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A B S T R A C T

In this paper, we incorporate the effect of nonlinear damping with the concept of locally
resonant metamaterials to enable vibration attenuation beyond the conventional bandgap range.
The proposed design combines a linear host cantilever beam and periodically distributed
inertia amplifiers as nonlinear local resonators. The geometric nonlinearity induced by the
inertia amplifiers causes an amplitude-dependent nonlinear damping effect. Through the im-
plementation of both modal superposition and numerical harmonic methods with Alternating
Frequency Time and numerical continuation techniques, the finite nonlinear metamaterial is
accurately modeled. The resulting nonlinear frequency response reveals the bandgap is both
amplitude-dependent and broadened. Furthermore, the nonlinear interaction between the local
resonators and the mode shapes of the host beam is discussed, which leads to efficient modal
frequency dissipation ability. The theoretical results are validated experimentally. By embedding
the nonlinear damping effect into locally resonant metamaterials, wideband and shock wave
attenuation of the proposed metamaterial is achieved, which opens new possibilities for versatile
metamaterials beyond the conventional bandgap ranges of their linear counterparts.

. Introduction

Mechanical vibrations are commonly encountered when dealing with civil infrastructures, industrial environments, vehicles,
nd more in general engineering applications. Their detrimental effects often lead to structural and operational failures and harm to
uman bodies. Therefore, vibration attenuation has received enormous attention from both research and industries. The commonly
sed vibration control methods include damping enhancement, stiffness tuning, and vibration mitigation by auxiliary attachments.
hese can be grouped into passive, semi-passive, and active methods [1]. Because of their easy application, passive and semi-passive
ethods are particularly suitable for vibration mitigation of the host structures without complex control systems. These methods

an be distinguished based on the nature of their dynamic properties as follows:
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1. Single linear attachment, e.g., tuned mass damper [2] and piezoelectric shunting [3];
2. Single nonlinear attachment, e.g., nonlinear energy sinks [4] and nonlinear damping [5];
3. Multiple linear attachments, e.g., multiple tuned mass dampers [6], and linear locally resonant metamaterials [7];
4. Multiple nonlinear attachments, e.g., nonlinear metamaterials [8].

When it comes to vibration suppression for the host structure, either the energy is efficiently transferred to the auxiliary
attachments or the energy is prevented from propagating through the host structure, thus yielding a low transmissibility on the
receiver side. Conventionally, attachments could be mechanical resonators [2,9] or piezoelectric transducers with electrical shunting
circuits [3,10]. They can either transfer and dissipate the energy from the host structure or shift the resonance of the host structure
by additional stiffness and mass to avoid resonances.

However, due to their inherently linear nature, their effective bandwidth is narrow. In contrast, nonlinear attachments can
interact with linear host structures in a broadband fashion. In certain conditions, this nonlinear interaction leads to a unidirectional
energy flow from the linear structure to the nonlinear attachments. In the context of nonlinear energy sinks [11], this is referred
to as nonlinear energy transfer. In addition, the nonlinear reaction forces induced by nonlinear stiffness [12,13], damping [5], or
vibro-impact [14] essentially couple the separated modes of the linear host structure and result in energy transfer, redistribution,
and efficient dissipation among different structural modes [15].

When moving from single attachments to multiple attachments, the challenge lies in how to design and optimize multiple
attachments or resonators to effectively attenuate the vibration of the host structure, which normally has multiple vibration modes.
From a modal analysis point of view, attenuation at modal frequencies forms the guideline for designing different tuned mass
dampers [6]. From a wave propagation perspective, vibration modes are attributed to reflections from the domain boundaries.
Therefore, to effectively suppress vibration modes, the propagation of the traveling wave from one end of the host structure to
the other must be prohibited for certain frequency ranges. This is synonymous with the design of bandgaps in locally resonant
metamaterials [7]. Through the proper tuning of mechanical parameters, the propagating wave can be gradually trapped [16,17],
redirected [18–20], or absorbed [21,22] with periodically distributed local resonators attached on the host structure, resulting in
zero group velocities and low transmissions.

The recent endeavors to introduce nonlinearities through multiple nonlinear attachments have combined the advantages of
locally resonant metamaterials and nonlinear dynamics. This has stimulated the emergence of novel concepts in the context of
structural dynamics, such as harmonic generations [23], chaotic bands [24], and broadband vibration attenuation [25,26]. However,
owing to the challenges of relatively high degrees of freedom in metamaterials and complex dynamics from nonlinear attachments,
theoretical and experimental realizations in this area have been incomplete until recent years. From a theoretical perspective,
the high number of degrees of freedom, different nonlinear forms, and intensities of nonlinearities pose difficulties to reach an
accurate solution. Compared to the numerical integration method, conventional analytical low-order methods such as harmonic
balance methods [23–25,27] and perturbation methods [28,29] fail to converge when the nonlinearities presented are strong, even
without accounting branch bifurcations due to stability issues [30]. In addition, these analytical methods, which work for close-
form polynomial nonlinearities such as cubic stiffness [24,25] and quadratic damping [27], are often insufficient for more general
nonlinearities such as non-smooth nonlinear damping studied in this paper and piece-wise nonlinear forces. Theoretical advances are
further complicated because standard Bloch–Floquet theory is limited in its usability. This popular method cannot reveal the modal
interactions of multiple nonlinear attachments in a finite metamaterial, or frequency coupling related to broadband excitation. From
an experimental perspective, nonlinear metamaterials need to be designed, fabricated, and tested from the resonator level to the
metamaterial level to confirm the proposed nonlinear effect in practical manners, which requires repeatable and slow sampling
with the increase deviation of the nonlinearity of the system from its linear state [23–26]. In addition, the amplitude-dependent
response and the nonlinear coupling in nonlinear metamaterials also open new possibilities that need to be studied for vibration
attenuation or energy exchange beyond the frequency range of the linear bandgap [23,24]. From an ideology perspective, the effects
of general nonlinearities in conventional low degree of freedom systems such as nonlinear vibration absorbers [4] have been well
studied and documented. Their practical applications and accurate modeling methods in nonlinear metamaterials [23,26], rather
than conceptual verification of the known effects, are of great importance toward broader studies and engineering applications.

Based on our previous published conference paper [31], we present modeling methods for Euler–Bernoulli beam-based nonlinear
metamaterials with general local nonlinearities and investigate a novel nonlinear damped metamaterial for wideband vibration
attenuation and modal dissipation with a practical design of the nonlinear local resonators. With the goal of designing and solving
real nonlinear metamaterial systems, we establish all the analyses on practical experimental parameters. We utilize a dispersion
analysis and a modal analysis method with a numerical harmonic balance method to solve the amplitude-dependent response of
this nonlinear metamaterial. Through the Alternating Frequency Time (AFT) and numerical continuation techniques, we can handle
more general nonlinearities with the possibility of harmonic generations for weak to strong nonlinear scenarios. In addition, the
nonlinear modal coupling is discussed to demonstrate the nonlinear interaction between the local resonators and the mode shapes
of the host beam, which leads to efficient modal energy dissipation ability beyond the study of the conventional bandgaps. Based
on the theoretical analysis, a nonlinear metamaterial is designed to incorporate the geometric nonlinear damping effect induced by
the inertia amplifiers. The nonlinear frequency response of a single nonlinear resonator and the transmissibility of the nonlinear
metamaterial are measured experimentally. The theoretical and experimental results not only validate the methods for solving the
amplitude-dependent responses of the proposed nonlinear metamaterial but also give insights into the mechanisms for wideband
attenuation combining nonlinear bandgap and modal frequency dissipation, which opens new possibilities for versatile metamaterials
surpassing the limit of their linear bandgap ranges.
2
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Fig. 1. The schematic and top view of a rotational inertia amplifier.

