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Model Predictive Control can cope with conflicting control objectives in building energy managements. In terms 
of user satisfaction, visual comfort has been proven in several studies to be a crucial factor, however thermal 
comfort is typically considered the only important aspect. Besides human well-being, visual comfort strongly 
impacts the productivity of the occupants in offices. Therefore, from an economic point of view, it is essential to 
include visual comfort in Model Predictive Control for buildings. In this paper semi-linear support vector machine 
is applied to learn suitable models for visual comfort measured by Daylight Glare Probability. The resulting 
model is incorporated into a Model Predictive Control framework, together with an autoregressive exogenous 
model accounting for the thermal dynamics of the building. The approach is validated through an extensive 
numerical case study, and the benefits of including visual comfort and blind control in the Model Predictive 
Control problem are evaluated. We observe that the proposed Model Predictive Control scheme ensures both the 
thermal and visual comfort constraints at the expense of 2.2% to 7.2% higher energy consumption compared to 
the benchmark Model Predictive Control configuration, which considers only the thermal comfort constraints.
1. Introduction

Buildings account for approximately 40% of the global energy con-
sumption. About half of this energy is allocated to space heating and 
cooling, ventilation, and air conditioning [1]. On the other hand, people 
spend around 85% of their lifetime in buildings [2]. Therefore, pre-
serving high quality indoor conditions is crucial for human well-being. 
Moreover, in non-residential buildings human well-being has also an 
economic aspect since productivity correlates with comfort [3]. Con-
sequently, improving the energy efficiency of buildings needs to be 
achieved without compromising the occupant comfort. To this end, var-
ious control methodologies are designed to optimize the performance 
of heating, ventilation, and air conditioning (HVAC) systems [4], in-
cluding Model Predictive Control (MPC) approaches, which employ a 
mathematical model of the plant and repetitively solve a constrained 
optimization problem to find the sequence of optimal control inputs. 
Since MPC is an appropriate control strategy to suitably balance be-
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tween conflicting goals, the approach was investigated intensively in 
research on building automation and control systems [5–11]. For ex-
ample, [5] deploys a first-principle based MPC in an office building to 
control the blinds, ventilation, and thermally activated building systems 
(TABS), and meanwhile, maintain the thermal comfort in the indoor 
space. Due to the high performance of the building MPC, it has been 
extended to the data-driven settings [12–15] and distributed scenarios 
[16].

While typically room temperature and the indoor air quality are 
considered to quantify user comfort in buildings, the visual conditions 
also impact the satisfaction and well-being of the occupants, and con-
sequently, their productivity [3]. Accordingly, visual comfort mainte-
nance is proposed to be considered in various shading control strategies 
[17–19]. Despite the fact that thermal comfort has a relatively standard 
definition based on indoor temperatures [20], which are well-defined 
physical quantities that are directly measured with temperature sensors, 
visual comfort has a human-centric nature that depends on the glare 
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Fig. 1. NEST demonstrator with the office unit SolAce on the right side of the 
second floor (red box) [26]. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

perception by the users. Nevertheless, some rather ad-hoc approaches 
are employed in the literature to include the visual comfort inside 
buildings [21]. To correctly assess the excess glare inside a building, a 
specific index called Daylight Glare Probability (DGP) is experimentally 
developed based on factors such as luminance, solid angle, and posi-
tion index of the glare sources [22]. The strong correlation between 
DGP and perceived glare, which is verified through the feedback of 
users, has made DGP a relatively standardized metric for visual com-
fort despite its heavily complex definition. Considering this feature of 
DGP, a building MPC scheme with thermal and visual comfort is pro-
posed in [23], where white-box modeling approaches are employed to 
obtain the value of DGP and the thermal dynamics of the building. Ac-
cording to the complexity of DGP definition, white-box and parametric 
modeling approaches for DGP, like those utilized in [23], demand ex-
haustive parameter estimation and significant model tuning. In general, 
while data-driven modeling frameworks, like black-box techniques, are 
comparably scalable and independent of specific modeling expertise, 
physics-based paradigms, such as white-box and gray-box schemes, are 
based on expert knowledge and may result in either excessively sim-
plistic models or intractable parameter estimations [24]. Due to this 
fact and since the direct calculation of DGP is rather challenging, ad-
vanced calibrated sensing devices have been recently designed to ease 
measuring DGP and provide proper assessment of visual comfort [25]. 
The existing building MPC approaches either do not take into account 
visual comfort [5,10], or, it is considered independently from the ther-
mal energy concerns [19], or, their consideration is not based on proper 
standard metrics like DGP [21], or, they employ intractable and un-
scalable modeling approaches for DGP with prohibitive calibration and 
parameter tuning load [23].

Following the discussion above, this work addresses the indicated 
gap in the literature by proposing a suitable MPC scheme with proper 
consideration of thermal and visual comfort where data-driven model-
ing approaches are employed for building thermal dynamics and DGP. 
Note that satisfying thermal and visual comfort while reducing the 
energy consumption is a challenging and conflicting task as solar irra-
diation is a source of free thermal energy but may also violate visual 
comfort, i.e., independent operation of heating and shading systems 
leads to sub-optimal overall performance. Accordingly, we need to re-
solve the following challenges:

∙ How can we design a building MPC with both thermal and visual 
comfort inclusion?

∙ How can we ensure the tractability of the MPC formulation?
∙ What are the potential savings and costs in terms of energy and 

comfort violations?

To address these questions, we develop an MPC scheme based on a lin-
2

ear autoregressive exogenous (ARX) model of the thermal dynamics and 
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Table 1

Nomenclature.

DGP Daylight Glare Probability
MPC Model Predictive Control
MPC-TC&VC MPC with thermal and visual comfort constraints
MPC-NB MPC with thermal comfort constraints and no blind control
MPC-TC MPC with thermal comfort constraints
MPC-VC&TLB MPC with visual comfort and thermal lower bound

constraints
PRBS Pseudo-Random Binary Signals
RBC Rule-Based Control
RBC-SB RBC with night temperature setback
SVM Support Vector Machine

a semi-linear support vector regression (SVR) model for predicting DGP. 
Furthermore, we evaluate the proposed scheme on a numerical case 
study derived through measurement data from the SolAce apartment in 
NEST, a district scale living lab located in Dübendorf, Zürich, Switzer-
land, shown in Fig. 1.

