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Zusammenfassung 
Die Energiewende erfordert einen Paradigmenwechsel wie wir Energie bereitstellen, verteilen und 

nutzen. Die zunehmende digitale Vernetzung und die aufstrebende Industrie 4.0 bedeuten, dass mehr 

Daten zur Verfügung stehen. Aber es mangelt immer noch an semantischer Interoperabilität zwischen 

den Datensätzen. Dies schränkt die Entwicklung skalierbarer energieorientierter Anwendungen ein. 

DIGICITIES’ Ziel ist es die Hindernisse für den Zugang und Austausch von Daten zur 

Entscheidungsfindung bei Versorgungsunternehmen und Gemeinden abzubauen. Es wird eine 

Datenarchitektur auf der Grundlage strukturierter, miteinander verbundener digitaler Ebenen 

entwickelt, die für die Berechnung des zukünftigen Energiebedarfs verwendet werden. Die 

Verarbeitung, Speicherung und Nutzung von Datenquellen werden in einem Living Lab in jedem 

Partnerland demonstriert. Dem Projektkonsortium gehören Akteure aus allen Stufen der 

Wertschöpfungskette an. Dieser ganzheitliche Ansatz berücksichtigt die Auswirkungen von 

technischen Innovationen und regulatorischen Änderungen, um wirkungsvolle Lösungen zu 

entwickeln, welche die Transformation zu einem Netto-Null-Energiesystem beschleunigt. Dieser 

Zwischenbericht markiert das Ende des ersten (von drei) Projektjahren. In diesem Jahr haben wir 

einen Rahmen für die Zusammenarbeit zwischen den Projektpartnern geschaffen, die Beteiligten 

befragt und den Stand der Technik beim Datenaustausch im Energiesektor untersucht. Die 

Erhebungen und Überprüfungen wurden genutzt, um einen Prototyp zu erstellen, der zur 

Spezifizierung der Komponenten der Pilotimplementierung verwendet wurde. Das Projekt tritt nun in 

die Umsetzungsphase ein. 

Résumé 
La transition énergétique nécessite un changement de paradigme dans la façon dont nous produisons 

et utilisons l'énergie. L'interconnectivité croissante et l'essor de l'industrie 4.0 signifient que davantage 

de données sont disponibles, mais il y a toujours un manque d'interopérabilité sémantique entre les 

ensembles de données. Cela limite le développement d'applications évolutives orientées vers 

l'énergie. DIGICITIES vise à surmonter les obstacles à l'accessibilité et à l'échange de données pour 

la prise de décision à l'échelle des services publics et des municipalités. Une architecture de données 

sera développée autour de couches numériques structurées et interconnectées qui seront utilisées 

dans la projection des demandes énergétiques. Un cadre pour le traitement, le stockage et l'utilisation 

des sources de données sera démontré dans un laboratoire vivant dans chaque pays partenaire. Le 

consortium du projet comprend des parties prenantes à chaque étape de la chaîne de valeur. Cette 

approche prend en compte l'impact des avancées techniques et des changements réglementaires 

pour développer une solution qui accélérera la transition énergétique vers un système à énergie nette 

zéro. Ce rapport intermédiaire marque la fin de la première année (sur trois) du projet. Au cours de 

cette année, nous avons établi un cadre de collaboration entre les partenaires du projet, interrogé les 

parties prenantes et examiné les pratiques d'échange de données les plus récentes dans le secteur 

de l'énergie. L'enquête et l'examen ont servi à créer un prototype qui a été utilisé pour spécifier les 

composants de la mise en œuvre pilote. Le projet entre maintenant dans sa phase de mise en œuvre. 

Summary 
The energy transition requires a paradigm shift in how we generate and use energy. Increasing 

interconnectivity and the rise of Industry 4.0 means that more data is available but there is still a lack 

of semantic interoperability between datasets. This restricts the development of scalable energy 

oriented applications. DIGICITIES aims to overcome the barriers to accessibility and exchange of data 

for decision-making at a utility and municipality scale. A data architecture will be developed around 

structured, interconnected digital layers that will be used in the projection of energy demands. A 
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framework for the processing, storage and use of data sources will be demonstrated in a living lab in 

each partner country. The project consortium has stakeholders from each stage of the value chain. 

This approach considers the impact of technical advancements and regulatory changes to develop a 

solution that will accelerate the energy transition to a net-zero energy system. This interim report 

marks the end of the first year (out of three) of the project. During this year, we established a 

collaboration framework between project partners, surveyed stakeholders and reviewed the state-the-

art data exchange practices in the energy sector. The surveying and reviewing was used to create a 

prototype that has been used to specify the components of the pilot implementation. The project is 

now entering the implementation phase.  
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Abbreviations 

AEM Azienda Elettrica di Massagno 

AIL Aziende Industriali di Lugano 

API Application programming interface 

AUC Area Under the ROC Curve 

BRIDGE  European Commission initiative in smart energy systems research 

CIM  Common Information Model 

DL Deep Learning 

DSM Demand Side Management 

DTDL  Digital Twin Definition Language 

GIS Geography Information System 

GML Geographic Markup Language 

IoT Internet of Things 

kWp Kilowatt peak 

HVAC Heating Ventilation and Air Conditioning 

LIC Lugaggia Innovation Community 

ML Machine Learning 

NGSI-LD Next Generation Service Interfaces - Linked Data 

OGC Open Geospatial Consortium 

OWL Web Ontology Language 

RE Renewable energy  

SDAT Standardised data exchange recommendation 

SES Società Elettrica Sopracenerina 

SFOE Swiss Federal Office of Energy 

SGAM Smart grid architecture model 

SQL Structured Query Language  

UBEM Urban Building Energy Modelling 

URI Uniform Resource Identifier 

XML eXtensible Markup Language 
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1 Introduction 

1.1 Background information and current situation 

 Swiss digital strategies 

 In Switzerland, the federal council has implemented a strategy for a "Digital Switzerland" 

urging stakeholders from different sectors to implement digital transformation projects (BFS, 2020). 

The strategy promotes the application of digital technologies as an opportunity to make the energy 

industry smarter, flexible and more efficient. The strategy outlines the need for digital tools to link 

sectors such as mobility and construction to achieve an efficient energy network supplied by 

sustainable and renewable resources. Digitalisation is already creating a rapid increase in the volume 

of data generated and available.  

