Fig. S3. However, 
except for Sb and Sn, most of the PM2.5 chemical components exhibit no 
periodic features in Fig. S4 to S6. Due to the complex meteorological 
conditions and diverse pollution sources, CO, SO2, PM2.5 and most of the 
PM2.5 chemical components present aperiodic characteristics rather 
than periodic characteristics, which are discussed in Sections 3.2.1 and 
3.2.2. A more detailed periodic spectrum result of PM2.5 pollution can be 
found in Section 5 of the Supporting Information. 

3.2. Aperiodic characteristics of PM2.5 pollution 

3.2.1. Anomaly features of PM2.5 and other gaseous pollutants 
The energy density distributions of CO, SO2, NO2, O3 and PM2.5 with 

the scaling factors ranging from 1 to 256 extracted by CWT algorithm 

illustrate their high-frequency anomaly features in Fig. S7. In terms of 
PM2.5 mass, the aperiodic characteristics with localized abrupt increases 
of PM2.5 concentrations can be captured during the winter heating 
period in Fig. S7(c). The CWT scalogram of PM2.5 shows that the yellow 
patches representing high spectral energy areas appear on February 9, 
2021 and disappear on February 15, 2021, indicating that a remarkable 
anomaly variation occurs over the duration of approximately 7 days 
during the Chinese Spring Festival. Notably, significant oscillations are 
observed on the scale of 128 to 224, indicating that the anomaly features 
of PM2.5 show a relatively low frequency and strong amplitude during 
the Chinese Spring Festival. Moreover, the CWT scalogram of PM2.5 
shows medium spectral energy areas represented by blue patches on the 
scale of 32 to 48, which appear from February 9, 2021 to February 15, 
2021. This demonstrates that a medium anomaly occurs at a relatively 
high-frequency domain with low amplitude during the Chinese Spring 
Festival. And the duration of the medium anomaly is much shorter than 
the duration of the strong one. 

3.2.2. Anomaly features of PM2.5 chemical components 
The energy density distributions of PM2.5 chemical components with 

the scaling factors ranging from 1 to 256 extracted by CWT algorithm 

Fig. 1. Flow chart of the hybrid source apportionment framework.  
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illustrate their related high-frequency anomaly features in Fig. S8 to 
Fig. S12. The metallic elements As, Pb, Zn and Se present similar 
anomaly features as PM2.5 and CO (Fig. S8). The CWT scalograms of As, 
Pb, Zn and Se show that the yellow patches representing high spectral 
energy areas appear from January 20, 2021 to January 25, 2021 and 
February 9, 2021 to February 15, 2021. The energy peak appears 

approximately on the scale of 128 to 256, indicating that the anomalies 
of these elements tend to occur at a relatively low-frequency domain, 
which is mainly related to coal combustions. The anomaly features of 
the metallic elements Cd, Sb and Sn (Fig. S9) are consistent with the 
spectrum characteristic of NO3

− (Fig. S12). The amplitude of the anom-
alies is much stronger than the one of NO3

− . The energy peak appears 

Fig. 2. The source profiles and contributions of the seven Factors by the PMF receptor model. The left y-axis represents the concentration of each species as a pale 
blue bar and the right y-axis represents the percentage of each species as a red box. 
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approximately on the scale of 16 to 64, demonstrating that the anom-
alies of these metallic elements tend to occur at a relatively high- 
frequency domain, which is generally related to vehicle emissions. As 
illustrated in Fig. S10, the metallic elements Ba, Cr, Cu and K demon-
strate a sudden increase in a short time period. The spectral energies of 
these metallic elements exhibit corresponding surge shape distributions 
during the Chinese Spring Festival in the CWT scalogram. Actually, the 
metallic elements Ba, Cr, Cu and K can be emitted from the firework. Ni 
also shows a surge shape distribution on February 4, 2021, which can be 
associated with industrial activities in Fig. S10(e). The spectral energies 
of metallic elements Ca, Fe, Mn and Si present a similar anomaly feature 
of surge shape with a lower energy peak than the one of Ni (Fig. S11). 
The spectrum characteristics of carbon components (EC and OC) and 
inorganic ions (SO4