The remainder of this paper is structured as follows: In Section 2, we 
cover the main challenges to be addressed in the proposed MPC, which 
is thoroughly explained in Section 3. Section 4 describes the simulated 
building and the numerical case study. The results of the case study 
are presented and discussed in Section 5. Finally, Section 6 concludes 
the paper and provides the outlook on future research directions. The 
abbreviations and notation used in this paper are provided in Table 1
and Table 2, respectively.

2. Model predictive control of buildings: visual comfort challenge

MPC is an online control strategy that provides near optimal deci-
sions resulting in maximal utilization of the energy system in buildings 
including considered constraints. The MPC excellent performance is due 
to the joint consideration of energy minimization and comfort satisfac-
tion. The main advantage of MPC is due to its potential in taking into 
account the operational and technological limitations, the forecasts of 
weather and climate variables, and the thermal dynamics of the build-
ing. In the implementation of MPC, the time axis is discretized based 
on a suitable sampling period, and, an optimization problem is solved 
at each discrete time-step 𝑘 to obtain a sequence of optimal decisions 
u∗ ∶= (𝑢∗0 , … , 𝑢∗

𝑁−1), where 𝑁 is the planing horizon. Following this, 
the first control input, 𝑢∗0 , is applied to the system, the measurements 
are updated, and the time horizon is rolled forward. The MPC optimiza-
tion problem has the following generic form

minimize
x,u

𝐽 (x,u) ∶=
𝑁−1∑
𝑘=0

𝓁𝑘(𝑥𝑘, 𝑢𝑘) + 𝓁𝑁 (𝑥𝑁 ) (1a)

subject to 𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘, 𝑑𝑘), 𝑘 = 0 , ... , 𝑁 − 1, (1b)

𝑢𝑘 ∈𝑘, 𝑘 = 0 , ... , 𝑁 − 1, (1c)

𝑥𝑘 ∈ 𝑘, 𝑘 = 1 , ... , 𝑁, (1d)

where 𝑥0 is the given initial state, u ∶= (𝑢0, … , 𝑢𝑁−1), x ∶= (𝑥1, … , 𝑥𝑁 ), 
and d ∶= (𝑑0, … , 𝑑𝑁−1) are respectively the inputs, the states, and 
the disturbances over the MPC horizon, 𝑓 describes the thermal dy-
namics of the building, 𝓁0, … , 𝓁𝑁−1 are running cost functions, 𝓁𝑁

is the terminal cost function, and, 0, … , 𝑁−1 and 1, … , 𝑁 are 
the sets of admissible inputs and states, respectively. Though (1b) is 
a state-space representation, it can be an input-output description for 
the building thermal dynamics, such as an ARX model [24], which is 
more common in the practical implementation of building MPC as the 
hidden states are often not constrained. Additionally, the disturbances 
d = (𝑑0, … , 𝑑𝑁−1) encapsulate the climate variables or their predicted 
values for the subsequent 𝑁 time steps. The operational limitations and 
practical constraints on the inputs are considered through the constraint 
sets 0, … , 𝑁−1. On the other hand, since the states are typically tem-

peratures of the zones, 1, … , 𝑁 primarily characterize the thermal 
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Table 2

Notation.

𝑥𝑘 state variables (temperatures) at 𝑘

𝑢𝑘 inputs or decision variables (heating powers and blind positions)

at time 𝑘

𝑑𝑘 disturbances (climate variables) at time 𝑘

𝑓 thermal dynamics of the building

𝑁 horizon of MPC

x vector of all states over the MPC horizon

u vector of all inputs over the MPC horizon

d vector of all disturbances over the MPC horizon

𝓁𝑘 running cost of MPC for time 𝑘

𝓁𝑁 terminal cost of MPC

𝑘 state constraints at time 𝑘

𝑘 input constraints at time 𝑘

𝑘 visual comfort constraints at time 𝑘

𝑇 (generic) temperature variable

𝑇𝑘 temperature (of the zone) at time 𝑘

𝑇 min
𝑘

temperature upper bound for thermal comfort at time 𝑘

𝑇 max
𝑘

temperature lower bound for thermal comfort at time 𝑘

DGPmax DGP bound for visual comfort

�̇� total heat flow

𝑚 lumped mass of the thermal zone

𝑐𝑝 specific heat capacity

�̇�(amb) heat flow from the ambient space

𝜅amb heat transfer coefficient between zone and ambient space

𝐴amb surface area between zone and ambient space

𝑇
(amb)
𝑘

ambient temperature at time 𝑘

𝑁adj number of adjacent zones

�̇�(adj) heat flow from the adjacent zones

𝜅adj,𝑖 heat transfer coefficient between zone and 𝑖th adjacent zone

𝐴adj,𝑖 surface area between zone and 𝑖th adjacent zone

𝑇
(adj,𝑖)
𝑘

temperature of 𝑖th adjacent zone at time 𝑘

�̇�(sol) heat flow from the solar irradiation

𝐼hor global irradiation on a horizontal plane

𝐴win window area

𝜙bl fraction of the window area shaded by the blinds

𝛼win orientation of the window

𝛼 azimuth angle of the sun

𝛽 elevation angle of the sun

�̇�(heat) heat flow from the heating system

𝑇 (s) temperature of supply water in the heating system

𝑇 (r) temperature of return water in the heating system

�̇�(flow) mass flow of water in the pipes

𝐸v vertical eye illuminance experienced by the user

𝑛gs number of glare sources

𝐿𝑖 luminance for the 𝑖th source of glare

𝜔𝑖 solid angle for the 𝑖th source of glare

𝑃𝑖 position index for the 𝑖th source of glare

𝜃 (⋅),𝜽 (⋅) ARX coefficients/vectors for the respective variables

𝑓DGP , 𝑐DGP DGP regression and classification models

comfort constraints, which can be softened and relaxed by introducing 
slack variables. This also ensures the feasibility of optimization problem 
(1). The tractability of (1) can be guaranteed by the convexity that is 
implied by the linearity of 𝑓 in (1b) and the convexity of the cost func-
tion 𝐽 in (1a), and the sets 0, … , 𝑁−1 and 1, … , 𝑁 respectively 
in (1c) and (1d).