Fig. 2. A semi-infinite schematic of the nonlinear metamaterial with lattice constant 𝑎. The incident wave 𝑤0 in 𝑧 direction is applied at the origin 𝑥 = 0.

2. Theoretical analysis

The proposed nonlinear metamaterial is shown in Fig. 2, which illustrates a semi-infinite case in the 𝑥-direction of the nonlinear
metamaterial consisting of a host beam and inertia amplifiers as nonlinear local resonators. Before analyzing the nonlinear
metamaterial, we first revisit the nonlinear dynamics of the rotational inertia amplifier proposed by Van Damme et al. [32]. As shown
in Fig. 1, the inertia amplifier consists of two identical disks with mass 𝑚0 on the top and bottom and four beams as connections that
are tilted with angle 𝜃. The tilted beams lead to a coupled translation-rotation motion of the top disk and simultaneously deliver a
longitudinal spring stiffness 𝑘0. The rotational spring stiffness is considered to be small compared to the longitudinal spring stiffness,
which can be ensured by sufficiently thin connector points.

The nonlinearity is induced by the coupling of the translational motion of the bottom and the rotational motion of the top disk.
The relative displacement of the top disk with respect to the bottom disk is denoted as 𝑤𝑟. And the rotation angle of the top disk is
denoted as 𝛽. In Fig. 1, the top view shows the projected deformation of a connected beam, while the chord length in the top view
of Fig. 1 changes from

√

𝑙2 − 𝑑2 to
√

𝑙2 − (𝑑 −𝑤𝑟)2. For small 𝑤𝑟, the top disk’s rotation angle 𝛽 is defined as:

𝛽 =

√

𝑙2 − (𝑑 −𝑤𝑟)2 −
√

𝑙2 − 𝑑2

𝑅
(1)

where 𝑅 is the radius of the disk. The angular velocity can be written as:

�̇� =
�̇�𝑟
𝑅

𝑑 −𝑤𝑟
√

𝑙2 − (𝑑 −𝑤𝑟)2
. (2)

where 𝑙 = 𝑑∕ cos 𝜃. The kinetic energy of the top disk can be defined as 𝑇 = 𝑚0|�̇�𝑟|
2∕2+ 𝐼0|�̇�|

2∕2, where 𝐼0 = 𝑚0𝑅2∕2 represents the
moment of inertia of the rotating disk. Its potential energy is 𝑉 = 𝑘0𝑤2

𝑟∕2. Using the Lagrangian L = 𝑇 − 𝑉 , its equation of motion
can be formulated as:

𝐹 = −𝑚�̈�0 =
𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�𝑟

)

− 𝜕L
𝜕𝑤𝑟

= 𝑚�̈�𝑟 + 𝑐|�̇�𝑟|�̇�𝑟 + 𝑘𝑤𝑟,
(3)

where 𝐹 = −𝑚�̈�0 is the harmonic base excitation force applied on the bottom disk with the displacement and displacement amplitude
denoted as 𝑤0 and 𝑊0, respectively. By substituting Eq. (2) into Eq. (3), the equivalent mass 𝑚, damping 𝑐, and stiffness 𝑘 can be
determined as:

𝑚 = 𝑚0 +
𝑚0
2

(

1 +
(1 − 𝜀)2

𝐴

)

𝑐 =
𝑚0
2𝑑

(

1 − 𝜀
𝐴

+
(1 − 𝜀)3

𝐴2

)

𝑘 = 𝑘0

𝐴 = 1
cos2 𝜃

− (1 − 𝜀)2,

(4)

where 𝜀 = 𝑤𝑟∕𝑑 represents the strain along the translational direction. Under small strain 𝜀 condition, the Taylor series of the
velocity �̇� reads:

�̇� (𝜀) =
�̇�𝑟

[

1 + 𝜀 + 3 𝜀2
]

. (5)
3

𝑅 tan 𝜃 tan 𝜃 sin2 𝜃 2 tan3 𝜃 sin2 𝜃
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Table 1
Parameters in Experiment.

Nonlinear Damping induced Metamaterial

Host Beam
Size 600 × 40 × 12 (mm3) Material Versatile Plastic
Density 980 (kg/m3) 𝐸 1.53 (GPa)

Nonlinear Local Resonator
Material Versatile Plastic 𝑅 20 (mm)
𝑑 40 (mm) 𝜃 35°
𝑚0 3.53 (g) 𝑘0 15.5 (kN/m)
𝜔𝑟 2𝜋 × 210.7 (rad/s) 𝑥𝑗 = 140 ∶ 60 ∶ 560 (mm)

Due to the nonlinear geometric constraint between displacement and rotation angle, �̇� (𝜀) not only linearly depends on �̇�𝑟 with the
0th order term, the second, third, and high order terms with respect to 𝜀 also play important roles under sufficiently small 𝜃 cases.
However, by assuming the strain 𝜀 no more than 2.5%, we can calculate the smallest 𝜃 = 30° that makes the second, third, and
higher order terms 10 times smaller than the 0th order coefficient in Eq. (5).

In this case, the 0th order term with respect to 𝜀 of Eq. (5), together with the small strain 𝜀 condition, can be used to simplify
the equivalent parameters in Eq. (4):

𝑚 = 𝑚0 +
𝑚0

2 sin2 𝜃
, 𝑐 =

𝑚0
2𝑑

cos2 𝜃
sin4 𝜃

, 𝑘 = 𝑘0, (6)

where 𝑘 is the spring constant depending on the connections between two disks. From the expression of 𝑚, the dynamically added
mass due to the top disk is 𝑚0∕2 sin

2 𝜃 with the amplification factor 𝛼 = 1∕ sin2 𝜃. A nonlinear damping effect emerges from the
expression of 𝑐 due to the geometric nonlinear coupling between �̇�𝑟 and �̇�. This nonlinear damping force 𝑐|�̇�𝑟|�̇�𝑟, also known as
the drag force [33], has an absolute form with respect to the velocity, which can be cataloged into non-smooth nonlinearities. This
enables the amplitude-dependent frequency response and amplitude-dependent bandgaps in nonlinear metamaterials [29].