2− , NH4
+, and Cl− ) are consistent with the one of PM2.5 

(Fig. S12), and they are generally influenced by the diverse pollution 
sources. In summary, the spectrum characteristics extraction can reveal 
more intrinsic details of PM2.5 pollutant evolution in the frequency 
domain, which cannot be easily observed in the time domain, to build a 
more sophisticated source apportionment framework. A more detailed 
aperiodic spectrum result of PM2.5 pollution can be found in Section 6 of 
the Supporting Information. 

3.3. Source apportionment of PM2.5 pollution 

In this study, spectrum-based source apportionment of PM2.5 pollu-
tion with high-time resolution is identified in Beijing during the winter 
heating period. The source apportionment solution performed by the 
PMF receptor model is shown in Fig. 2 and Fig. S13. Seven Factors are 
obtained as the optimal solution assisted by the spectrum-based char-
acteristics, including vehicle emission, coal combustion, biomass 
burning, secondary inorganic aerosols, industrial process, firework 
emission and road dust. 

3.3.1. Source apportionment solution 
Factor 1 is closely relevant to an indicator of vehicle emission, 

identified by relatively moderate proportions of metallic elements Cd, 
Pb, Ni, Zn, Cr and Mn from mechanical abrasion of vehicle components 
related to brake, tyre and clutch in Fig. 2(a) (Piscitello et al., 2021; Rai 
et al., 2021). The contribution from metallic element Sn (83.70 %), as 
one of the typical tracers with respect to rail transport, makes significant 
sense to Factor 1 (Almeida et al., 2020; Massimi et al., 2020). Factor 1 is 
also characterized by moderate contribution of NO3

− (38.84 %), which is 
generally associated with traffic-related activities. The percentage of 
vehicle emission contributing to PM2.5 pollution accounts for 11.00 %, 
which is similar to the previous studies (11.30 %-14.90 %) (Yang et al., 
2016; Park et al., 2022; Zhang et al., 2023c). Factor 2 presents high 
proportions of As (89.27 %), Zn (74.86 %), Pb (71.82 %), Ni (67.56 %) 
and Se (67.32 %), and together with moderate proportions of Mn (51.75 
%) and Cr (43.62 %), which is associated with a typical indicator of coal 
combustion (Yu et al., 2019; Rai et al., 2021). As shown in Fig. 2(b), the 
relatively reasonable contributions of EC, OC, and SO4

2− from coal 
combustion are observed in this factor, accounting for 19.06 %, 18.72 %, 
and 22.13 %. Owing to the “coal-to-gas” transition policy in Beijing 
(Zhang et al., 2023b), the contribution of coal combustion accounts for 
approximately 10.70 % to PM2.5 pollution during the winter heating 
period, which can be attributed to the related residential consumption in 
the rural areas upwind of Beijing (Park et al., 2022). The contribution 
fraction of coal combustion is in good agreement with previous re-
searches (6.42 %-13.26 %) (Huang et al., 2017; Li et al., 2017; Lv et al., 
2021; Lv et al., 2022; Park et al., 2022; Zhang et al., 2023c). Factor 3 is 
supposed as an indicator of biomass burning, characterized by relatively 
moderate contributions of the metallic element K (19.83 %) and the 
inorganic ion Cl− (31.24 %) in Fig. 2(c). Since K can be emitted from 
wood lignin combustion, it is generally used as a primary tracer to 
indicate biomass burning, originating from residential biofuel, munic-
ipal solid waste and agricultural waste (Smith et al., 2017; Rai et al., 

2021). Besides, OC (66.31 %) also provides substantial contribution to 
this factor. Factor 3 makes a relatively significant contribution ac-
counting for 15.01 % to PM2.5 pollution, which may be due to the 
intensive biomass burning for cooking and heating activities by resi-
dents in Beijing during the winter heating period. The contribution of 
biomass burning in this study is similar to the earlier studies (11.20 
%-18.4 %) (Yang et al., 2016; Lv et al., 2022; Zhang et al., 2023c). 