In order to incorporate visual comfort in the building MPC, we need 
to modify (1) by including additional suitably designed terms and con-
straints indicating the potential excessive perceptible glares in the in-
3

door environment. While thermal comfort has a standardized definition 
Energy & Buildings 306 (2024) 113831

based on well-defined physical quantities [20], i.e., the temperature of 
the zones, which are the state variables of the system and measured 
directly using temperature sensors, the notion of visual comfort is a 
human-centered concept and defined based on a specifically designed 
index called Daylight Glare Probability (DGP) [22], which is a compli-
cated metric and demands particular advanced optical measurement 
devices. Accordingly, incorporating visual comfort into the building 
MPC is comparably more challenging and not straightforward. More 
precisely, we need to address the following questions:

1. How can we modify (1) to incorporate the visual comfort, based on 
the DGP index, together with the thermal aspects of the problem?

2. What is an efficient way of learning DGP from measurement data?
3. How can we ensure that the obtained DGP model is suitable for the 

MPC implementation?
4. To what extent and how should one compromise between thermal 

and visual comforts versus energy consumption, and what is the 
subsequent outcome regarding overall energy usage?

To address the first question, we may use a similar approach to the 
consideration of thermal comfort. More precisely, we need to mod-
ify (1) by introducing suitable constraints for the inclusion of visual 
comfort, which characterize admissible positions of blinds based on the 
perceived glare from solar radiation. Accordingly, the additional con-
straints should be in the following form

(𝑢𝑘, 𝑑𝑘) ∈𝑘, 𝑘 = 0,… ,𝑁 − 1, (2)

where sets 0, … , 𝑁−1 are defined based on the learned model of 
DGP. Thus, we need to take care of the efficient characterization of 
these sets and the tractability of subsequently formulated MPC, which 
are the main concerns highlighted by questions 2 and 3 above. Further 
formulation details and discussions on addressing the above questions 
are given in the following sections, where we explain the MPC approach 
proposed in this work and compare it with scenarios without shading 
control or visual comfort constraints.

3. Model predictive control with thermal and visual comfort

This section introduces the proposed building MPC with thermal and 
visual comfort considerations. To this end, we need to modify (1), and 
elaborate on deriving the necessary terms in (1) and (2). The main con-
cern is obtaining a correct and meanwhile tractable MPC formulation.

3.1. Thermal dynamics and comfort in building

Using first principles to model the thermal dynamics of a building 
is a tedious procedure. Since buildings are unique in terms of construc-
tion, location, and operation, an individual model needs to be identified 
for each building. On the other hand, conventional learning methods 
require a significant amount of informative data to achieve reasonable 
accuracy and be physically meaningful. Accordingly, we employ a data-
driven modeling strategy that substantially reduces the model learning 
effort. Nevertheless, the model structure and inputs are inspired by the 
first principles and physical laws. By that, the data efficiency is im-
proved considerably compared to conventional learning methods [11].

Following the first law of thermodynamics, stating that energy is 
conserved in a closed system, we can define the system boundaries of 
the building accordingly, and take into account only a single state by 
lumping the mass of the modeled thermal zone into one parameter 𝑚. 
Consequently, the thermal dynamics of the building is as follows

𝑚𝑐𝑝
d𝑇
d𝑡

= �̇�(amb) + �̇�(adj) + �̇�(int) + �̇�(sol) + �̇�(heat) =∶ �̇�, (3)

where 𝑐𝑝 is the specific heat capacity, 𝑇 denotes the temperature of the 
zone, and �̇� is the total heat flow between the controlled zone and its 

environment, which consists of the net heat coming from the ambient 
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Fig. 2. Different sources of heat flow in the case study building.

space, �̇�(amb), the adjacent zones, �̇�(adj), the solar irradiation, �̇�(sol), the 
internal heat gains, �̇�(int), and, the heating system, �̇�(heat) (see Fig. 2). 
The heat flow between the considered thermal zone and the ambient 
space can be described by

�̇�(amb) = 𝜅amb 𝐴amb

(
𝑇 (amb) − 𝑇

)
, (4)

where 𝜅amb is the heat transfer coefficient, 𝐴amb is the surface area, and 
𝑇 (amb) is the ambient temperature. Similarly, for the impact of adjacent 
thermal zones, we have

�̇�(adj) =
𝑁adj∑
𝑖=1

𝜅adj,𝑖 𝐴adj,𝑖

(
𝑇 (adj,𝑖) − 𝑇

)
, (5)

where 𝑁adj denotes the number of adjacent zones, and, for 𝑖 =
1, … , 𝑁adj, the heat transfer coefficient, the surface area, and the tem-

perature for the 𝑖th adjacent zone are denoted respectively by 𝜅adj,𝑖, 
𝐴adj,𝑖, and 𝑇 (adj,𝑖). The internal heat gains �̇�(int), caused by occupancy 
and appliances, are commonly neglected according to their random na-
ture and the difficulty in their modeling and prediction. The solar gain 
�̇�(sol) is mainly due to the irradiation entering the room through the 
windows. Given the measurement of the global irradiation on a hori-
zontal plane, 𝐼hor, the solar gain can be obtained as

�̇�(sol) = 𝜙bl 𝐴win sin(𝛼 − 𝛼win) cot(𝛽)𝐼hor, (6)

where 𝐴win is the window area, 𝛼win is the orientation of the window, 
𝜙bl ∈ [0, 1] is the fraction of the window area shaded by the blinds, 
and, 𝛼 and 𝛽 are respectively the azimuth and the elevation angles of 
the sun. The gains from the heating system �̇�(heat) can be described as

�̇�(heat) = �̇�(flow) 𝑐𝑝 (𝑇 (s) − 𝑇 (r)), (7)

where �̇�(flow) denotes the mass flow of water in the pipes, 𝑐𝑝 the specific 
heat capacity of water, and, 𝑇 (s) and 𝑇 (r) are respectively supply and 
return temperature. Accordingly, by substituting terms in (4), (5), (6)
and (7) in the right-hand side of (3), and employing Euler discretization, 
we have

𝑇𝑘+1 = 𝜃𝑇𝑘 + 𝜃(amb)𝑇
(amb)
𝑘

+
𝑁adj∑
𝑖=1

𝜃(adj,𝑖)𝑇
(adj,𝑖)
𝑘

+ 𝜃(sol)�̇�
(sol)
𝑘

+ 𝜃(heat)�̇�
(heat)
𝑘

,

(8)

where 𝑘 denotes the discrete time index, and 𝜃, 𝜃(amb), 𝜃(adj,1), … ,
𝜃

(adj,𝑁adj), 𝜃(sol) and 𝜃(heat) are the coefficients characterizing the im-
pact of corresponding terms.