By assuming a fundamental harmonic solution for 𝑤𝑟 = 𝑊𝑟 sin(𝑤𝑡) with 𝑊𝑟 representing the displacement amplitude, we can
determine a nonlinear correspondence to the linear viscous damping coefficient, an equivalent damping coefficient 𝑐𝑒𝑞 = 𝑐|�̇�𝑟| that
increases with the base excitation force. By treating the absolute value with sign function, Eq. (3) can be written as:

𝑚�̈�𝑟 + 𝑐 ⋅ sign(�̇�𝑟)�̇�2
𝑟 + 𝑘𝑤𝑟 = −𝑚�̈�0, (7)

where sign(�̇�𝑟) is an even square wave with its leading harmonic 4 cos(𝜔𝑡)∕𝜋. Substituting the solutions into Eq. (7), and balancing
the first order harmonic, yields:

(

(

𝑘 − 𝑚𝜔2)2 +
(

3𝑐𝜔𝑊𝑟∕𝜋 ⋅ 𝜔
)2
)

𝑊 2
𝑟 =

(

𝜔2𝑚𝑊0
)2 , (8)

Observing the above equation, the equivalent nonlinear damping reads:

𝑐𝑒𝑞 = 3𝑐𝜔𝑊𝑟∕𝜋, (9)

where 𝑊𝑟 is given as:

𝑊𝑟 =
𝜔2𝑚𝑊0

√

(𝑘 − 𝑚𝜔2)2 + 9𝑐2𝜔4𝑊 2
𝑟 ∕𝜋2

. (10)

It can be seen that 𝑐𝑒𝑞 is a function of frequency 𝜔 and the base excitation amplitude 𝑊0. To illustrate the nonlinear effects of
the described nonlinear resonator in the proposed locally resonant metamaterial, we use the practical parameters in Table 1 for the
analyses in the following subsections. The frequency ranges presented in the following figures are normalized with respect to the
linear resonant frequency of the inertia amplifiers at 210.7 Hz.

2.1. Nonlinear dispersion relationship

The dispersion relationship provides a general and fundamental description of the wave propagation characteristics of meta-
materials. Unlike linear metamaterials, nonlinear metamaterials give rise to amplitude-dependent dispersion relationships [34,35],
which leads to a better understanding of how the nonlinearity could enable rich dynamics in metamaterials.

We herein discuss the dispersion relationship for flexural waves traveling in the proposed nonlinear metamaterial, where the
nonlinearity stems from the resonator’s amplitude-dependent damping. This mechanism is much less investigated than amplitude-
dependent stiffness changes. As shown in Fig. 2, the lattice constant of 𝑗th unit cell is 𝑎. The linear density of the host beam is
𝜌0 = 𝜌𝑏ℎ, where 𝜌, 𝑏, and ℎ represent the density, width, and height of the host beam, respectively. The bottom disk with mass 𝑚0
of the inertia amplifier is fixed on the beam. It is coupled with an equivalent mass 𝑚 by a linear spring 𝑘 and a nonlinear damper
𝑐. An incident wave 𝑤0 = 𝑊0 sin(𝜔𝑡 + 𝜑) in 𝑧 direction is applied at the boundary 𝑥 = 0 of the beam, where 𝑊0 is the amplitude
of the incident wave. Rather than using a complex-valued frequency and real-valued wavenumber [36], we adopt a real-valued
4
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Fig. 3. The frequency response function, equivalent damping, and dispersion curves under different acceleration amplitudes. (a) and (b): The amplitude and
phase of the frequency response function of a local resonator. The enlarged view in (a) shows the shift of the resonant frequency indicated with a red backbone
curve; (c) The equivalent damping of a local resonator; (d) and (e): The real and imaginary wave number of the nonlinear metamaterial.

frequency and allow for complex-valued wavenumbers, which is suitable for forced harmonic cases [37,38] and gives insight in the
attenuation of propagating waves [39,40].

With reference to the parameters from Table 1, we can obtain the dispersion curve of the A0 Lamb mode of the host beam by
Euler–Bernoulli beam theory as shown with the red dash line in Fig. 3(d). The flexural wavelength of the host beam is inversely
proportional to the wave number with 2𝜋, which is approximately 35 cm at the linear resonant frequency of the inertia amplifiers.
ince the lattice constant is sufficiently smaller than the wavelength under low-frequency vibrations around this frequency range,
he wave profile between two adjacent unit cells can be approximated by a smooth function by neglecting the near-field scattering
round the inertia amplifiers. Thus, we can utilize the averaging technique from the homogenization method [35] and transform
he concentrated reaction force of the local resonator to a uniformly distributed force 𝑓 (𝑥, 𝑡) applied evenly with lattice constant 𝑎.

The governing equations of the nonlinear metamaterial are given as:

𝐷0
𝜕4𝑤 (𝑥, 𝑡)

𝜕𝑥4
+ 𝜌0

𝜕2𝑤 (𝑥, 𝑡)
𝜕𝑡2

= −𝑓 (𝑥, 𝑡)

𝑚(�̈�𝑟 + �̈�) = −𝑘𝑤𝑟 − 𝑐|�̇�𝑟|�̇�𝑟

𝑚0�̈� + 𝑚(�̈�𝑟 + �̈�) = 𝑎𝑓 (𝑥, 𝑡)

, (11)

where 𝐷0 = 𝐸𝐼 is the flexural rigidity of the host beam. 𝑤 is the transverse displacement at beam position 𝑥. And 𝑤𝑟 is the relative
displacement of the local resonator at the same beam position. By adopting the effective medium theory [41], Eq. (11) can be
transferred into:

⎧

⎪

⎨

⎪

⎩

𝐷0
𝜕4𝑤
𝜕𝑥4

+ (𝜌0 +
𝑚0 + 𝑚

𝑎
) 𝜕

2𝑤
𝜕𝑡2

+ 𝑚
𝑎
𝜕2𝑤𝑟

𝜕𝑡2
= 0

𝑚 𝜕2

𝜕𝑡2
(𝑤𝑟 +𝑤) + 𝑘𝑤𝑟 + 𝑐|�̇�𝑟|�̇�𝑟 = 0

. (12)

By neglecting the higher harmonic generations, we can replace the nonlinear damping force 𝑐|�̇�𝑟|�̇�𝑟 with an equivalent damping
force 𝑐𝑒𝑞�̇�𝑟 and only consider the fundamental harmonic traveling wave 𝑤 = 𝑊 𝑒i(𝜔𝑡−𝑘𝑥). The dispersion relationship for the
metamaterial beam can be derived from Eq. (12) as:

𝑘(𝜔) =

[(

𝜌0 +
𝑚0
𝑎

+
𝑘 + i𝑐𝑒𝑞𝜔

𝑎(𝜔2
𝑟 − 𝜔2 + i𝑐𝑒𝑞𝜔∕𝑚)

)

𝜔2

𝐷0

]
1
4

, (13)

where 𝜔𝑟 is the linear resonant frequency of the inertia amplifier. Therefore, the effective mass density for the proposed metamaterial
beam reads:

𝜌𝑒 =
1
(

𝜌0𝑎 + 𝑚0 +
𝑘 + i𝑐𝑒𝑞𝜔

2 2

)

. (14)
5

𝑎 𝜔𝑟 − 𝜔 + i𝑐𝑒𝑞𝜔∕𝑚
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Fig. 4. The model of the nonlinear metamaterial with finite length and clamped-free boundary condition. The enlarged view shows the displacement components
for the absolute transverse displacement amplitude 𝑤𝐴𝑗 of the nonlinear local resonator at 𝑥𝑗 along the host beam.