Secondary inorganic aerosols are typically characterized by signifi-
cant contributions from NO3

− , SO4
2− , and NH4

+, which is consistent with 
the result of Factor 4 in Fig. 2(d). Noteworthy, the proportions of the 
contributions of SO4

2− , NH4
+ and NO3

− account for 75.08 %, 39.11 % and 
15.69 %, respectively. As one of the dominant pollution sources, the 
contribution of secondary inorganic aerosols to PM2.5 pollution is up to 
50.59 %, indicating that secondary inorganic aerosols have a crucial 
impact on the haze episodes in Beijing during the winter heating period. 
The percentage of this source contributing to PM2.5 pollution is within a 
similar range to the previous studies (40.50 %-52.00 %) (Huang et al., 
2017; Li et al., 2017; Liu et al., 2019; Lv et al., 2022; Park et al., 2022; 
Zhang et al., 2023c). Factor 5 is characterized by relatively significant 
proportions of metallic elements Ca, Fe, Si, Mn and Cr, which are mainly 
emitted from industrial production, such as iron/steel and other metal 
manufacturing (Tian et al., 2018; Massimi et al., 2020). Hence, Factor 5 
is identified as an indicator of industrial process. Due to heavily scaled- 
back industrial production in Beijing, the percentage of industrial pro-
cess contributing to PM2.5 pollution only accounts for 3.88 % and may be 
caused by the industrial-related activities in adjacent provinces. The 
contribution of industrial process is consistent with the earlier studies 
(3.20 %-6.81 %) (Huang et al., 2017; Lv et al., 2022; Zhang et al., 
2023c). Factor 6 is supposed as an indicator of firework emission. Since 
high Ba, K and Cu are generally emitted from fireworks (Yu et al., 2019; 
Manchanda et al., 2022), the markedly high contributions of Ba, Cu, K 
and Cr to this Factor, accounting for 91.17 %, 54.79 %, 51.72 %, and 
18.32 % in Fig. 2(f), are attributed to firework emission which may come 
from the surrounding areas of Beijing during the Chinese Spring Festival. 
This Factor makes a slight contribution accounting for 3.51 % to PM2.5 
pollution, which is similar to the previous studies (1.90 %-4.00 %) 
(Zhang et al., 2023b; Zhang et al., 2023c). Factor 7 is identified as road 
dust by a mainly impact from deposited anthropogenic emissions, such 
as road surface abrasion with dominant metallic element Sb (89.53 %) 
and road dust re-suspension with typical tracers Si (26.55 %), Fe (6.43 
%) and Ca (6.25 %) in Fig. 2(g), which primarily refers to traffic-related 
dust emissions during the study period in Beijing. The contribution of 
road dust to PM2.5 pollution accounts for 5.31 %, which is similar to the 
earlier studies (1.81 %-6.82 %) (Li et al., 2017; Liu et al., 2019; Lv et al., 
2021; Lv et al., 2022; Park et al., 2022; Zhang et al., 2023c). Note-
worthy, this solution with seven-Factor sources is highly consistent with 
the studies by Lv et al. (2022) and Zhang et al. (2023c) conducted at the 
heating winter period in Beijing shown in Table S1. A more detailed 
source apportionment result of PM2.5 pollution and comparison among 
various studies can be found in Section 7 and Section 8 of the Supporting 
Information. 