 Importance of data exchange for the energy sector in Switzerland 

 A study into approaches for data exchange in the energy sector commissioned by the Swiss 

federal office of energy provides a set of recommendations for the sector (Holles et al., 2021). The 

report estimates that the combined net present value of two data hubs for electricity and gas could 

reach approximately 1billion CHF/year. The report details the highly decentralised nature of data 

exchange across the numerous stakeholders of the electrical and gas grids. Digital technologies are 

expected to help operators of the grid handle the growing complexity and requirements; however, the 

report mentioned a need to significantly improve access and use of data. To facilitate this, the report 

investigates options and key features for a data hub to exchange data in the energy sector. Key use 

cases of such a hub include: the exchange of metering data, representation of flexibility, external 

access, implementation of change processes and end-user offer management. The report also makes 

a recommendation on the standardisation of data and the use of application interfaces (APIs) to 

access the data. The report acknowledges that much of the data used in the operation of the Swiss 

electricity grid is standardised according to the Standardised Data Exchange Recommendation 

(SDAT). Beyond Switzerland, a strategic evaluation of the benefits of digital transformation for the 

energy sector revealed that there are opportunities for digital transformation to optimise energy 

allocation and scheduling; however, the main barriers are weaknesses, such as resistance to change 

and security, and threats, such as security risks (Liu and Lu, 2021).  

 Data availability in Switzerland 

 Open data initiatives, such as opendata.swiss1, are managing the influx of data and have the 

additional challenge of making it publicly available. Each dataset is published along with its metadata, 

which includes fields such as, language, spatial & temporal coverage, legal statements and contact 

details. The datasets are prepared according to the organisations mandated to provide data, and, as a 

result, the data is often heterogeneous in structure, attributes, format and quality. Additional 

transformation and mapping are often required to link datasets; however, increasing awareness of 

data standards will improve interoperability. The data also needs to be discoverable and useable for its 

stakeholders. 

The data published on opendata.swiss is from a diverse number of sources including geospatial, 

health, meteorological and statistical, and many datasets are updated and published periodically. Due 

to changes in requirements and collection methods, the structure and contents of published datasets 

may change between updates. For example, certain data fields, might be present in one update and/or 

absent or relabelled in another. This can lead to issues in interoperability for applications reliant on up-

to-date data. Nowadays, real-time integration of data from sensors and meters is becoming 

increasingly important.  The rapidly growing and evolving Internet of Things (IoT) sector, is making 

                                                      
1   https://opendata.swiss 
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data collection from such devices possible. IoT is a refers to the interconnection of physical devices, 

such as sensors and systems to the internet, enabling them to collect, exchange and analyse data to 

enable new capabilities for applications spanning numerous domains (Gubbi et al., 2013). In the 

energy sector, IoT can support the implementation of smart grids across all stages of energy supply 

chain, from generation to consumption (Ghasempour, 2019). IoT devices also provide a data source 

for load forecasting (Li et al., 2017).  Switzerland has the legally binding target of replacing 80% of 

conventional meters with smart ones by 2027 (Schweizerische Bundesrat, 2008). This will generate a 

source of live data for the planning and operation of power systems for grid operators and energy 

planners. 

 General challenges for data management 

 The challenge of data exchange in the energy sector is not a problem that is unique to 

Switzerland. A BRIDGE working group set-up to achieve interoperable and business agnostic data 

exchange was established to define a common reference architecture for data exchange in the energy 

sector to support demand-side management (Lambert, Eric et al., 2021). This report included surveys 

of the adoption of common information models in the energy sector. The report makes reference to the 

Smart Grid Architecture Model (SGAM) to organise the interaction of processes in the sector 

(Gottschalk et al., 2017). The report highlights the various bottom-up initiatives to support cross-sector 

and cross-border data exchange (GAIA-X, FIWARE, Data Bridge Alliance, IDSA, Open DEI). The 

report recommends developing cross-sector data models, to facilitate data exchange between sectors. 

The report recommends a data format agnostic approach to cross-sector data exchange and universal 

data applications that can be implemented in different domains. BRIDGE Projects are increasingly 

using business process agnostic platforms such as Ecco SP, Estfeed, IEGSA, Atos FUSE, Enterprise 

Service Bus and Cloudera. The CIM models are standards that are unique to the energy industry. 

They are not open-access standards, which makes cross-sector mapping challenging. The information 

listed in SGAM are not limited to CIM but also include: COSE, IEC 61850, SAREF, CIM+, NGSI-LD, 

FIWARE and SAREFwater (Gottschalk et al., 2017).  

 Data streams between system operators, consumers, producers and other energy 

stakeholders are becoming larger and more diverse, with new requirements on data exchange being 

introduced by the efficient operation of buildings and the integration of new technologies into the 

energy system. Semantic interoperability between applications like building energy control, grid 

operation and energy system modelling is therefore fundamental to the digitalization of the energy 

infrastructure (Pritoni et al., 2021).  

 Data quality challenges 

Data Cleaning is the process of detecting errors in a dataset and repairing them to improve the quality 

of the data. This includes qualitative data cleaning which uses mainly integrity constraints, rules, or 

patterns to detect errors and quantitative approaches which are mainly based on statistical methods 

(Thirumuruganathan et al., 2020). Specific sub-problems tackled by data cleaning include: 

 Missing data, due to device malfunction, outages of the wireless network, consumers' 

behaviours, etc. 

 Data dependencies, e.g., between similar meteorological variables or highly dependent 

smart meter measurements, and data redundancies, e.g., repeated buildings. 

 Outlier detection, identifies anomalous data that does not match a group of values, either 

syntactically, semantically, or statistically. For example, jumps in the dates or unexpected 

zeros the consumption records may indicate anomalous records. 

 Non-homogeneous time scales, between time series collected from different buildings or 

systems, ranging from 10/15 minutes for smart meter to one month for more traditional 
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acquisition of consumption data. This is particularly important if high temporal resolution 

forecasts are needed also for buildings not equipped with smart meters. 

 Inconsistent data, for instance in hierarchical data the values on a level of the hierarchy 

do not match the sum of the observation in the lower levels. 

 Architectures to support energy data  

In the SGAM, information models are an integral part of the smart grid architecture. Ontologies can 

also be used to integrate energy management data on the building and district level (Hippolyte et al., 

2018). The limitation of this approach was that the mapping between measured data and ontology 

needed to be done manually, which is a time-consuming task.  