If 𝑐𝑒𝑞 = 0, the effective mass density and the dispersion for a metamaterial beam recover to its classical linear and undamped
case [42]; if 𝑐𝑒𝑞 = constant, then it represents a linear damped case [37]; if 𝑐𝑒𝑞(𝜔,𝑊0) is a function of frequency 𝜔 and excitation
amplitude 𝑊0 as shown in Eq. (9), then this indicates a nonlinear damping case induced by the inertia amplifiers.

From a practical perspective, we prescribe a certain acceleration amplitude 𝐴0 as excitation. Therefore, the equivalent damping
𝑐𝑒𝑞 is frequency and acceleration dependent. By solving Eq. (8), an equivalent local resonator with Frequency Response Function 𝛬
can be achieved, together with Eq. (13). The results are shown in Fig. 3 under different acceleration amplitudes. The effect of the
increasing damping can clearly be seen by a reduction of the resonator’s amplitude and a shift to lower eigenfrequencies (Fig. 3(a)),
as well as the decrease of the phase slope (Fig. 3(b)).

By prescribing a sufficiently small 𝐴0, the results of a linear metamaterial beam can be recovered as black curves in Fig. 3. With
the increase of 𝐴0, the resonant frequency slightly shifts to a lower frequency due to the increase of equivalent damping 𝑐𝑒𝑞 as
shown by the backbone curve in Fig. 3(a). In Fig. 3(c), the equivalent damping (𝑐𝑒𝑞) reaches the maximum at the linear resonant
frequency 𝜔𝑟.

For undamped linear metamaterials, 𝜌𝑒 is real-valued. The bandgap is formed when 𝜌𝑒 < 0, and hence the wave number 𝑘(𝜔) is
complex-valued. This convenient criterion gives the classical bandgap range [42]. However, when it comes to damped metamaterials,
𝜌𝑒 and 𝑘(𝜔) are always complex-valued, making the bandgap definition unpractical. In this paper, we define the bandgap range as
the frequency range in which the transmissibility of a traveling wave along a unit length is reduced by more than −20 dB, which
is commonly used as a threshold for vibration attenuation. Therefore, with the assumption of the fundamental harmonic traveling
wave, the bandgap range 𝜔𝐵𝐺 reads:

{

𝜔𝐵𝐺 ∈ R ∣ 20 log10 𝑒−|Im(𝑘(𝜔))| < −20
}

. (15)

The dispersion curves for the proposed nonlinear metamaterial are shown in Fig. 3(d) and (e). With the increase of 𝐴0, the real
and imaginary parts of 𝑘(𝜔) become smoother than in the linear case. This is caused by the gradual increase of the damping effect
from the local resonators, as shown in Fig. 3(c). For the real part of 𝑘(𝜔) in Fig. 3(d), the real wave number becomes smaller with
the increase of 𝐴0, which bends its in-phase branches from an infinite value to a finite value and thus leads to less attenuation. This
degeneration of the dispersion curve also gives rise to the partial wave number bandgap beyond which the wave propagation is
forbidden [38,43]. The spatial decay of the traveling wave can be observed from the imaginary part of 𝑘(𝜔) in Fig. 3(e). An increase
of 𝐴0 not only reduces the resonant frequencies of local resonators for lower beginning frequencies of bandgaps but broadens their
bandwidth, which consequentially broadens the bandgap range of the nonlinear metamaterial. Due to the nonlinear damping, the
nonlinear bandgap range is broader than its corresponding linear case. It should be noted that this broadening effect comes with
a slight bandgap degeneration. Further increase of 𝐴0 could reversely reduce the bandgap range if a certain attenuation level is
desired.

2.2. Nonlinear frequency response

Unlike the nonlinear dispersion relationship mentioned above, the infinite long beam assumption practically does not hold due
to boundary reflections under low-frequency vibrations. Modal frequencies of the entire structure induced by boundary conditions
interact with the nonlinear local resonators. Therefore, in this part, we discuss the frequency response of the proposed nonlinear
metamaterial with a finite length by modal analysis and consider the higher harmonics through the harmonic balance method.

As shown in Fig. 4, we consider a clamped-free cantilever beam with length 𝐿 = 0.6 m and in total 𝑆 = 8 inertia amplifiers
periodically distributed along the beam from 𝑥1 = 0.14 m to 𝑥9 = 0.56 m. In this paper, we focus on the out-of-plane flexural wave
propagation rather than the in-plane wave propagation of the host beam. In order to suppress the undesired in-plane modes, the
inertia amplifiers are designed with four beams as connections to the bottom disk attached on the host beam to symmetrically
distribute the reaction forces. However, mode conversion could happen at the crossings of dispersion curves when asymmetry or
6
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chirality are involved with three beams as connections [44]. The detailed parameters of the cantilever beam are listed in Table 1.
The absolute transverse displacement, 𝑤𝐴𝑗 (𝑡), of the 𝑗th nonlinear resonator at 𝑥𝑗 along the host beam is defined as:

𝑤𝐴𝑗 (𝑡) = 𝑤𝑏 (𝑡) +𝑤
(

𝑥𝑗 , 𝑡
)

+𝑤𝑟𝑗 (𝑡) , (16)

where 𝑤𝑏 (𝑡) is the base excitation displacement at the clamp side and 𝑤𝑟𝑗 (𝑡) is the relative displacement of 𝑗-the nonlinear resonator.
The equation of motion of each nonlinear local resonator can be formulated as follows:

𝑚𝑗

(

𝜕2𝑤
𝜕𝑡2

+ �̈�𝑏 + �̈�𝑟𝑗

)

+ 𝑐𝑗 |�̇�𝑟𝑗 |�̇�𝑟𝑗 + 𝑘𝑗𝑤𝑟𝑗 = 0, (17)

where 𝑚𝑗 , 𝑐𝑗 and 𝑘𝑗 are determined by Eq. (6). By adding the reaction forces of each nonlinear resonator onto the host beam, the
governing equation of the host beam can be expressed as:

𝐷0
𝜕4𝑤
𝜕𝑥4

+ 𝜌0
𝜕2𝑤
𝜕𝑡2

= −𝜌0�̈�𝑏+

𝑆
∑

𝑗=1

(

𝑘𝑗𝑤𝑟𝑗 + 𝑐𝑗 |�̇�𝑟𝑗 |�̇�𝑟𝑗
)

𝛿
(

𝑥 − 𝑥𝑗
)

,
(18)

where 𝛿 represents the Dirac function. We here modify 𝜌0 = 𝜌𝑏ℎ + 𝑚0∕𝑎 to take into account the inertia force of the bottom disks.
The nonlinear metamaterial is then represented by Eqs. (17) and (18).