3.3.2. Driving factor analysis of the source profiles 
The correlation analysis results between pollution sources and 

meteorological parameters are shown in Fig. 3. It can be observed that 
there is no obvious correlation between Factor 1 and meteorological 
parameters, suggesting that Factor 1 tends to be influenced primarily by 
human activities. The situation is the same with Factor 7. Factors 2, 3 
and 4 illustrate obvious temporal variations with remarkably high 
contributions during the extremely cold period from January 20 to 
January 25 (Episode 1) and the Chinese Spring Festival from February 9 
to February 15 (Episode 2) as shown in Fig. S13. In Fig. 3, the relatively 
strong correlation coefficients with relative humidity are 0.62, 0.53 and 
0.54, respectively, implying that Factors 2, 3, and 4 are influenced not 
only by human activities, but also by meteorological conditions to some 
extent. Since industrial processes are generally not affected by the 
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meteorological conditions in Fig. 3, a relatively low and steady contri-
bution of Factor 5 can be observed as shown in Fig. S13(e). There is a 
sharp increase of normalized contributions in Fig. S13(f), and this sharp 
peak in a short time period is associated with massive firework-related 
activities in the surrounding areas in Beijing during Episode 2. In 
addition, a moderate correlation relationship (r = 0.31) can be found 
between Factor 6 and relative humidity (Fig. 3), which suggests that the 
contribution of firework emission to PM2.5 pollution is mainly resulted 
from human activities. In fact, air temperature also plays a vital role in 
the contributions of some sources discussed above to PM2.5 pollution. 
The low correlation relationship may be attributed to the fact that this 
study only concentrates on the winter heating period rather than the 
entire year. A more detailed correlation analysis result can be found in 
Section 9 of the Supporting Information. 

3.3.3. Spectrum characteristics analysis of the source profiles 
Besides the contributions of these seven Factors discussed above, the 

spectrum characteristics can be used as reliable explanations for PM2.5 
source apportionment solution. The potential pollution sources identi-
fied in the seven Factors as the optimal PMF solution are in agreement 
with the spectrum characteristics of the seven Factors.  

(1) Periodic spectrum characteristics. 

The periodic spectrum characteristics of the seven Factors extracted 
by FFT algorithm are shown in Fig. S15. Factors 1 and 7 exhibit obvious 
periodic features at different frequencies, such as diurnal, semi-diurnal, 
eight-hourly or six-hourly periods due to the influences of natural 
environment cycle and human activity patterns. Generally, traffic- 
related activities are supposed to show diurnal or semi-diurnal pat-
terns with relatively low contributions during the afternoon and high 
contributions during rush hours. These high-frequency characteristics of 
vehicle emission and road dust are approximately consistent with the 
time-varying variation tendencies of traffic-related activities, which can 
be used to assist PMF receptor model distinguish vehicle emission and 
road dust sources from other pollution sources.  

(2) Aperiodic spectrum characteristics. 

The energy density distributions of the seven Factors with the scaling 
factors ranging from 1 to 256 extracted by CWT algorithm are shown in 
Fig. 4. Factors 1 and 7 present unique temporal variations with 
continuous zigzag variation features compared with other Factors. The 
spectrum characteristics of Factors 1 and 7 is correspondent to the ones 
of Cd, Sb, Sn and NO3

− (Fig. S9 and S12(f)), indicating that these ele-
ments act as the primary drivers to the traffic-related activities, such as 
vehicle emission and road dust, which are consistent with PMF source 
apportionment solution. The spectrum characteristic of Factor 2 shows 
high similarity to the ones of As, Pb, Zn, Se and SO4

2− (Fig. S8 and S12 
(d)) which are mainly emitted from coal combustion. And its spectral 
energy distribution in a relatively low-frequency domain (the scale of 
192 to 224) shows that the contribution exists throughout the entire 
heating period, especially in the cold period (Episode 1). The spectrum 
characteristic of Factor 3 show high similarities to the ones of EC, OC, 
Cl− and NH4