While model (8) is based on the first-principles, it disregards the 
thermal inertial caused by the heat potential preserved in the mass of 
the building. To include this attribute in the building thermal dynam-
4

ics, we extend (8) to a linear autoregressive exogenous (ARX) model [24]
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with similar structure, i.e., (8) is modified by considering further history 
of the temperature measurements. Thus, the model acquires more infor-
mation about the system dynamics and captures indirectly unmeasured 
inputs and hidden states, such as the temperature of the walls, ceilings 
and floors. Moreover, as the model is inspired by the first-principles, it 
is physically consistent and interpretable. The generic ARX model has 
the following form

𝑥𝑘+1 =
𝑛𝑥∑
𝑗=0

𝑎𝑗 𝑥𝑘−𝑗 +
𝑛𝑢∑
𝑗=0

𝑏𝑗 𝑢𝑘−𝑗 + 𝑒𝑘, (9)

where 𝑥𝑘 and 𝑢𝑘 respectively denote the state signal and exogenous 
input at time 𝑘, 𝑛𝑥 and 𝑛𝑢 are the number of lags used in the ARX 
model respectively for state and input, 𝑎0, … , 𝑎𝑛𝑥 and 𝑏0, … , 𝑏𝑛𝑦 are the 
coefficients characterizing the model by determining the impact of cor-
responding lag of state or input, and, 𝑒𝑘 is the uncertainty term [24]. 
According to the discussion above and inspired by the first-principles 
based model (8), the thermal dynamics of the building can be formu-
lated as the following ARX model

𝑇𝑘+1 =
𝑛𝑇∑
𝑗=0

𝜃𝑗 𝑇𝑘−𝑗 +
𝑛amb∑
𝑗=0

𝜃
(amb)
𝑗

𝑇
(amb)
𝑘−𝑗

+
𝑁adj∑
𝑖=1

𝑛adj,𝑖∑
𝑗=0

𝜃
(adj,𝑖)
𝑗

𝑇
(adj,𝑖)
𝑘−𝑗

+
𝑛sol∑
𝑗=0

𝜃
(sol)
𝑖

�̇�
(sol)
𝑘−𝑗

+
𝑛heat∑
𝑗=0

𝜃
(heat)
𝑗

�̇�
(heat)
𝑘−𝑗

+ 𝑒𝑘,

(10)

which is a generalized form of (8). Using the measurement data and the 
least-squares regression, we can estimate the coefficients of ARX model 
(10). More details are provided in Appendix A.

Remark 1. To account for the impact of potential nonlinearities, such 
as those emanating from the valves in the heating system, one may em-
ploy nonlinear models for the building thermal dynamics, e.g., in the 
form of a Hammerstein-Wiener system [24]. While the resulting mod-
els can offer a closer approximation to reality, they are not suitable for 
efficient implementation of MPC, i.e., their inclusion in the optimiza-
tion problem (1) introduces nonconvexity and consequently leads to 
tractability issues. Nevertheless, these more accurate nonlinear models 
can serve as a reference representing the actual thermal dynamics of 
the building in numerical experiments, as is the case in this study.

Remark 2. The accuracy of (10) can be improved by including the im-
pact of internal gains and occupants, which are intrinsically of a random 
nature. Accordingly, to avoid dealing with an over-complicated model, 
we primarily employ the building thermal dynamics introduced in (10).

The thermal comfort in the building has a relatively standard defi-
nition based on indoor temperatures [20]. More precisely, it is said that 
the controlled zone achieves thermal comfort if its room temperature at 
time instant 𝑘 fulfills

𝑇min
𝑘

≤ 𝑇𝑘 ≤ 𝑇max
𝑘

, (11)

where 𝑇min
𝑘

and 𝑇max
𝑘

are given specific bounds, which can depend 
on the ambient temperature. It is worth noting that (11) is commonly 
treated as a soft constraint in the building MPC, i.e., (11) is relaxed us-
ing slack variables to guarantee the feasibility for optimization problem 
in MPC and improve its tractability.

3.2. Visual comfort modeling and assessment

The notion of visual comfort depends on several factors, including 
deterministic physical quantities such as luminance, solid angle, and po-
sition index of the glare sources. Meanwhile, due to its human-centric 
nature and user-perceived subjectivity, it exhibits characteristics of ran-

domness. Accordingly, any suitably designed visual comfort index is 
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Fig. 3. DGP measurement device.

expected to have a probabilistic form defined based on measured re-
lated physical quantities. In the literature, Daylight Glare Probability

(DGP) is proposed as the standardized metric [22], specifically designed 
to indicate the chance of experiencing excessive glare. More precisely, 
DGP quantifies the probability that a typical user perceives disturbing 
amount of glare based on vertical eye illuminance and parameters of 
glare sources. Through empirical and field studies [22], the mathemat-
ical description of DGP is obtained as follows

DGP = 5.87
105 𝐸v +

9.18
102 log

(
1 +

𝑛gs∑
𝑖=1

𝐿2
𝑖
𝜔𝑖

𝐸1.87
v 𝑃 2

𝑖

)
, (12)

where 𝐸v [lux] is the vertical eye illuminance experienced by the user, 
𝑛gs denotes the number of glare sources, and, 𝐿𝑖 [cd/m2], 𝜔𝑖 and 𝑃𝑖 are 
respectively the luminance, solid angle and position index for the 𝑖th
source of glare, for 𝑖 = 1, … , 𝑛gs. Note that the DGP value obtained from 
(12) practically belongs to interval [0, 1], which is consistent with its 
notion. Moreover, from an empirical perspective, (12) indicates approx-
imately the ratio of users which are possibly visually uncomfortable. 
Accordingly, the visual comfort constraint is defined as follows

DGP ≤ DGPmax, (13)

where DGPmax ∈ [0, 1] is a suitably chosen upper bound. To verify (13), 
we need to evaluate DGP using (12), and thus, the values of above-
mentioned quantities are required. Needless to say, detecting each of 
the different glare sources and obtaining the corresponding quantities is 
a prohibitive manual routine. Accordingly, an advanced well-calibrated 
device has been designed in [19,25], and performs this procedure in 
a fully automated way, i.e., it directly outputs the value of DGP. The 
device is shown in Fig. 3.