 Importance of load forecasting 

Load forecasting is the process of predicting future energy demand using historical data and its 

influencing factors. Load forecasting can help achieve the following: 

 Optimal resource allocation and investment planning: The decision making process in the 

energy industry is reliant of forecasts from a range of time horizons spanning: seconds to 

hours, for demand response; days to months for energy trading; and years or decades for 

system planning and strategic policy making (Hong and Fan, 2016). The use of demand 

forecasting can also be used as inputs to energy system optimisation models to support the 

decision makers (Scheller and Bruckner, 2019). 

 Integration of renewable energy resources: Incorporating the integration of distributed 

energy resources can lead to a more holistic modelling of smart grids as it enables an 

understanding of how the predicted loads can be met with intermittent generation from 

renewables (Habbak et al., 2023). 

 Load forecasting with physics-based simulation 

Physics-based models simulate the energy generation or the demand of systems connected to the 

energy grid. Physical models use data as parameters and variables to model the thermodynamic 

process that occur in a system. 

Physical models of buildings, model the energy flows between building components in response to 

environmental factors such as weather conditions, to estimate the resulting energy demand. Building 

energy simulation is commonly used to evaluate the environmental performance of a building during 

the design phase, where there is a need for models that achieve an accurate representation of the 

real-world building operation (Coakley et al., 2014). Urban Building Energy Modelling (UBEM) uses 

less detailed physical models to capture the dynamic and complex interconnections and 

interdependencies between buildings and their urban environment (Hong et al., 2020). UBEM models 

use data obtained from city datasets such as geometries and building statistics. UBEM models require 

significantly less data than detailed models and parameters are often assigned using archetypal 

approaches (Wang et al., 2018).  

Thermodynamic models of varying complexity are established for all forms of renewable technology. 

For example, the performance of solar photovoltaics, solar thermal and wind can be easily calculated 

using simple models that capture the behaviour of such systems in response to irradiance and wind 

with reasonable accuracy (Duffie et al., 2020). The inclusion of these models in open-source 

engineering libraries of technologies and components enables them to be integrated and simulated as 

part of complex systems (Wetter et al., 2014).  

 Machine learning to support load forecasting 



 

9/35 

A plethora of machine learning approaches have been proposed in the recent years in response to the 

increased availability of data, and in particular smart grid monitoring data. These methods have been 

shown to achieve a high accuracy, however they have seldom be studied in the context of a real or 

realistic framework. High performance in terms of accuracy or AUC (Area under the ROC Curve) on 

benchmark data does not necessarily results in effectiveness in real situations. In fact, some 

requirements may be overlooked in the context of ML development. For instance, awareness about 

the uncertainty of the forecasts produced may be useful when it comes to decision making and control. 

However, lots of the algorithms preferred for their superior performance, such as neural networks and 

tree-based gradient boosting frameworks may fail providing reliable uncertainty estimates. On the 

other hand, so-called statistical approaches (e.g., auto-regressive moving average) provide 

uncertainty estimates but cannot capture complicated non-linear relationship between the output and 

the input predictors, and thus cannot achieve the same accuracy as black-box ML models. It must be 

also considered that, while ML methods are often validated on clean benchmark data, real data are 

less refined and include outliers, missing values and different resolutions. 

(Ferrero Bermejo et al., 2019) investigated different RE sources, such as solar, wind, and hydro, and 

empirically proved the efficiency of the artificial neural network for power prediction. Similarly, ML 

applications and taxonomy have been briefly studied (Mosavi et al., 2019) for energy systems, where, 

based on experiments, the authors analyzed that the hybrid models showed accurate prediction 

scores. Furthermore, numerous forecasting algorithms have been examined from diverse viewpoints 

including energy policy, economy, battery storage capacity, and power generation in RE sources 

(Ahmed and Khalid, 2019). Later, the researcher's attention was diverted to the deep learning (DL) for 

its remarkable performance in prediction tasks because of its strong capabilities in recognizing the 

primary nonlinear characteristics rather than employing handcrafted features (Zhu et al., 2022).  

Forecast reconciliation is a process by which forecasts generated independently for a collection of 

linearly related time series are combined according to such constraints to obtain more accurate 

prediction than the original ones for each time-series (Meira et al., 2023). The underpinning principle is 

to exploit the combination of multiple forecasts at different levels of granularity to reduce the 

uncertainty of each individual forecast. (Hollyman et al., 2021) reviews the recent literature about 

reconciliation and shows how even simple approaches to reconciliation may provide significant 

improvements in forecasting accuracy, especially at the bottom levels of the hierarchy. In the energy 

field, cross-sectional reconciliation is for instance used to exploit hierarchies imposed by the network 

structure. The most recent approaches to forecast reconciliation, which exploit at the same time 

temporal and cross-sectional hierarchies(Spiliotis et al., 2020) (Di Fonzo and Girolimetto, 2023), are 

promising for application to energy time series forecasts at different spatial and temporal levels of 

granularity.  

Transfer learning is an effective method to solve the problem of modelling with small sample. Its main 

idea is to transfer the rules or knowledge learned from source prediction tasks that possess sufficient 

data to the target prediction task with insufficient data, with which the learning of target task could be 

facilitated under the condition of limited data (Lu et al., 2021).  

1.2 Purpose of the project 

Digicities will develop, implement and demonstrate a data exchange platform to meet a set of use 

cases defined through conducting surveys with the data contributors and the need-owners of the 

exchange platform. The data exchange platform will act on several of the recommendations for a data 

hub in (Holles et al., 2021): the simplification of data structures, use cases for data access and 

innovation, extension of the existing data architecture to consider new sources of data. The exchange 

platform will demonstrate how cross-sector data can be mapped using standardised models to predict 

the energy demand at a specified output level. This is also a challenge identified in the BRIDGE report 

(Lambert, Eric et al., 2021). The resulting architecture and data models will be mapped against the 

SGAM model (Gottschalk et al., 2017). The platform will accommodate the supply of parameters for 
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both UBEM and ML studies. The critical functionality of the platform is to provide structured semantic 

information relevant to the use case. Although novel services and technologies will be applied in this 

project, the process will be documented and technology agnostic so approaches could be 

implemented in other regions and use cases. The datasets published by opendata.swiss will be 

integrated as a core component of the platform and this project serve as a demonstration of how the 

datasets can be applied for energy demand forecasting, either using ML models or UBEM. This project 

is aligned with the objective of increased renewables in the energy strategy (SFOE, 2022), where 

models will be used to evaluate the impact of intermittent generation from renewables and plan 

according; and the digital strategy for Switzerland (BFS, 2020), where the project will contribute to 

data transformation activities.     