Assume the total mass of local resonators is much smaller than the mass of the host beam and linear vibration modes dominate
the response of the system so that the nonlinearities induced by the nonlinear damping effect can be treated as perturbations to the
underlying linear Euler–Bernoulli equation of host beam [25,45]. Compared with the conventional finite element method (FEM),
the modal superposition method takes advantage of reduced order modeling, effectively reducing the problem’s dimension [46].
Thus, the approximated solution of the displacement of the host beam is found by combining the harmonic balance and modal
superposition methods, defined as:

𝑤 (𝑥, 𝑡) =
𝑁
∑

𝑖=1
𝜂𝑖(𝑡)𝜙𝑖(𝑥), (19)

𝜂𝑖(𝑡) =
𝐻
∑

ℎ=−𝐻
�̂�𝑖(ℎ)𝑒iℎ𝜔𝑡, (20)

where 𝑁 and 𝐻 are the number of modes and harmonics order considered. 𝜙𝑖(𝑥) is the 𝑖th order mode shape of the host beam with
its natural frequency 𝜔𝑖. The modal weight 𝜂𝑖(𝑡) is expanded as Fourier series for higher harmonic generations due to the nonlinear
reaction forces in the system, where □̂ represents the complex Fourier coefficient.

By applying the boundary conditions of the clamped-free host beam, substituting the ansatz of the solutions, and applying
orthogonality [25,42] (detailed in Appendix), the second-order differential equations Eqs. (17) and (18) can be written into matrix
form with the dimension of 𝑁 + 𝑆 as:

𝐌�̈� +𝐊𝐮 + 𝐅𝐧𝐥(�̇�) = 𝐅𝐞𝐱(𝐭), (21)

where 𝐮 =
[

𝜂1𝜂2 ⋯ 𝜂𝑁𝑤𝑟1𝑤𝑟2 ⋯𝑤𝑟𝑆
]⊺ describes the modal weights and relative displacements of the nonlinear local resonators.

For the linear part of Eq. (21), the detailed form of the mass matrix 𝐌 and the linear stiffness matrix 𝐊 are given as:

𝐌 =
[

𝐌11 𝐌12
𝐌21 𝐌22

]

, 𝐊 =
[

𝐊11 𝟎
𝟎 𝐊22

]

, (22)

where 𝐌11 is a 𝑁×𝑁 matrix with the entries: 𝑚𝑚𝑛 = 𝛿𝑚𝑛+
∑𝑆

𝑗=1 𝑚𝑗𝜙𝑚(𝑥𝑗 )𝜙𝑛(𝑥𝑗 ); 𝐌12 is a 𝑁×𝑆 matrix with the entries: 𝑚𝑚𝑞 = 𝑚𝑞𝜙𝑚(𝑥𝑞);
𝐌21 is a 𝑆 ×𝑁 matrix with the entries: 𝑚𝑝𝑛 = 𝑚𝑝𝜙𝑛(𝑥𝑝); 𝐌22 is a 𝑆 ×𝑆 matrix with the entries: 𝑚𝑝𝑞 = 𝛿𝑝𝑞𝑚𝑝; 𝐊11 is a 𝑁 ×𝑁 diagonal
matrix with the entries: 𝑘𝑚𝑛 = 𝛿𝑚𝑛𝜔2

𝑚; 𝐊22 is a 𝑆 × 𝑆 diagonal matrix with the entries: 𝑘𝑝𝑞 = 𝛿𝑝𝑞𝑘𝑟𝑝; The applied external force 𝐅𝐞𝐱
with 𝑁 + 𝑆 items can be expanded as:

𝐅𝐞𝐱 = [𝑞1 ⋯ 𝑞𝑖 ⋯ 𝑞𝑁
− 𝑚1�̈�𝑏 ⋯ − 𝑚𝑗�̈�𝑏 ⋯ − 𝑚𝑆�̈�𝑏]⊺,

(23)

where 𝑞𝑖 is the modal force defined in Appendix.
For the nonlinear part, the nonlinear force 𝐅𝐧𝐥(�̇�) can be expressed as:

𝐅𝐧𝐥(�̇�) = 𝐂𝐍|�̇�|�̇�, 𝐂𝐍 =
[

𝟎 𝟎
𝟎 𝐂22

]

, (24)

where 𝐂𝐍 represents the nonlinear damping coefficient matrix. 𝐂22 is a 𝑆 × 𝑆 diagonal matrix with the entries: 𝐶𝑝𝑞 = 𝛿𝑝𝑞𝑐𝑟𝑝.
By treating the relative displacements of the nonlinear resonators also as Fourier series and substituting the ansatz of 𝐮(𝑡): 𝐮(�̂�, 𝑡)

into Eq. (21), we can form the residual function �̂�(�̂�, 𝜔) by using the harmonic balance method up to the truncation order 𝐻 :

�̂�(�̂�, 𝜔) =
(

∇2 ⊗𝜔2𝐌 + ∇0 ⊗𝐊
)

�̂�
̂ ̂ (25)
7

+ 𝐅nl(�̂�, 𝜔) − 𝐅ex(𝜔) = 𝟎,
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where ∇ = diag[−i𝐻,… , i𝐻] is a diagonal matrix of dimension 2𝐻+1. Eq. (25) shows that the linear internal and external forces are
decoupled for different harmonic indices 𝑘 except for the nonlinear forces �̂�nl. With 𝑀 , 𝐾, and �̂�ex given, the linear parts of Eq. (25)
an be easily solved, which represents the conventional linear metamaterials setup [42]. The primary challenge is to determine the
ourier coefficients of the nonlinear forces.

Since 𝐅𝐧𝐥 is a 1 continuous nonlinear function without a high degree of smoothness, conventionally, it requires tedious
xpansions of closed-form expression up to high truncation orders in the frequency domain for convergence. While in the time
omain, the nonlinear forces are easy to calculate with the available state histories of the system. By taking the advantages of the
wo domains, Alternating Frequency–Time (AFT) [47] resolves the Fourier coefficients of the nonlinear force by performing Fourier
ransforms in the frequency domain with the nonlinear forces evaluated in the time domain as:

�̂�nl ≈ �̂�AFT
nl = F

[

𝐅nl
(

F−1 [𝜔∇�̂�
])]

, (26)

here F denotes the discrete Fourier transform. By taking sufficient sampling points, the inverse Fourier transform F−1 [𝜔∇�̂�
]

gives
he generalized velocities in the time domain, which are used to generate the nonlinear forces at the sampling instants. Finally, the
iscrete Fourier transform approximates the Fourier coefficients for the nonlinear force.