The value of DGP depends on solar variables and blinds position 
through the quantities describing glaring sources in (12), including 𝐸v
and 𝐿𝑖, 𝜔𝑖, 𝑃𝑖, for 𝑖 = 1, … , 𝑛gs. While DGP can be efficiently measured, 
the dependency of these quantities to the solar variables and blinds posi-
tion has a complex black-box form. More precisely, while one can mea-
sure DGP for different status of blind position and solar radiation, the 
rule describing DGP as a function of these variables is not given. Since 
in building MPC, one can control blinds and predict climate variables, 
it is desired to obtain DGP as function 𝑓DGP ∶  (bld) × (sol) → [0, 1], 
where  (bld) denotes the set for admissible positions of blinds 𝑢(bld)

and  (sol) is the set characterizing the range of solar variables 𝑑 (sol). 
Then, the visual comfort (13) can be considered in the MPC problem by 
including the following constraints

𝑓DGP(𝑢
(bld)
𝑘

, 𝑑
(sol)
𝑘

) ≤ DGPmax, 𝑘 = 0 , ... , 𝑁 − 1, (14)

in the MPC optimization problem (1). Given a set of measurement data 
as follows

D ∶=
{
(𝑢(bld)

𝑖
, 𝑑

(sol)
𝑖

,DGP𝑖)
||| 𝑖 = 1,… , 𝑛D

}
, (15)

where 𝑛D denotes the number of data points, we can learn the DGP 
5

function 𝑓DGP with high accuracy using various readily available non-
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linear regression methods [27]. However, since the resulting function 
can be quite complex and non-convex, it will not be suitable for the 
MPC implementation. Alternatively, one may employ a classification 
framework. Accordingly, for 𝑖 = 1, … , 𝑛D , we label the 𝑖th measure-
ment data point as 𝑙𝑖, with 𝑙𝑖 = −1, when DGP𝑖 ≤ DGPmax, and 𝑙𝑖 = 1, 
when DGP𝑖 > DGPmax. Thus, 𝑙𝑖 indicates whether DGP𝑖 violates the vi-
sual comfort bound. Subsequently, we learn a classifier map 𝑐DGP ∶
 (bld) × (sol) → {−1, 1}, to be employed later in the MPC optimization 
problem. For the efficient implementation of MPC, we need a convex 
formulation. Accordingly, we employ a semi-linear support vector ma-

chine (SVM) which is a slightly modified version of standard linear SVM 
[28]. More precisely, for any 𝑢(bld) ∈ (bld) and 𝑑 (sol) ∈ (sol), we de-
fine function 𝑐DGP as

𝑐DGP(𝑢(bld), 𝑑 (sol)) = sign(𝑤𝖳

[
𝑢(bld)

Ψ(𝑑 (sol))

]
− 𝑏), (16)

where sign(⋅) denotes the sign function, Ψ(⋅) is a given nonlinear trans-
formation lifting 𝑑 (sol) to a space of higher dimension, vector 𝑤 and real 
scalar 𝑏 are obtained from solving the following convex optimization

min
𝑤,𝑏

‖𝑤‖2 + 𝛾

𝑛D∑
𝑖=1

𝜁2
𝑖
,

s.t. 𝑙𝑖(𝑤𝖳

[
𝑢

(bld)
𝑖

Ψ(𝑑 (sol)
𝑖

)

]
− 𝑏) ≥ 1 − 𝜁𝑖, 𝑖 = 1,… , 𝑛D ,

𝜁𝑖 ≥ 0, 𝑖 = 1,… , 𝑛D ,

(17)

and, 𝛾 is a positive real hyperparameter employed for tuning the 
soft-margin of the classifier and to ensure the uniqueness of solu-
tion for (17). Following this, one can reformulate constraint (13) as 
𝑐DGP(𝑢(bld), 𝑑 (sol)) ≤ 0. Thus, we can include the visual comfort in the 
MPC problem (1) through the following equivalent inequalities

𝑤𝖳

[
𝑢

(bld)
𝑘

Ψ(𝑑 (sol)
𝑘

)

]
− 𝑏 ≤ 0, 𝑘 = 0 , ... , 𝑁 − 1. (18)

Note that the introduced constraints are linear with respect to optimiza-
tion variables 𝑢(bld)

0 , … , 𝑢(bld)
𝑁−1, and therefore, convex.

Remark 3. To improve the accuracy of the proposed DGP reformula-
tion, one may first employ clustering techniques [27] to partition the 
measurement data into subsets containing data points with similar val-
ues of 𝑑 (sol), and subsequently, with respect to each of these sets, learn 
a classifier map as discussed above.

Remark 4. One can learn more accurate models for DGP using non-
linear classification techniques such as kernel SVM [27]. While the 
obtained mathematical models may represent reality well, they are not 
suitable for an efficient implementation of MPC, i.e., their inclusion in 
optimization problem (1) results in non-convexity and thus intractabil-
ity. Nonetheless, the mentioned relatively exact nonlinear models can 
be employed as a reference characterizing the actual DGP perceived by 
the occupants in the building and can be utilized in numerical studies, 
as is the case in the current paper.

Remark 5. Given the possibility of measuring the illuminance, one can 
modify the proposed MPC formulation to ensure sufficient illuminance 
in the workspace as well. To this end, we need to additionally consider 
the electricity cost of the lights in the MPC objective function and in-
clude constraints ensuring sufficient illuminance throughout the MPC 
horizon. These constraints may be learned efficiently via an approach 
similar to the introduced semi-linear support vector machine algorithm.

Remark 6. The thermal dynamics of the building and the perceived 
glare are both affected by solar radiation. Nonetheless, from the control 
perspective, they are coupled through the control input that determines 

the status of blinds. More precisely, while opening the blinds results in 
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Fig. 4. The figure shows the floor plan of the NEST unit SolAce. The temperature 
measurement sensors are shown with T©. The numbers 1©, 2©, and, 3© refer to 
the windows.

receiving more solar thermal energy, it may lead to experiencing higher 
levels of glare and visual discomfort. Accordingly, the task of making 
the optimal decision and deriving the best trade-off is delegated to the 
proposed MPC strategy.

4. Numerical experiment case study: SolAce unit

In this section, we provide the technical details of the real-world 
system that served as the basis for our research study and discuss the 
framework for our subsequent numerical experiments.