1.3 Objectives 

This project objectives and objectives were conceived at the beginning of the project and are listed 

below:  

 Objectives 

 Provide semantic data layers to support existing digital platforms and services 

 Enable the projection of energy demands to support decision-making  

 Implement an architecture that helps organisations achieve secure data exchange 

 Use the data architecture to evaluate renewable energy integration and energy efficiency 

measures 

 Investigate new business opportunities to sustain the platform 

 Outputs  

 Generation of additional features to train machine learning models 

 Guidelines exchanging and processing energy data for the demonstration use cases  

 Demonstrated pipelines focused on improving data quality 

 Digitalisation pathways leading to the increases in energy efficient and renewable 

technologies 

In addition to the above objectives the project seeks answers to the following research questions, as 

defined in the proposal: 

Technology: Implement a data infrastructure to enable utilities and municipalities to make better use 

of their data for short-term and long-term energy planning. 

RQ T.1 What are the under-utilized data resources that are available to utilities and 

municipalities to make more accurate demand projections and better decision making? 

RQ T.2 What are the key semantic attributes of the data that are needed to facilitate data 

exchange across the digital value chain? 

RQ T.3 How can machine-learning techniques be used to address challenges of data 

incompleteness and inaccuracy? 

RQ T.4 How can federated queries be applied to multiple heterogeneous data sources of 

urban data and used to project the energy demand of buildings? 

RQ T.5 What are the key components of the infrastructure to ensure security and sovereignty 

of data exchange between the necessary stakeholders of the value chain? 
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RQ T.6 How can data be used for short and long-term decision-making regarding the 

integration of intermittent renewables, storage technologies and building retrofitting? 

RQ T.7 How can multi-source live-data be seamlessly integrated into a digital twin and used 

for demand balancing?  

Commercial: Address the challenges of data integration in the energy planning process. 

RQ C.1 What is the business case in Switzerland for adopting a structured data architecture 

for the exchange of urban energy? 

RQ C.2 What next steps are needed to make the process transferable and scalable to other 

municipalities and districts in Switzerland? 

Stakeholder: Develop and assess the feasibility of business opportunities for urban energy data. 

RQ S.1 What are the key drivers of each stakeholder group to participate in the exchange of 

energy data for urban modelling? 

RQ S.2 What are the key features that need to be integrated into a national dissemination plan 

to maximize consumer acceptance and awareness? 

RQ S.3 What is the impact on existing energy management tools used for decision making by 

municipalities and utilities? 

RQ S.4 What are the main benefits for citizens and what incentives are needed to engage 

them to strengthen the data exchange architecture e.g. crowd sourcing initiatives? 

RQ S.5 What are the impacts of the data architecture and newly available data resources on 

existing practices? 

RQ S.6 How suitable is the data for academic research and are there any additional features 

that must be considered? 

2 Description of facility 

This pilot and demonstration project will be implemented using data generated in three different sites 

across Switzerland.  

2.1 Lugaggia Innovation Community   

The Lugaggia Innovation Community (LIC) pilot. The project was launched in March 2019 by a 

consortium in the Southern Switzerland, to promote an experimental self-consumption energy 

community called Lugaggia Innovation Community, which connects the Lugaggia kindergarten with 18 

neighbouring houses and 5 photovoltaic plants (with a total power of 90 kWp). The objective of the 

project was to study the application of active DSM on a set of electrical loads spread in a residential 

area with the presence of renewable sources as well as energy storage systems (Salani et al., 2020). 

This was achieved by a centralised energy management platform using a smart meter infrastructure 

for sensing and actuation and a decentralised control approach managing the use of energy by the 

community devices through computing and controlling units, connected to the smart meters. 

2.2 Lugano Living Lab  

Lugano Living Lab is a platform that aims to encourage innovation in Lugano, with the aim of 

improving the quality of life of citizens and the attractiveness of the region, through an innovation 

oriented approach based on dialogue, co-creation and collaboration of all the existing forces active in 
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the area. Lugano Living Lab works directly with the City of Lugano municipality and its main energy 

utility company, AIL. 

2.3 NEST Building 

The NEST is an experimental building comprised of interconnected modular units. Energy is produced 

on-site using integrated renewable technologies or supplied through energy networks. Energy is 

supplied to the units through a multi-energy hub, which is comprised of a microgrid and three thermal 

networks. The isolation and control of different parts of the network allows technologies and control 

strategies to be evaluated. Approximately 10,000 measurements are recorded every minute and 

stored in a time series database and can be queried through a REST API. These measurements 

include the heating and cooling demands from the thermal network, as well as HVAC, lighting, and 

equipment electricity consumption. Metadata about each data point is stored in a SQL database.  

3  Activities and results 

3.1 Use case surveys 

The purpose of profiling the inputs and outputs of our digital services is to understand the types of 

data they need and the value they can generate on it. This will enable a common understanding of 

how to prepare and exchange data for the data generators and the third parties. This will also help us 

identify conflicts of interest. It is also possible for the need-owners to work on the data themselves but 

this is often outside the scope of their business activities.    

 Survey of present data usage of need owners  

The need owners of this project are energy utilities. Three energy utilities provide energy to the region 

of this study and participated in the Digicities kick-off meeting (AEM, AIL, SES). The following 

questions were asked about the present operation of the company:  

 What is your company's offering? 

 How important is INTERNAL data in your actual/future business. 

 How important is EXTERNAL data in your actual/future business. 

 What INTERNAL data are you currently using? 

 What EXTERNAL data are you currently using? 

 How are you obtaining INTERNAL data? 

 How are you obtaining EXTERNAL data? 

 What are the pains obtaining data? 

 What are the pains dealing with data? 

 What are the main uses you make of data? 

 How do you deal with low quality data (wrong/missing samples)? 

 Survey of present future usage of need owners  

The utilities were then asked the following questions about their intended future use of data: 

 What data are you missing? 
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 What are the hurdles obtaining that data? 

 What are you doing to fill the gaps? 

 Are you generating proprietary data? 

 Would you be willing to sell your proprietary data on a data exchange? 

 Would you need raw data or pre-defined Insights? Which ones? 

 What are the NEW uses you would make of new data / insights? 

 Would certification of a data exchange be valuable in your business? 

 What would be a "dream tool" based on data that would boost your business? 

 Survey of digital services  

Digital services are offered by organisations that use data to generate energy insight for their clients. 