Based on the work by Krack and Gross [48], the nonlinear frequency response of the proposed nonlinear metamaterial within
he frequency range

[

𝜔𝑠, 𝜔𝑒
]

can be solved by balancing the residual function Eq. (25) with unknown Fourier coefficients through
numerical Newton method. Compared with the direct time domain integration method, the harmonic balance method has an

utstanding convergence rate due to the prior periodic ansatz of solutions. In addition, the harmonic balance method does not have
he transient evolution of the time domain integration. Thus, it does not need a criterion for periodic behavior that stands for the
teady state. Nevertheless, Eq. (21) can still be solved by the time-domain Runge–Kutta method as a reference with the state-space
orm:

�̇� = 𝐁𝐳 + 𝐂|�̇�|�̇� + 𝐃, (27)

here

𝐳 =
[

𝐮
�̇�

]

, 𝐁 =
[

𝟎 𝐈
−𝐌−𝟏𝐊 𝟎

]

,

𝐂 =
[

𝟎 𝟎
𝟎 −𝐌−𝟏𝐂𝐍

]

, 𝐃 =
[

𝟎
𝐌−𝟏𝐅𝐞𝐱

]

.
(28)

It should be noted that the positions of local resonators could influence the condition number [49] of matrix 𝐌 in Eq. (22), which
easures how sensitive the computed Newton step is with respect to errors in the iteration of the unknown Fourier coefficients in
q. (25). If the local resonators are placed close to the nodes of mode shapes, which increases the condition number, convergence
ailures could happen in both harmonic balance and time-domain integration. Therefore, we use the linear solutions at the beginning
requency 𝜔𝑠 as the scaling matrix 𝝈:

𝝈 = diag
(

|

|

|

(

−𝜔2
𝑠𝐌 +𝐊

)−1 𝐅𝐞𝐱
|

|

|

)

. (29)

is also known as the Jacobi preconditioner [49], the scaled unknowns are 𝝈−1𝐮 with the similar order of magnitude, which reduces
he condition number of the iteration problem and increases the convergence.

An isotropic damping ratio 0.005 is used for the host beam and local resonators to avoid numerical instability. The results of tip
ransmissibilities of the nonlinear metamaterial are shown in Fig. 5. The linear case is realized by prescribing a small base excitation
cceleration �̈�𝑏. The finite element method [50] utilizes one-dimensional two-node Euler–Bernoulli beam elements. The element
ass and stiffness matrices are modified to introduce the relative displacement 𝑤𝑟𝑗 of the local resonators, thus enabling the inertia

nd reaction forces at the nodes of the resonators’ positions. In Fig. 5(a), the transmissibility from the modal superposition method
grees with that from the FEM method, which means the modal superposition method proposed in Eq. (19) is sufficient. For the
onlinear case, the transmissibilities under different base excitations are solved by the harmonic balance method with harmonic
rder 𝐻 = 11. Since the modal weight 𝜂𝑖 not only contains the fundamental harmonic, the third and higher harmonic generations
ay occur. Thus, we take an example of the third harmonic generation at the free tip of the host beam. The ratio between the
isplacement amplitude of the third harmonic and that of the first-order harmonic is given as 𝑄31:

𝑄31 =
|

|

|

|

|

|

∑𝑁
𝑖=1 �̂�𝑖 (3)𝜙𝑖 (𝐿)

∑𝑁
𝑖=1 �̂�𝑖 (1)𝜙𝑖 (𝐿)

|

|

|

|

|

|

. (30)

By varying the base excitation acceleration �̈�𝑏 ∈ (0, 40𝑔], the third harmonic generation ratio 𝑄31 is illustrated in Fig. 6. Besides
the third harmonic generation at the linear resonant frequency 𝜔𝑟, the third harmonics also appear at the modal frequencies of the
nonlinear metamaterial due to the coupling with nonlinear local resonators. This phenomenon points to the modal energy transfer
from low to high frequency, which has been proven useful for modal response attenuation [11]. With the increase of the base
excitation, the ratio of the third harmonic becomes larger. However, the strongest third harmonic ratio is no more than 2.5% under
�̈�𝑏 = 40𝑔, which means the linear vibration modes still dominate the dynamics of the host beam. In Fig. 5, we only show the results
of the fundamental harmonic induced bandgap since the generated harmonics are much higher than the region of interest near the
8

linear resonant frequency 𝜔𝑟.
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Fig. 5. The tip transmissibilities and spatial frequency analyses of the nonlinear metamaterial. (a)–(c): Tip transmissibilities for linear, �̈�𝑏 = 20g nonlinear, and
�̈�𝑏 = 40g nonlinear cases; (d)–(f): Spatial frequency analyses demonstrate the normalized displacement amplitude along the host beam for linear, �̈�𝑏 = 20g
nonlinear, and �̈�𝑏 = 40g nonlinear cases.

Fig. 6. Third harmonic generation ratio 𝑄31 between the displacement amplitude of the third harmonic at the free tip of the host beam and that of the first
order harmonic. The gray dashed lines correspond to the third harmonic generation at modal frequencies.

Similar to the dispersion analysis in Section 2.1, the bandgap in Fig. 5(a) to (c) is gradually broadened due to the increase of
nonlinear damping with the increase of excitation level. To maintain consistency, we modify the definition of the attenuation range
of the bandgap with the actual length 𝐿 rather than the unit length of the host beam in Eq. (15). Regarding the bandgap range
defined by −20 dB attenuation, the lower bound gradually shifts to a lower frequency and agrees with the range of the dispersion
analysis. For the bandgap’s upper bound, there is a deviation between the result from frequency responses and that from dispersion
analysis. This deviation is mainly caused by the number of the local resonators [42] and the boundary conditions of the host beam.
When the nonlinearity is weak, the solutions of both methods will converge by adding unit cells [31]. However, when nonlinearity
is relatively strong, the interactions among nonlinear resonators themselves and with mode shapes of the host beam cannot be
neglected, which emphasizes the importance of frequency response analysis of a finite beam model. The spatial frequency analysis
in Fig. 5(d) to (f) shows the overall dynamic response of the metamaterial beam. It can be seen that the attenuation range starts
from the first local resonator at position 𝑥 = 0.14m. As nonlinear damping increases, the bandgap becomes less marked [51].

Besides the bandgap, the harmonic balance method also yields the limit cycles of nonlinear local resonators at the fundamental
resonant frequency 𝜔𝑟 under base excitation �̈�𝑏 = 20g, shown in Fig. 7. The results from the harmonic balance method synthesized
from 𝐻 = 11 harmonic orders show good agreement with time domain integrations. From the 1st to 8th local resonator, the relative
9
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Fig. 7. Limit cycles of local resonators with their nonlinear forces at the linear resonant frequency 𝜔𝑟.

displacement and velocity amplitude decrease with the attenuation of the traveling flexural wave. With the increase of vibration
amplitudes, the limit cycles indicate more nonlinearities due to the amplitude-dependent nonlinear damping forces 𝐅𝐧𝐥. Thus, the
bandgap broadening effect near the resonant frequency 𝜔𝑟 is mainly due to the nonlinear damping effect of the resonators that are
located near the clamped side of the host beam.