4.1. Building and physical configurations

The simulation model used in this case study originated from the 
office unit SolAce in the NEST demonstrator [26]. Fig. 1 shows the 
NEST demonstrator. SolAce1 is the unit on the right side of the second 
floor with a blue facade. The floor plan of SolAce is depicted in Fig. 4. 
SolAce can be considered as a single-room office with a total area of ap-
proximately 104 m2. A small terrace separates the office zone from the 
meeting zone. Within the unit, water-based heating and cooling panels 
are mounted on the ceiling. The central heating and cooling system sup-
plies these panels via heat exchangers connected to a network of pipes 
on both sides. The pipes linking the heat exchangers to the central en-
ergy system are equipped with controlled valves and pumps, ensuring 
a well-regulated water inflow. On the unit side, the pipe network trans-
fers and circulates heated or cooled water through the heat exchangers 
and the panels, driven by a dedicated pump. Suitably controlled valves 
determine the flow rate within these pipes. The utilized low-level con-
trollers on both the unit and central energy system sides have PID 
structures with finely tuned coefficients to precisely adjust the position 
of valves, flow rates, and supply temperatures. These controllers are de-
signed to track a predefined reference signal generated by the high-level 
control system, i.e., the employed model predictive control strategy. 
The windows are mainly oriented towards the southwest, primarily to 
harness natural daylight and maximize the solar heat gain during the 
day. Venetian blinds with sinusoidal slats are installed on the exterior 
side of the windows within the office section of the unit; i.e., the blinds 
are not located inside the unit. The blinds are equipped with an elec-
tric motorized system that precisely adjusts their height and slat angles. 
These adjustments are performed through a finely tuned tracking PID 
control scheme with the reference designed by the high-level controller, 
namely, the model predictive control strategy mentioned above. Given 
the external placement of the blinds and being endowed with relatively 
thin, metal-based slats, their status mainly affects the amount of solar 
radiation entering the unit and, subsequently, the perceived glare and 
solar thermal gain. The unit is equipped with all necessary measurement 

1 For a virtual tour of the SolAce unit, one can check the following link: 
6

https://www .empa -virtual .ch /nest /en /solace/.
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Fig. 5. The figure shows the scheme of numerical experiment using obtained 
high fidelity models for DGP and the thermal dynamics of SolAce unit at NEST.

devices, including sensors for measuring quantities such as the temper-
ature of the room, the indoor air quality, the blind position, and the 
energy flows to and from the unit (i.e., heat and electricity). Addition-
ally, the DGP measurement device (see Fig. 3) is installed in the office 
zone adjacent to the desk to assess the glare experienced by the user 
while working. The ambient temperature is measured locally by tem-
perature sensors installed on the roof of the NEST building. The height 
and azimuth angles of the sun, as well as the remaining climate vari-
ables, including the global and diffused solar irradiation, are provided 
by MeteoSwiss. For further information about the SolAce unit, one can 
check the following link: https://www .empa .ch /web /nest /solace.

4.2. Numerical experiment framework

The scheme of our numerical experiments is shown in Fig. 5. Fol-
lowing our discussion in Section 3, suitable models for the MPC imple-
mentation are required, one for the thermal dynamics of the building 
and one for DGP. Additionally, we need high-fidelity models for these 
entities to accurately imitate reality in our numerical experiments. To 
obtain these models, we require informative measurement data that 
can be collected by performing suitably designed experiments. For the 
thermal dynamics of the building, appropriately scaled pseudo-random 
binary signals (PRBS) are applied to the heating system to actuate the 
system with different possible input combinations. The experiment is 
repeated under a variety of climate conditions with distinct solar radi-
ation and ambient temperature situations. The aforementioned models 
are estimated from the collected data and the readily available histori-
cal measurements. More precisely, the coefficients of linear ARX model 
(10) are estimated by solving a least-squares regression problem for-
mulated based on the given temperature and heating measurements. 
Similarly, we utilize the data to identify a high-fidelity model of the 
building thermal dynamics as a Hammerstein-Wiener system (see Re-
mark 1). Analogously, to learn the necessary models of DGP, we col-
lect informative data by conducting specifically designed experiments 
where different combinations of blind position and slat angle are con-
sidered in various solar situations. The optimization problem (17) is 
formulated given the measurement data and solved to obtain the DGP 
model to be utilized in the MPC implementation. In a similar fashion, 
the DGP high-fidelity model is learned as a kernel SVM classifier (see 
Remark 4).

5. Results

This section presents and discusses the results of the numerical ex-
periments in our research study. The main objective is to provide a thor-

ough comparison by analyzing various control scenarios considering 

https://www.empa-virtual.ch/nest/en/solace/
https://www.empa.ch/web/nest/solace
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Table 3

Performance comparison for different control schemes including visual comforts.

Method Energy Thermal UB Thermal LB Visual Blind
Acronym Consumption [kWh] Violation [Kh] Violation [Kh] Violation [h/day] Closed [h]

RBC RBC 1804 112 4.42 0.40 195
RBC with night temperature setback RBC-SB 1442 32.8 327 0.64 169
MPC with thermal and visual comfort constraints MPC-TC&VC 1663 7.45 49.9 0.07 146
Fig. 6. Performance comparison for different control schemes including visual 
comforts.

visual comfort concerns. Furthermore, we compare different implemen-
tations of Model Predictive Control (MPC), highlighting the potential 
impact of the visual comfort constraints and roles of the blinds.

5.1. Control schemes with thermal and visual comfort consideration

To investigate and assess the impact of visual comfort constraints 
on control implementations, we conduct a thorough evaluation of the 
performance of various building thermal control scenarios where visual 
comfort is taken into account in addition to the thermal comfort con-
straints. More precisely, we compare the performance of the following 
control scenarios:

• Rule-Based Control (RBC): This control scheme utilizes a generic 
hysteresis controller to maintain the temperature of the zone at ap-
proximately 23 ◦C. More specifically, the controller employs two 
thresholds that determine when to initiate heating and when to 
stop it. Once the zone temperature falls below the lower threshold, 
the controller starts heating until the temperature exceeds the up-
per threshold. Furthermore, if the room temperature is high and a 
considerable amount of solar radiation is detected, the controller 
will close the blinds as an additional action.

• RBC with night temperature setback (RBC-SB): This case is a modified 
version of the above mentioned RBC. More precisely, during the 
night hours, the temperature lower bound is adjusted to a relaxed 
setting of 20 ◦C.

• MPC with thermal and visual comfort constraints (MPC-TC&VC): This 
is the scenario discussed in the present paper, namely the MPC 
implementation, which takes into account both thermal and visual 
comfort constraints.

Table 3 and Fig. 6 compare the control performance for the schemes 
mentioned above. Moreover, Fig. 7 illustrates the room temperatures 
and the amount of perceived glare over the course of five days, show-
casing the outcomes of utilizing the aforementioned control schemes.