Several organisations joined the Digicities knowledge community during the project kick-off. The 

survey of digital services was carried out to identify the main datasets required to generate insight for 

the clients. The following questions were asked: 

 What is your company offering? 

 What data are you currently using? 

 How are you obtaining data? 

 What are the pains? 

 What data are you missing? 

 What are the hurdles obtaining the data? 

 What are you doing to fill the gap? 

 Do you generate proprietary data?  

 Would you be willing to sell your proprietary data? 

 Use case definitions 

The responses to the survey were analysed during a workshop and the following use cases were 

defined: 

Utility use case 1  

We need to know what a district's energy consumption and production patterns will be in 2030 to plan 

and build a dependable and competitive network. Our infrastructure department needs to optimize its 

network to guarantee stable and secure operation in the future. Our operations department needs to 

predict the consumption over the short-term (24 hours) and medium-term (3 months) horizons to 

decide whether to produce or import energy. This requires continual monitoring of the grid operation 

and its available capacity. Long-term (1-year plus) projections are needed to make strategic decisions. 

Our operations also need to be reactive to local events at a time resolution of 15min so that the 

economic and environmental performance of the grid can be maintained.  

Utility use case 2  

We would like to know how our grid will function in the future. We would like to know what actions we 

should take now to develop our grid to ensure reliable and sustainable operation in the future. We 

would like to access the best available information to inform us how our grid will respond to different 

scenarios and external factors such as resource availability and future energy consumption patterns. 

We believe a digital platform with continually updated information on the technical advancements in 
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energy consumption, production, storage and distribution would facilitate decision-making for the 

development and operation of our future grid.   

NEST Demonstrator Use Case 1 

An exemplary use case using the NEST demonstrator building of smart meter interaction at utility and 

building level. In the Digicities project, the NEST use case would primarily act as a data contributor to 

demonstrate how the different data scales can be handled between the system and the building scale.  

Energy Simulation Use Case 1 

Both use cases aim to explore the building energy consumption patterns and the interaction with the 

neighborhood energy systems, such as the public electric grid and district heating network. This aims 

to improve and maintain the stability and reliability of energy networks. In this regard, a data 

architecture, compliant with current and upcoming standards that preserve sovereignty, security, and 

privacy, needs to be implemented. Furthermore, we will gain more insights into how the use of open 

and standardized APIs will maximize data usability and contribute to supporting achieving the city’s 

energy and climate goals.  

3.2 Design of the conceptual architecture  

The requirement of the conceptual architecture was designed according to the results from the 

stakeholder survey workshop. The process is shown in Figure 1. 

 

Figure 1: The process to design the conceptual architecture of the Digicities platform. The results of a stakeholder survey were carried 

out to determine the user stories. This was used to generate a set of requirements from which a conceptual architecture was prepared.  

Once the architecture was mapped out it was sent to our implementation partner (Microsoft) to identify 

the cloud services that could achieve the requirements.  
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Figure 2: A closer look at the specific requirements in relation to data contributions and data requests. The data requests and 

contributions are handled by the Digicities data platform. The platform has a data storage ecosystem that enables data to be stored 

optimally according to the data format and type, this can be separated into SQL and NoSQL databases. The data is made available 

through an API that enables federated queries across the data stored on the platform. Data preparation and ML services are designed to 

work directly with the platform. The use of standard vocabularies to organize data enables semantic reasoning. All data stored on the 

platform must adhere to the hierarchy of semantic requirements shown on the right. This is to assist querying and enable the 

development of scalable and transferable algorithms.  

3.3 Review and categorization of available data 

 Data interactions  

The platform will have two forms of interaction: contributions and requests. The business case for 

closing the loop by providing services enable by data enhanced by the Digicities platform, will be 

evaluated in this project. An overview of the interactions is shown in Figure 3.  
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  Data governance   

A governance framework defines the rules of working with the data integrated and used by the 

platform. We have categorised the data received in this project by access and usage restrictions. 

These options will be presented to data contributors or when establishing data agreements. The 

different categories of data access are: 

 Open data: The data is published online and can be accessed by anyone. 

 Commercial data: The data is sold commercially. 

 Privately shared data: The data is shared by an organisation for a specific purpose. 

Each type of data access will come with its own terms and conditions for data usage. The following set 

of usage restrictions are proposed to specify the access rights.  

General use: The use of the data is limited to a specific purpose e.g. a research project or non-

commercial usage 

 Data linking: The data cannot be linked with other datasets. 

 Personal and sensitive data: Data must not be shared with third parties. 

 Reporting restrictions: Data must be reported at a level of aggregation so that the underlying 

data cannot be identified. 

 Data domains 

The features of each dataset are also classified by domain. Features in each dataset were assigned to 

the following domains: 

 Buildings  

 GIS Boundaries  

 Energy and time series  

 IoT and real time  

 Semantic requirements  

Figure 3: Data interactions foreseen in the Digicities project 
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The integration of data according to common information models or ontologies enables 

interoperability. The features in each dataset are evaluated according to several requirements that 

determine context, location, source and quality. The hierarchy of the semantic requirements of the 

data layers are shown in Figure 4. 

 

           

Figure 4: Semantic requirements of the data layers in the platform 

3.4 Review of available datasets 

The data that will be integrated into the platform have been classified according to the above 

considerations. An overview of the datasets identified during the first year of the project are shown in 

Table 1.  

Table 1: Summary of Swiss datasets 
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3.5 Review of data vocabularies  

 Geospatial vocabularies 

Geospatial data contains geographic or spatial information. Geographic Information System (GIS) is 

the software system used to work with geospatial data. GIS software enables layer-based analysis of 

vectors (e.g. points, lines, polygons) and raster data (e.g. satellite images, tiles). Geospatially resolved 

data is increasingly available and there are a large number of applications to manage and visualise 

the data. They are an essential component of data platforms for cities. A review of the different 

technologies for storing and analysing geospatial data found that document databases are the best 

platform for geospatial data processing; whereas graph databases and key-value databases are 

limited in both data structures and the processing options (Guo and Onstein, 2020).   

GeoNames Ontology 

Type: Web Ontology Language 

Physical Scale: Regional 

Temporal Scale: NA 

Geonames is a database that contains place names of for all regions across the world, in 

multiple languages. It is a collaborative effort and contains contributions from many 

organisations in each country. The GeoNames Ontology is designed to enable the use of 

geospatial information on the semantic web2.   