+, which are associated with biomass burning (Fig. S12). 
Factor 3 is characterized by high spectral energy distribution in a rela-
tively low-frequency domain (the scale of 128 to 160), revealing that the 
contribution mainly exists in the Chinese Spring Festival (Episode 2). 
Factor 4 is influenced by synergistic effect between Factors 2 and 3, 
showing high spectral energy distributions both on the scales of 128 to 
160 and 192 to 224, especially in the Episode 2. Although Factors 2, 3 
and 4 show a high consistency in time domain, the unique spectrum 
characteristic of Factor 4 can assist PMF receptor model to make sec-
ondary inorganic aerosols distinguished from biomass burning and coal 
combustion sources. Meanwhile, the spectrum characteristics of Factors 
2, 3 and 4 are also highly consistent with the one of PM2.5, which further 
explains that coal combustion, biomass burning and secondary inor-
ganic sources have great impacts on the temporal evolution of PM2.5 
pollution during the winter heating period in Beijing. This phenomenon 
also assists PMF receptor model to make these three typical pollution 
sources distinguishable from other pollution sources. Fig. 4(e) illustrates 
that the spectrum characteristic of Factor 5 is related to the ones of Ca, 
Fe, Mn and Ni (Fig. S10(e) and S11), which are the major products from 

Fig. 3. The correlation analysis results of the seven Factors in relation to meteorological parameters.  
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industrial process. The spectrum characteristic of Factor 6 mainly shows 
high spectral energy distribution in a relatively high-frequency domain 
(the scale of 32 to 48) in Fig. 4(f), which is similar to the ones of Ba, Cu 
and K (Fig. S10). These elements are typically linked with firework 
emissions. Although the metallic elements Cu and Ba are also enriched 
in traffic emissions, Factor 6 can be distinguished from Factor 1 

according to the periodic and aperiodic spectrum characteristics based 
on the FFT- and CWT-based spectral analyses. 

Spectral analyses for periodic and aperiodic characteristics can 
provide specific evidences to assist PMF receptor model to distinguish 
among diverse pollution sources. The comparisons between the spec-
trum characteristics of the related chemical components and the ones of 

Fig. 4. The aperiodic spectrum characteristics of the seven Factors (a) Factor 1, (b) Factor 2, (c) Factor 3, (d) Factor 4, (e) Factor 5, (f) Factor 6 and (g) Factor 7 by 
CWT algorithm. The contour lines represent energy density distribution corresponding to the anomaly intensity indicated by the scale bar on the right, with the 
yellow parts representing strong anomalies, and the blue parts representing weak anomalies. 
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seven Factors can provide substantial supports for spectrum-based 
source apportionment of PM2.5 pollution, indicating that the PMF so-
lution is reasonable and time-varying contributions are in accordance 
with the factual conditions in both frequency and time domains. 
Moreover, the energy density distribution of PM2.5 with the scaling 
factors ranging from 1 to 512 extracted by CWT algorithm illustrates the 
relatively low-frequency anomaly features in Fig. S16(a). Besides the 
high-frequency anomaly features on the scales of 32 to 48, 128 to 160 
and 192 to 224 in Fig. S7(c), low-frequency anomaly features can also be 
observed on the scale of 320 to 448 of PM2.5. The driving factors of PM2.5 
pollution are related to natural conditions and human activities. 
Generally, meteorological conditions are impacted by the solar radiation 
following seasonal, half-yearly and yearly variations, and contribute to 
the low-frequency anomaly features of PM2.5 pollution (Kirchner, 2016). 
And human activities are likely to lead to high-frequency transient 
anomalies from point source inputs, mobile source inputs and surface 
source inputs (Jiang et al., 2020). According to Fig. S16(b), the low- 
frequency anomaly features of PM2.5 tend to be influenced by relative 
humidity to some extent. And the high-frequency anomaly features of 
PM2.5 may result from at least three source inputs with different high- 
frequency patterns. The aperiodic spectrum characteristics with four 
different high-frequency patterns (Factors 2, 3, 4 and 6) are in accord 
with the abovementioned discussions according to the seven-Factor 
source apportionment solution in Fig. 4. Since PMF receptor model re-
quires a detailed analysis for the chemical compositions of the potential 
sources and a reconstructed pollution source are inevitably influenced 
by other potential pollution sources, it sometimes cannot provide a 
reasonable description for all the source profiles, even cannot separate 
or distinguish the sources absolutely with a similar chemical composi-
tion due to the absence of key species (Schleicher and Weiss, 2023). In 
this study, spectrum-based source apportionment of PM2.5 pollution 
without source profiles of EC and OC is identified in Beijing during the 
same sampling period. The source apportionment solution and spectrum 
characteristics of the seven Factors are shown in Fig. S17 and S18. Since 
the metallic elements Si, Ca, Fe, Cu and Mn, as the reliable tracers, are 
enriched in multiple pollution sources, it is hard to distinguish among 
coal combustion, industrial process and road dust without EC and OC to 
some extent in this study. However, the FFT- and CWT-based spectral 
analyses can provide the related quantitative frequency-based de-
scriptions and explanations to assist PMF receptor model to obtain the 
optimal source apportionment solution. A more detailed spectrum 
characteristics analysis of the source profiles can be found in Section 10 
of the Supporting Information. 