2.3. Nonlinear modal dissipation

It is well-known that locally resonant metamaterials can create a bandgap for vibration mitigation of the host structure due
to the spatial evanescent wave propagation starting from the resonance frequency of the local resonators [7]. On the other hand,
nonlinear vibration absorbers have also been proven useful considering their broadband vibration mitigation ranges, which facilitate
the redistribution of vibration energy over multiple vibration modes of the host structure and result in an efficient modal dissipative
capacity of the host structure [11]. In this part, we discuss the nonlinear modal dissipation in the proposed nonlinear metamaterial,
which leads to the further broadening effect of the vibration attenuation range.

To investigate the nonlinear modal dissipation in the proposed metamaterial, we first look closely at the frequency response of
the nonlinear local resonators. With the formulations in Section 2.2, the fundamental harmonic Frequency Response Function 𝛬𝑗 for
each local resonator can be written as:

𝛬𝑗 =
𝑊𝑟𝑗

𝜔2𝑚𝑗
(

𝑊𝑏 +𝑊
) = 1

𝑘𝑗 − 𝜔2𝑚𝑗 + i𝜔𝑐𝑒𝑞
, (31)

where 𝑊𝑟𝑗 and 𝑊 are the fundamental harmonic amplitude of 𝑤𝑟𝑗 and 𝑤. The definition of equivalent damping 𝑐𝑒𝑞 in Eq. (9) can be
applied here to demonstrate the effect of nonlinear damping from the local resonators with their fundamental harmonics calculated
from the harmonic balance method.

The frequency response of each nonlinear local resonator and their equivalent damping is shown in Fig. 8 under �̈�𝑏 = 20g. The
bandgap formed around the resonant frequency of the local resonators gives the main vibration attenuation range of the nonlinear
metamaterial. Within the bandgap range, the frequency responses of the nonlinear local resonators differ from those of the linear
resonators, demonstrating the effect of amplitude-dependent nonlinear damping. With the right-going flexural wave, the nonlinear
resonators close to the base excitation point present stronger equivalent damping 𝑐𝑒𝑞 compared with those near the free tip of the
host beam. This can be observed by the gradual transitions from the red curves with a larger 𝑐𝑒𝑞 to the blue curves with a smaller
𝑐𝑒𝑞 in Fig. 8(d). This nonlinear bandgap induced by nonlinear damping forms the first vibration attenuation range of the proposed
nonlinear metamaterial due to the spatial decay of wave propagation and is also broadened by the nonlinear damping effect.

Different from the bandgap range where the right propagating wave is eventually attenuated, the influence of reflections, in
other words, the modes of the host beam, dominate the dynamical response of the metamaterial beam outside the bandgap range.
These modes are not only coupled with each other, but they also interact with nonlinear resonators, which leads to nonlinear modal
dissipation in this metamaterial beam. As shown in Fig. 8(a), the transmissibilities at the modal frequencies indicated with red
dash lines are much lower than its corresponding linear case, which means the mechanical energy is redistributed among different
modal frequencies of the host beam and the nonlinear local resonators for efficient modal energy dissipation by different modes
and nonlinear damping effect. For a damped linear resonator, the damping effect flattens the slope change of its phase around its
resonant frequency, as shown with the gray curve in Fig. 8(c). For a nonlinear local resonator attached to a finite-length beam,
the equivalent damping 𝑐𝑒𝑞 is determined by its velocity amplitude and the amplitudes of modal excitations. Therefore, there are
multiple slope changes due to the modal frequency excitation from the movement of the host beam. As shown in Fig. 8(c), local
slope changes of phase curves can be observed corresponding to modal frequencies. The increase of nonlinear damping around
10
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Fig. 8. Nonlinear modal dissipation in the metamaterial. (a) Vibration attenuation at modal frequencies; (b) and (c): Amplitudes and phases of frequency response
functions of local resonators; (d) Equivalent damping of local resonators.

modal frequencies can also be observed via 𝑐𝑒𝑞 in Fig. 8(d). In particular, those resonators near the middle part and free end of the
host beam contribute significantly to vibration attenuation at modal frequencies, which forms a contrast within the bandgap range
that only the resonators near the vibration source are more effective. This nonlinear modal dissipation features a second mechanism
besides the nonlinear bandgap and further broadens the range for vibration attenuation at modal frequencies.

In order to validate the efficient modal dissipation capability, we utilize the numerical time-domain integration in Eq. (27) with
different modal velocities as initial conditions. The total kinetic energy 𝑇 (𝑡) of the system can be represented with the kinetic energy
of the host beam and that of the local resonators as:

𝑇 (𝑡) = 1
2 ∫

𝐿

0
𝜌0

( 𝜕𝑤
𝜕𝑡

)2
𝑑𝑥 +

𝑆
∑

𝑗=1

1
2
𝑚𝑗�̇�

2
𝑟𝑗 . (32)

The total potential energy of the system 𝑉 (𝑡) is represented by the strain energy of the host beam and the elastic energy of the local
resonators:

𝑉 (𝑡) = 1
2 ∫

𝐿

0
𝐷0

(

𝜕2𝑤
𝜕𝑥2

)2
𝑑𝑥 +

𝑆
∑

𝑗=1

1
2
𝑘𝑗𝑤

2
𝑟𝑗 . (33)

Let 𝛾(𝑡) denote the ratio of the instantaneous total energy 𝑇 (𝑡)+𝑉 (𝑡) to the input energy 𝑇 (𝑡0)+𝑉 (𝑡0) induced by initial condition:

𝛾(𝑡) =
𝑇 (𝑡) + 𝑉 (𝑡)

, (34)
11
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Fig. 9. The envelope of the energy decay rate and the wavelet transform of the nonlinear metamaterial after initial impact at 𝑡 = 0. (a) The envelope of the
energy decay rate 𝛾(𝑡) under three different impact velocities; (b) Wavelet transforms of the velocities �̇�𝑟𝑗 of the first three nonlinear local resonators with the
initial impact velocities 𝜂𝑖(0) = 1 m∕s and 𝜂𝑖(0) = 0.01 m∕s.

where 𝛾(𝑡) describes how fast the initial energy is dissipated due to the linear and nonlinear damping effect in metamaterials. By
following the definition of linear oscillators, we use 𝑡∗ to denote the time needed for the total energy drops by a factor of 𝑒−1 of its
initial value, which indicates the linear damping coefficient by a time inverse [14].

The results in Fig. 9(a) show three initial modal velocities that mimic weak to strong impact conditions of the proposed nonlinear
metamaterial. The total energy of the three cases decays at different rates along the time evolution. Under strong impact conditions,
the whole nonlinear metamaterial’s energy decays faster than in the other two cases, which indicates a stronger modal dissipation
ability by the nonlinear damping effect. Due to the local resonators, the modal frequencies of the metamaterial beam are altered. By
solving the eigenvalue problem of the underlying linear system in Eq. (21), the modal frequencies of the local resonant metamaterial
beam are indicated with gray dash lines in Fig. 9(b). Compared to the small initial impact case, the wavelet transforms of the strong
impact case demonstrate stronger modal coupling with the modal frequencies. This modal coupling not only originates from the
nondiagonal characteristic of the mass matrix for the underlying linear system in Eq. (22), but the nonlinear reaction forces further
facilitate this coupling by mixing the states of the local resonators with the modal coordinates. For the strong impact case, more
higher modal frequency components can be observed. This effect can be understood as low-frequency to high-frequency nonlinear
energy transfer resulting for faster energy dissipation of the host system [11]. The modal dissipation ability of the proposed nonlinear
metamaterial helps the redistribution of the energy into nonlinear local resonators and higher vibration modes, which shows the
potential application of this nonlinear metamaterial for shock wave attenuation.
12
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Fig. 10. Experimental setup.