GeoSPARQL  

Type: Web Ontology Language 

Physical Scale: Can represent any scale of geospatial object 

Temporal Scale: NA 

GeoSPARQL is a web ontology language for representing and querying geospatial data using 

semantic web technologies. It is developed and maintained by the Open Geospatial 

Consortium (OGC). It was created to enable geospatial data interchange with efficient 

geospatial queries (Battle and Kolas, 2011).  GeoSPARQL only defines two subclasses of 

Spatial Object: Features and Geometries, which can both belong to spatial collections. 

 Formalising spatial scales for urban modelling 

The spatial scales are mostly administrative constructs that are specific to a region or country. For 

example, there is no universal definition of a postcode, district or canton. These will mostly vary from 

country to country. A spatiotemporal ontology for administrative units of Switzerland (SONADUS) was 

created (Gantner, 2011); however, the ontology became large and complex due to adherence to rules 

in the upper ontology (Gantner et al., 2013). One of the largest resources of linked data on the internet 

is DBPedia, which also contains information on the Swiss municipality borders. A study showed that 

querying Swiss regions with the GeoNames terms and creating manual links to DBpedia, returned 

acceptable performance (Grütter et al., 2017).  

 Hexagonal hierarchical geospatial indexing system (H3) 

H3 is a hierarchical geospatial indexing system for geographic data. Indexed data can be joined 

across different datasets and aggregated at different levels of precision. The H3 index is an unsigned 

64-bit integer representing any H3 object.  

                                                      
2 https://www.geonames.org/ontology/documentation.html 
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 Building Vocabularies 

Brick Ontology 

Type: Web Ontology Language 

Physical Scale: Device and building scale 

Temporal Scale: Relationships connect external time series database 

The objective of the Brick ontology is to capture the concepts and relationships 

necessary to operate a BMS across a heterogeneous set of buildings (Balaji et al., 

2016). 

Real Estate Core 

Type: Web Ontology Language 

Physical Scale: Device and building scale 

Temporal Scale: Relationships connect external time series database 

The Real Estate Core (REC) Ontology is a Web Ontology Language that was 

developed to support energy usage analysis/optimisation and presence analysis 

(Hammar et al., 2019). It is designed to accommodate all of the data requirements of 

real estate management. The REC is comprised of two base models that can be 

extracted. The REC has the following modules: 

 Metadata 

 Core  

 Agents  

 Building 

 Device  

 Lease 

GML and CityGML 

Type: Conceptual data model 

Physical Scale: City infrastructure 

Temporal Scale: Relationships connect external time series database 

The Geography Markup Language (GML) is an XML-based language for describing 

geographical features. GML is an open standard maintained by the OGC. CityGML 

extend the concepts of GML for the representation and exchange of 3D city models. 

The CityGML is a conceptual data model used to represent virtual 3D city and 

landscape models (H. Kolbe et al., 2021). The CityGML conceptual data model is 

comprised of modules that represent different elements of a city. The CityGML 

conceptual model is extendable through application domain extensions (Biljecki et al., 

2018). 

An OWL ontology for the CityGML 2.0 schema (University of Geneva, 2023) was 

unable to represent all of the classes for a test city dataset (Charlottenburg-

Wilmersdorf district of Berlin); this lead to a proposed extension of the ontology to 

represent the required classes in the test dataset (Chadzynski et al., 2021). The 

authors named the ontology "OntoCityGML" and concluded it could act as the schema 

to serve a semantic twin to the 3DCityDatabase software; however, at the time of 

writing, the ontology has not published.  3DCityDB is a geo database to store 
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represent and manage 3D city models using a relational database (Kolbe et al., 2013). 

At the time of writing, 3DCityDB is compatible with the CityGML 2.0 datasets.  

The latest version of CityGML, CityGML 3.0, can now be qualified by a relation type 

identifiable using URI (e.g. using the sameAs relation from OWL), which allows for 

mapping to RDF triples (Kutzner et al., 2020).  

Applications and technologies work with different modules of the CityGML conceptual 

model by defining an implementation specification. This contains the results of a set of 

tests to demonstrate conformance in representing the modules. The only mandatory 

tests for any application or technology is the CityGML core. CityGML 3.0 contains a 

new Dynamizer module, which enables: data structures to represent time series data, 

overwriting of static attributes and explicit linking of sensor and observation data. This 

module aims to help the integration of IoT devices and the time-series data generated 

by scenario modelling. The mapping between GeoSPARQL and the core GML 

concepts has been shown to be feasible (Qiu et al., 2015). The standard CityGML 

model can be extended using application domain extensions. The most relevant for 

this project is the EnergyADE (Agugiaro et al., 2018).  

IFC 

Type: Standard data model  

Physical Scale: Device to building  

Temporal Scale: NA  

Industry Foundation Classes (IFC) is a data model used in Building Information 

Modeling (BIM) to represent and exchange information about buildings and 

construction projects. It is an open and neutral standard developed by 

buildingSMART. IFC is the main reference standard for exchanging BIM models, 

however, their complexity results in inconsistencies that has limited their use for 

applications such as energy performance simulation (Elagiry et al., 2020). 

BOT 

Type: Standard data model for building topologies   

Physical Scale: Building 

Temporal Scale: NA 

The Building Topology Ontology (BOT) is a standardised way of representing the 

topological components of a building. It is a simplified approach with a limited number 

of classes that is designed to achieve interoperability between more complex data 

representations of buildings such as IFC. 

gbXML 

Type: Standard data model  

Physical Scale: system to building  

Temporal Scale: sub hourly 

Green building XML is an open schema for exchanging building information between 

building design and energy analysis software tools. It is primarily designed to store 

information on the Building Energy Model (BEM), which requires specific information 

on the zones and heating system. As this information is not required for the IFC, there 

and there are interoperability issues with the IFC BIM format and the gbXML BEM 

model (Bastos Porsani et al., 2021). 
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 Energy and time series 

ASHRAE 223p 

Type: Data standard / Web Ontology Language 

Physical Scale: Device and building scale 

Temporal Scale: Relationships connect external time series database 

ASHRAE 223p aims to provide a data standard or tagging dictionary that allows 

interoperability between building data. This explicitly includes other building data 

schemas like BRICK, Project Haystack, and most importantly BACnet, which are 

directly involved in the development of the ASHRAE 223p dictionary. While the 

development does not seem to be finished, it is aimed to be adopted as ISO standard.  