Discussion: The RBC scheme is a widely adopted control strategy in 
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various buildings due to its simplicity in implementation. The RBC-SB is 
Fig. 7. The figure shows the room temperatures and DGP resulting from differ-
ent controllers taking into account thermal and visual comfort. The dashed line 
represents time-varying constraints that affect the controllers with the setback. 
The bound for visual comfort is DGPmax = 0.25. Furthermore, the respective 
control inputs, ambient temperature, and solar radiation are shown.

a modified version of RBC that incorporates a lower temperature range 
during night-time operation, with the objective of improving energy 
efficiency. As a consequence, the RBC-SB leads to reduced energy con-
sumption at the cost of more violations of the temperature lower bound. 
Furthermore, the lower room temperature during the night results in 
fewer instances of the upper temperature bound being exceeded. Uti-
lizing MPC-TC&VC, the MPC algorithm proposed in this study, leads to 
dynamic adjustment of control inputs to optimize energy consumption 
while maintaining not only the thermal comfort constraints but also 
the visual comfort ones. This approach ensures improved comfort lev-
els for the occupants in terms of temperature and visual conditions. It is 
worth noting that all the mentioned controllers exhibit minor violations 
in terms of DGP (compare the bottom-right of Fig. 7 with Fig. 9, which 
demonstrates the performance for different MPC schemes). Nonetheless, 
one can see that MPC-TC&VC outperforms RBC and RBC-SB controllers 
in terms of DGP violations, which is potentially due to the utilization 
of a reliable model for DGP prediction in MPC-TC&VC. Similarly, it is 

evident that MPC-TC&VC demonstrates fewer violations of thermal con-
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Table 4

Performance comparison for different configurations of MPC implementation.

Method Energy Thermal UB Thermal LB Visual Blind
Acronym Consumption [kWh] Violation [Kh] Violation [Kh] Violation [h/day] Closed [h]

MPC with thermal comfort constraints and without blind 
control

MPC-NB 1089 153 16.8 3.48 0

MPC with thermal comfort constraints MPC-TC 1551 8.52 50.8 0.80 125
MPC with thermal and visual comfort constraints MPC-TC&VC 1663 7.45 49.9 0.07 146
MPC with visual comfort and thermal lower bound constraints MPC-VC&TLB 1585 44.0 34.8 0.07 93
Fig. 8. Performance comparison for different configurations of MPC implemen-
tation.

straints compared to RBC and RBC-SB, benefiting from incorporating a 
suitable model for the thermal dynamics of the building in MPC-TC&VC. 
Thus, since MPC-TC&VC employs reliable models for the thermal dy-
namics of the building and DGP, it can effectively maintain thermal and 
visual comfort at the cost of slightly extra energy consumption. The in-
creased energy consumption is due to the more frequently closed blinds, 
which reduces solar gains and makes it more costly for the MPC-TC&VC 
to satisfy the lower bound on room temperature.

5.2. MPC implementation: the impact of blinds and visual comfort 
considerations

To gain a deeper understanding of the impact of visual comfort 
consideration and the subsequent potential roles of the blinds on the 
MPC implementation, we compare MPC-TC&VC with the following MPC 
schemes:

• MPC with thermal comfort constraints and without blind control (MPC-
NB): In this case, our focus lies on the MPC control of the thermal 
dynamics of the building; meanwhile, it is assumed that the win-
dows in the zone under consideration are not equipped with shades 
or blinds, i.e., the zone receives the full extent of solar radiation 
during daytime.

• MPC with thermal comfort constraints (MPC-TC): This case involves 
MPC implementation for the heating system of the zone, where the 
windows are equipped with controlled blinds, and MPC is required 
to maintain the thermal comfort constraints.

• MPC with thermal comfort and temperature lower bound constraints

(MPC-VC&TLB): This case is similar to the MPC-TC&VC, but with 
relaxed upper bounds on the zone temperature.

Table 4 and Fig. 8 compare the control performance for the schemes 
mentioned above. Additionally, Fig. 9 illustrates the temperature within 
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the room and the amount of perceived glare throughout a span of five 
days, demonstrating the results obtained from implementing the above 
control schemes.

Discussion: Each of the mentioned MPC schemes is able to optimize 
energy consumption while maintaining the intended comfort conditions 
under the presumed operational constraints and using the developed 
model for thermal dynamics of the building. The MPC-NB scenario is 
specifically considered to explore and examine the implications of not 
incorporating blind control within the MPC framework and evaluate 
the effectiveness of thermal comfort constraints in such situations. The 
MPC-TC scheme is the current MPC benchmark configuration in the lit-
erature, aiming to optimize the overall system performance in terms of 
energy consumption and taking into account the thermal comfort re-
quirements and the regulation of the solar radiation impact through 
controlling the blinds. On the other hand, MPC-TC&VC, the MPC ap-
proach proposed in this study, additionally considers visual comfort 
constraints. The MPC-VC&TLB scheme is a slightly modified version 
of MPC-TC&VC proposed to investigate the compromise between the 
visual comfort and energy consumption. More precisely, the distinguish-
ing factor of MPC-VC&TLB is the absence of an upper bound on thermal 
comfort. Consequently, this scheme prioritizes visual comfort, i.e., it 
neglects thermal comfort by allowing upper constraint violations and 
only trades-off visual comfort with energy consumption by primarily 
focusing on closing the blinds to regulate the amount of incoming so-
lar radiation, ensuring a visually comfortable environment while not 
enforcing a specific upper-temperature limit for thermal comfort. Com-
paring the above MPC configurations, one can observe the consequent 
inherent trade-offs between maintaining comfort conditions and energy 
consumption. Specifically, reducing violations of the thermal bounds 
and DGP constraints leads to increased energy consumption. The ob-
served phenomenon is due to the primary mechanism employed to 
mitigate these violations, namely the utilization of blinds to obstruct 
solar radiation, a cost-free energy source. More precisely, the decrease 
in received solar heat necessitates the heating system of the building to 
compensate, and consequently, it leads to increased energy consump-
tion. As a result, the MPC-NB implementation demonstrates the lowest 
energy consumption while exhibiting the highest comfort violations. 
On the other hand, in the cases of MPC-TC and MPC-TC&VC, the blinds 
are utilized to maintain thermal comfort, resulting in additional energy 
consumption, which is slightly increased in the MPC-TC&VC scheme 
due to the additional consideration of visual comfort constraints. More 
precisely, MPC-TC&VC ensures both thermal and visual comfort con-
straints satisfaction at the expense of 7.2% more energy consumption 
compared to MPC-TC, which is the benchmark MPC configuration. 
Compared to MPC-TC&VC, the modification in MPC-VC&TLB leads to 
a reasonably reduced energy consumption and a minor increase in vio-
lations of thermal upper bound while retaining the same reduced DGP 
violation and less frequently closed blinds. Consequently, employing 
the MPC-VC&TLB scheme results in maintaining DGP violation levels 
comparable to MPC-TC&VC, and energy consumption levels similar to 
MPC-TC, namely less than 2.2% extra energy consumption compared 
to the benchmark MPC configuration. Accordingly, the MPC-VC&TLB 
scheme can be regarded as a potential trade-off between thermal and 