4. Conclusions 

In this study, a spectrum-based source apportionment framework is 
developed combining the FFT- and CWT-based spectral analyses for 
source spectrum characteristics extraction and the PMF receptor model 
for source contribution assessment of PM2.5 pollution. The spectrum- 
based source apportionment framework is applied to Beijing during 
the winter heating period with 1-h time resolution. According to the 
spectral analyses, Factors 1 and 7 exhibit obvious periodic features at 
different frequencies, such as diurnal, semi-diurnal, eight-hourly or six- 
hourly periods, which are approximately consistent with the traffic- 
related activities. Although Factors 2, 3 and 4 show a high consistency 
in time domain, Factor 4 is influenced by synergistic effect between 
Factors 2 and 3, which show relatively low-frequency anomaly features 
on the scales of 128 to 160 and 192 to 224, respectively. The spectrum 
characteristic of Factor 6 reflects a relatively high-frequency anomaly 
feature on the scale of 32 to 48. The spectrum characteristics extraction 
can reveal more intrinsic details of PM2.5 pollutant evolution in the 
frequency domain, which cannot be easily observed in the time domain, 
to assist PMF receptor model to distinguish among diverse pollution 
sources. Finally, seven major pollution sources, i.e. secondary inorganic 
aerosols (50.59 %), biomass burning (15.01 %), vehicle emission (11.00 

%), coal combustion (10.70 %), road dust (5.31 %), industrial process 
(3.88 %) and firework emission (3.51 %) are identified to make rela-
tively significant contributions to PM2.5 pollution in Beijing during the 
winter heating period. 

The results reflect that (a) the developed framework can capture 
more details of PM2.5 pollutant evolution both on the frequency and time 
domains to provide sophisticated indicators for source apportionment; 
(b) the developed framework can gain a specific understanding of the 
source information to select the optimal source apportionment solution 
assisted by the spectrum characteristics of PM2.5 and related chemical 
components; (c) the developed framework can distinguish the contri-
butions of various pollution sources and provide reasonable explana-
tions based on the spectrum characteristics of multiple Factors. The 
developed source apportionment framework could be a promising 
pathway to harmonize the spectral analysis and receptor model for 
spectrum-based source apportionment of PM2.5 pollution. In the future, 
parameter optimization algorithm is planned to be added into PMF re-
ceptor model to optimize the proportions of the profiles in each Factor 
for a more satisfactory and reasonable PMF result. Meanwhile, rule- 
based inference algorithm is also considered to automatically judge 
potential source information according to the proportions of the profiles, 
correlation analysis and frequency spectrum characteristics for an 
intelligent source apportionment. 
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