DTDL 

Type: Modelling language 

Physical Scale: Device and building scale 

Temporal Scale: Relationships connect external time series database 

The DTDL is comprised of six metamodel classes that are used to describe the 

behaviour of all digital twins (Azure, 2022). These metamodel classes are Interface, 

Telemetry, Property, Command, Relationship, and Component. DTDL is implemented 

in JSON-LD. The Azure Digital Twin Platform incorporated the DTDL.  

FIWARE 

Type: Standardised data models 

Physical Scale: Device and building scale 

Temporal Scale: Relationships connect external time series database 

FIWARE data models are a collection of standardised data models designed to 

facilitate the development and interoperability of complex applications that require 

data from multiple cross-cutting domains, such as energy and smart cities. FIWARE 

models are defined using JSON-LD, which makes them compatible with linked data 

principles. FIWARE data models are designed to support IoT interoperability and data 

exchange between data providers and data consumers using data brokers (Cirillo et 

al., 2019).  

CIM  

Type: Standard for data exchange  

Physical Scale: Device to system  

Temporal Scale: Sub-hourly  

The Common Information Model (CIM) is an open data model standard specifically for 

the electric utility industry to exchange data between different applications and 

systems. The objective is to improve the interoperability of smart grids; however, the 

application of CIM is hampered by several issues such as an inability to represent all 

business requirements, harmonization and validation (Kim et al., 2020). The uptake 

and application of CIM was the focus of the surveys carried out by (Lambert, Eric et 

al., 2021). 

SAREF 

Type: Standardised data model  
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Physical Scale: Device to system  

Temporal Scale: Sub-hourly  

Smart Appliances REFerence (SAREF) ontology is a standardized data model 

developed by the European Telecommunications Standards Institute (ETSI) to enable 

interoperability among smart appliances and services in the Internet of Things (IoT) 

domain. SAREF is a data model that focuses on the functionality of smart objects in 

the building domain. The aim is to enable interoperability in complex systems of 

connected, heterogeneous devices (Daniele et al., 2015). 

 Multi-domain models and dataspaces  

GAIA-X Dataspaces 

Type: Virtual environments for data economy  

Physical Scale: Device to city / multi-domain 

Temporal Scale: NA 

GAIA-X is a European initiative that aims to create a federated, secure and trustworthy 

infrastructure. Dataspaces are virtual environments designed to handle the 

requirements of data exchange. GAIA-X is at the heart of the coordination of the 

European Data Act and Data Governance Act. The aim is to provide use cases and 

technical architectures for European common dataspace (Braud et al., 2021). 

 Summary of the data models and platforms considered 

The Digicities platform will map the available data and contributions from our stakeholders to the most 

suitable data vocabulary to represent the information. The conformance to these data models will be 

documented on the platform. This will enable the discovery and exploration of the data managed by 

the platform. Figure 5 shows an example of the data models reviewed during this project. 

 

Figure 5: A summary of some of the reviewed data vocabularies and data platforms. The scale indicated the physical scale 

of the data they represent.  
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3.6 Project Impact Evaluation  

A measurement concept and strategy have been devised to continually monitor and evaluate the 

progress and impact of the project to ensure it stays on track towards its objectives. The monitoring 

strategy evaluates each stakeholder and pilot region according to a set of KPIs covering the following 

impact categories:  

 Data access 

 Decision making 

 Impact on the energy sector 

A living report containing details of the pilot regions, planned activities and findings will be updated 

and submitted to the SFOE bi-annually. 

4 Evaluation of results to date 

A prototype semantic infrastructure has been created to assist with communicating the necessary 

components and platform specification to be implemented into the pilot with our implementation 

partner Microsoft. Data agreements are still in the progress of being finalised with the data providers of 

our use cases. In the absence of this data we have developed a workflow using simulated data that 

demonstrates the necessary components that need to be present in the implementation of the pilot 

platform. The workflow is shown in the following diagram:  

 

 

Figure 6: Workflow showing the stages of the prototype ahead of the pilot implementation phase 

4.1 Raw and simulation data  

Data from the GWR3 was spatially joined to building polygons in Open Street Map and an energy 

simulation was carried out using CESAR-P (Orehounig et al., 2022).  

4.2  Geospatial operations  

The data was spatially mapped to two levels of H3 geospatial cell using spatial joins using the QGIS 

software package. The process of geospatial mapping is shown in Figure 7.  

                                                      
3 https://www.housing-stat.ch/de/index.html 
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Figure 7: Geospatial mapping of data points to cell grids in QGIS. The red hexagons are resolution 10 of H3 indexing system. The parent 

hexagon is resolution 9. All hexagons are uniquely identifiable by their ID.  

4.3 Semantic mapping 

The ontologies used to achieve the semantic requirements for each piece of data are shown in Figure 

8. The "What" requirement requires context about the physical object. In the prototype, the UES 

ontology is used to describe the type of simulation and its parameters (Allan et al., 2021). The Data 

Catalog ontology4 (DCAT) is a widely used ontology to facilitate interoperability between data catalogs 

published on the Web. This is implemented as a core ontology to organise the raw datasets and their 

distributions. The metadata fields are closely matched to the data fields used to manage open 

government on opendata.swiss. It will also support hybrid approaches, which incorporate a mix of 

methodology from each discipline. The PROV-O also enables tracking of changes to datasets and the 

creation derived information. In the case of UBEM, there are a range of modelling approaches that can 

generate demands for an entity on the Digicities platform.  

                                                      
4 https://www.w3.org/TR/vocab-dcat-2/ 
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Figure 8: The ontologies used in the mapping of the prototype data to meet the sematic requirements  

The provenance ontology (PROV-O)5 enables the representation, exchange, and integration of 

provenance information generated in different systems and under different contexts. In the prototype 

implementation, the classes in PROV-O are used in the creation of a virtual building, which are linked 

to a set of parameters required for a specific purpose. In the case of the prototype, the virtual entity is 

linked to input parameters for the simulation. In the future, these virtual entities could be any form of 

any real-world entity on the platform e.g. building, geospatial cell, administrative region etc. And an 

unlimited number of virtual entities can be connected to the records of real-world entities. This enables 

a traceable and repeatable process, which can be used to compare the performance of different 

modelling techniques e.g. machine learning vs physical models. The application of DCAT and PROV-

O achieve the "Source" requirements of the Digicities prototype and their application is illustrated in 

Figure 9. 