visual comfort constraints and energy consumption.
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Fig. 9. The figure shows the room temperatures and DGP resulting from different MPC configurations. For thermal comfort, the dashed line represents time-
varying constraints that affect the controllers with the setback. The bound for visual comfort is DGPmax = 0.25. Furthermore, the respective control inputs, ambient 
temperature, and solar radiation are shown.
6. Conclusion and future work

In this paper, a Model Predictive Control (MPC) scheme with ther-
mal and visual comfort constraints was developed. The thermal dynam-
ics of the building are modeled using a linear auto-regressive exogenous 
model. The visual comfort, measured in terms of Daylight Glare Prob-
ability (DGP), is modeled using a semi-linear support vector regression 
model. The MPC approach was then applied to a simulated setup of a 
radiant-based heating system and Venetian blinds in an environment 
modeled based on a real-world office building. In order to evaluate 
the resulting performances, the proposed MPC strategy is compared to 
various rule-based control (RBC) and alternative MPC approaches. Com-
paring the results confirms that the proposed MPC scheme effectively 
decreases the overall costs in terms of energy consumption while re-
taining thermal and visual comfort. Furthermore, it was observed that 
visual discomfort commonly occurs around the time of peak solar radi-
ations, causing excessive glare and also resulting in heating the room. 
Consequently, imposing constraints on DGP partially limits the room 
temperature, and thus, one can relax thermal upper bounds and only in-
corporate DGP constraints. While the proposed MPC schemes consider 
thermal comfort, they also ensure the satisfaction of the visual comfort 
constraints at the expense of 2.2% to 7.2% higher energy consumption 
compared to the benchmark MPC configuration.

While the MPC schemes developed in this paper have been validated 
and compared with other methods through an extensive numerical case 
9

study, subsequent research may focus on their verification in practical 
settings and on the actual real-world system. Furthermore, the perfor-
mance and scalability of the proposed control methodology can be eval-
uated on large-scale buildings with a higher number of zones in future 
research works. Moreover, there is potential for extending the proposed 
MPC formulation to ensure sufficient illuminance in the workspace ad-
ditionally.
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Appendix A. Identification of building thermal dynamics

To identify the thermal dynamics of the building, the coefficients of 
ARX model (10) need to be estimated. To this end, we define vector 𝜽
as

𝜽 ∶= [𝜽𝖳
𝑇
,𝜽(amb)𝖳,𝜽(adj,1)𝖳,… ,𝜽

(adj,𝑁adj)𝖳,𝜽(sol)𝖳,𝜽(heat)𝖳]𝖳,

where 𝜽𝑇 , 𝜽(amb), 𝜽(adj,1), . . . , 𝜽(adj,𝑁adj), 𝜽(sol), and 𝜽(heat) are the fol-
lowing vectors

𝜽𝑇 ∶= [𝜃0,… , 𝜃𝑛𝑇
]𝖳,

𝜽
(amb) ∶= [𝜃(amb)

0 ,… , 𝜃(amb)
𝑛amb

]𝖳,

𝜽
(adj,𝑖) ∶= [𝜃(adj,𝑖)

0 ,… , 𝜃
(adj,𝑖)
𝑛adj,𝑖

]𝖳, ∀ 𝑖 = 1,… ,𝑁adj,

𝜽
(sol) ∶= [𝜃(sol)

0 ,… , 𝜃(sol)
𝑛sol

]𝖳,

𝜽
(heat) ∶= [𝜃(heat)

0 ,… , 𝜃(heat)
𝑛heat

]𝖳.

Furthermore, given the measurement data

M ∶=
{
(𝑇𝑘, 𝑇

(amb)
𝑘

, 𝑇
(adj,1)
𝑘

,… , 𝑇
(adj,𝑁adj)

𝑘
, �̇�

(sol)
𝑘

, �̇�
(heat)
𝑘

)|||𝑘 = 0,… , 𝑛M

}
,

we define vector 𝜑𝑘 as

𝜑𝑘 ∶= [𝑇𝑘,… , 𝑇𝑘−𝑛𝑇
, 𝑇

(amb)
𝑘

,… , 𝑇
(amb)
𝑘−𝑛amb

,

𝑇
(adj,1)
𝑘

,… , 𝑇
(adj,1)
𝑘−𝑛adj,1

, 𝑇
(adj,2)
𝑘

,… , 𝑇
(adj,2)
𝑘−𝑛adj,1

,… , 𝑇
(adj,𝑁adj)

𝑘
,… , 𝑇

(adj,𝑁adj)

𝑘−𝑛adj,𝑁adj
,

�̇�
(sol)
𝑘

,… , �̇�
(sol)
𝑘−𝑛sol

, �̇�
(heat)
𝑘

,… , �̇�
(heat)
𝑘−𝑛heat

]𝖳,

for 𝑛lag ≤ 𝑘 ≤ 𝑛M −1, where 𝑛lag denotes the value of largest lag consid-
ered in the ARX model (10), i.e., 𝑛lag ∶= max{𝑛𝑇 , 𝑛adj,1, … , 𝑛adj,𝑁adj

, 𝑛sol,

𝑛heat}. Accordingly, (10) implies that

𝑇𝑘+1 = 𝜑𝖳
𝑘
𝜽+ 𝑒𝑘,

for 𝑘 = 𝑛lag, … , 𝑛M − 1. Thus, we can obtain 𝜽 through solving the 
following least square problem

�̂� ∶= argmin
𝜽

𝑛M−1∑
𝑘=𝑛lag

(𝑇𝑘+1 −𝜑𝖳
𝑘
𝜽)2,

which estimates 𝜽 as the vector of coefficients minimizing sum of 
squared one-step ahead prediction errors for the ARX model (10). For 
the SolAce, due to well insulation of the walls, the terms related to the 
impact of adjacent units are disregarded.
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