 

                                                      
5 https://www.w3.org/TR/prov-o/ 
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Figure 9: Demonstration of how the PROV-O ontology is used in the prototype to link multiple virtual entities to the record of a physical 

entity. The prefixes: ues: Urban Energy Systems ontology; dici: Digicites ontology; dcat: Datacatalog ontology; prov: PROV-O ontology.  

4.4 RDF Triplestore  

Example queries to extract data have been uploaded to the Digicities repository of the NEST Cloud6. 

Users can register for access to the data. (Note – the prototype is currently available of the NEST 

Cloud but in the future, this will be moved to the pilot platform). 

Here are some example queries demonstrating how to explore and retrieve data from the platform. 

Figure 10 shows how to trace the original data source used to generate virtual building models.  

 

Figure 10: An example SPARQL query performed on the Digicities repository of the knowledge graph to return information regarding the 

provenance of virtual buildings generated from the data. Note the use of Uniform Resource Identifiers (URI) to indicate instances of 

entities stored on the platform 

                                                      
6 https://graphdb.nestcloud.ch/login 
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Figure 11 shows how to extract specific demands of specific building types within a specific geospatial 

cell.  

 

Figure 11: An example SPARQL query performed on the Digicities repository of the NEST knowledge graph to return the cooling 

demand of virtual buildings, assigned as a ues:Office, within a specified H3 geospatial cell.  

The querying may seem arbrirtray, however, if an application has prior knowledge of the ontologies 

and the terminological relationships, it will enable autonomous processing of the data that could 

improve the retrieval, processing and comprehension of the data. For example, the proposed structure 

could be useful in the development of natural language retrieval methods. A user would be shielded 

from the complexity of developing the complex queries but could ask to have all of the cooling 

demands for a region. The application would know handle this request based on the structure and 

linking of the data and provide the user a meaningful response with any underlying assumptions. This 

is currently not possible with data for urban demand forecasting so the approach in Digicities would 

have considerable benefit of the discovery and application of data for demand forecasting. The results 

can be queried according to the H3 geospatial ID. The kepler.gl web app7 will automatically plot data 

that is organised accordign the the H3 ID – drag and drop interface. Files with a column with a H3 ID 

are automatically plotted and aggregated according to the value of interest. This process is shown in 

Figure 12.  

 

Figure 12: Visualisation of simulated annual electricity demand using H3 geospatial cells in kepler.gl 

 

                                                      
7 https://kepler.gl/demo 
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4.5 Machine learning 

IDSIA researchers have developed methods for energy load and peak forecasting placing them high in 

the BigDeal Challenge 2022. These methods are improved and detailed in a paper submitted to the 

12th DACH+ conference on energy informatics (2023). They include a novel procedure for feature 

engineering and feature selection, based on cluster permutation of temperatures and calendar 

variables. Gradient boosting of trees capabilities are exploited and enhanced with trend modelling and 

probabilistic forecasts (see Figure 11). While most approaches focus on improving the accuracy of 

point prediction, models correctly quantifying the uncertainty of the predictions are necessary to 

support reliable decision making. Finally, an approach to forecast combination known as temporal 

hierarchies, is used to further improve the accuracy. 

 

Figure 11: Comparison of probabilistic forecasts, before and after the application of the temporal 

hierarchy. The temporal hierarchy slightly improves the point forecasts. It also shortens the prediction 

intervals without compromising their reliability. Data are taken from the BigDeal Challenge 2022 

 

Preliminary short term predictive models have been trained on data derived from the s the Lugaggia 

Innovation Community (LIC) project, a pilot promoting an experimental self-consumption energy 

community. Data includes smart-meters measures with a 15 minutes resolution, from 20 neighbouring 

houses with 5 photovoltaic plants and the distribution sub-station to which they are connected and 7 

days ahead weather forecasts from Meteoblue provider. We used these data to train 15-minutes and 

24 hours ahead forecasting models.  

Concerning long term prediction based on building characteristics, we have started the analysis from 

data generated by EMPA simulator about annual heating, cooling, energy and hot water demand of 

Lugano buildings. We have built predictive models using different algorithms showing very high 

correlation of the prediction with the simulated values (see figure 12). Analysis of the predictor 

importance shows that the main contribution to such predictions is due to the building footprint area, 

as might have been expected. The high predictive performance observed are probably due also to the 

use of simulated data, which are probably generated by a simpler model than real ones. We plan to 
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test the approach to real data in the next months. 

 

Figure 12: scatterplot of the demand forecasts versus the simulated values. The corresponding 

coefficients of determination are heating: R2 = 0.94, cooling: R2 = 0.88, electricity: R2 = 0.94, 

hot_water: R2 = 0.84 

 

5 Next steps 

An overview of the project phases and related tasks is shown in Figure 13.  
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Figure 13: Project phases, tasks, and milestones 

The project is entering the implementation phase with our Microsoft partners. We have devised a 

statement of work that will be financially supported by Microsoft. The formation of data contracts to 

satisfy the requirements of GAIA-X will be explored with TrustRelay. We have already had several 

calls and workshops but once we begin our implementation, we will align complimentary activities.  

6 National and international cooperation 

The Digicities project kicked-off on the 24th May 2022 in Lugano with 40 attendees from 20 

organisations in three different countries (Switzerland, Austria, Spain). This included representatives 

from the need-owners and the living labs that will provide data to the project. The kick-off enabled us 

to build a knowledge community around our project that will be informed about major developments. A 

summary of those involved are shown on our webpage https://digicities.info/. An overview of the 

different project stakeholders is shown in Figure 14.  
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Figure 14: Digicities stakeholder network 

 

The project is carried out in collaboration with partners in Austria. Their project is led by AIT who 

coordinate a use case focused on parameterised energy simulation models using the data exchange 

platform. They work with several regional partners and living labs. AIT recently coordinated and 

submitted a review that concluded in a set of requirements of the platform for their use case. They 
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hope to present their paper at the DACH+ conference on Energy Informatics.  A summary of the 

Austrian use case is shown in Figure 15. 

 

 

Figure 15: Austrian use case that will interface with the Digicities platform 

7 Publications 

Currently there are no publications; however, the following referenced manuscript will be published in 

the proceedings of the CISBAT 2023 conference: 

Allan, J., Mangili, F., Derboni, M., Gisler, L., Hainoun, A., Rizzoli, A., Ventriglia, L., & Sulzer, M. (2023). 

A semantic data framework to support data-driven demand forecasting. In Proceedings of the CISBAT 

Conference (pp. XXX-XXX). Lausanne. 
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