3. Experiments

The observed theoretical bandgap broadening effect and nonlinear modal dissipation are verified experimentally. We first
verify the nonlinear frequency response of the inertia amplifiers as local resonators for the metamaterial. Then, the nonlinear
transmissibilities of the metamaterial are recorded under different base excitation conditions.

3.1. Setup

Fig. 10 shows the experimental setup. The nonlinear metamaterial is made of versatile plastic and consists of a 0.6-meter host
beam and a series of nonlinear local resonators spaced 60 mm apart. The prototype is printed with Selective Laser Sintering 3D
printing (EOSINT P760) in one piece. The parameters of the nonlinear metamaterial are shown in Table 1. To maintain stability
during excitation, the nonlinear metamaterial is then hung vertically. One end of the metamaterial is clamped to a shaker (VE-5120)
for base excitation, resulting in a clamped-free boundary condition. A Polytec laser Doppler vibrometer (LDV) is used to record the
out-of-plane velocity field at any point along the structure, such as the clamped and free end of the host beam. The data is acquired
in the time domain through repeated acquisitions.

3.2. Experimental results

Before the experiments on the nonlinear metamaterial shown in Fig. 10, we first validate the nonlinear damping effect of an
individual inertia amplifier. As shown in the enlarged view in Fig. 10, we chose a tilted angle of 35°. The 3D-printed inertia amplifier
is fixed to the shaker. In order to observe the nonlinear damping effect, a slow sweep signal with a rate of 0.1 Hz/s ranging from
180 Hz to 230 Hz is applied to the base of the nonlinear local resonator at a constant excitation force. Time domain velocity
responses at different points on the top disk and excitation base of the resonator are recorded with the LDV.

The resonator’s experimental and theoretical nonlinear frequency response is illustrated in Fig. 11 with different base accelera-
tions from 0.15 g to 9 g. The theoretical results are obtained using Eq. (3) by the harmonic balance method mentioned in Section 2.2,
which show good agreement with experimental results. It can be seen that the resonant frequency of the resonator slightly shifts
to a lower frequency with the increase of excitation force, which indicates an increase of the nonlinear damping effect studied
previously, and a stiffness reduction that has also been observed in [32]. Therefore, we employed a cubic fitting of the stiffness
versus the displacement amplitude 𝑊𝑟 of the resonator, which returns the linear stiffness 𝑘0 when 𝑊𝑟 is small. A linear damping
ratio 𝜁0 = 0.005 is also applied here. The nonlinear damping effect becomes prominent under large base accelerations, reducing
the amplitude of its frequency response function and broadening its bandwidth. This amplitude-dependent nonlinear damping can
also be observed from the phase angle of the frequency response Fig. 11(b). The slope of the phase transition around resonances is
smaller under large excitation, which qualifies the theoretical model discussed in Section 2.1.

Once the nonlinear damping effect on the single resonator level has been identified, the transmissibilities of the nonlinear
metamaterial, combining the base beam and sequential resonators, are shown in Fig. 12. We excite the platform where the clamped
side of the host beam is mounted at constant excitation force (controlled by the excitation voltage 𝑉0 of the amplifier). As in the
previous experiment, sweep signals slowly varying from 100 Hz to 350 Hz at 0.1 Hz/s are applied.

Due to the influence of modal responses on the excitation base, the experimental transmissibility of the host beam is calculated
as the tip velocity of the host beam normalized by the input acceleration. It is further nondimensionalized with the excitation
frequency. The theoretical transmissibility takes the same form as explained in Section 2.2. We use two theoretical cases (�̈�𝑏 = 0.1 g
and �̈� = 40 g) to indicate the effective range of the nonlinear metamaterial and compare these with the experimental results. It can
13
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Fig. 11. Experimental and theoretical frequency response function 𝛬 of an inertia amplifier with 𝜃 = 35° under different base excitation accelerations �̈�𝑏.

Fig. 12. Experimental and theoretical transmissibilities of the nonlinear metamaterial under different base excitation voltages 𝑉0 and accelerations �̈�𝑏.

e seen that the general trend and bandgap range of the experimental and theoretical results agree, which validates the analyses in
ection 2.

By closely checking the enlarged views enclosed in red dashed squares, we can observe the bandgap broadening effect and the
onlinear energy transfer at modal frequencies. Under large excitation levels, the bandgap is broadened not only due to the nonlinear
amping effect, but also the shifting of the stiffness of nonlinear local resonators. It should be noted that the bandgap degenerating
ffect is not obvious since the selected 𝜃 in the experiments is not small. Furthermore, the modal frequency peak around normalized
requency 0.9 gradually splits into two smaller peaks with the increase of the excitation level, highlighting the effect of the nonlinear
amping.

To further demonstrate the nonlinear modal coupling and dissipation ability of the nonlinear metamaterial beyond its bandgap
ange, experimental impacts have been applied at the clamped side of the nonlinear metamaterial. The experimental setup is shown
n Fig. 13(a), multiple laser scanning points are defined at the front and back sides of the nonlinear metamaterial to measure the
elocity responses of the nonlinear local resonators and the host beam under different impact intensities. For each measurement of
he out-of-plane velocity, a repeatable raised cosine pulse signal, with a bandwidth for modal frequencies lower than 1000 Hz, is
xcited by the shaker at the clamped side of the nonlinear metamaterial. The scanning points distributed along the host beam are
paced 20 mm apart.

The time evolution of the energy decay rates 𝛾(𝑡) under different impact intensities are calculated with Eq. (32) to Eq. (34), in
14

hich the displacement and its derivative versus beam length are acquired by numerical integration of the velocity response and
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Fig. 13. Experimental shock wave attenuation of the nonlinear metamaterial under different impact voltages 𝑉0. (a) Experimental setup of the nonlinear
metamaterial with the laser scanning points and the profile of the input impact signal; (b) Experimental energy decay rates of the nonlinear metamaterial under
different impact intensities; (c) Experimental wavelet transforms of the velocities �̇�𝑟𝑗 of the first two nonlinear local resonators for the two different impact
cases.

finite difference method, respectively. In Fig. 13(b), a stronger impact not only leads to faster energy dissipation of the system but
also suggests energy redistribution to high frequency modes of the nonlinear metamaterial, which agrees with the modal dissipation
ability studied in Section 2.3. By closely checking the wavelet transforms of the first two nonlinear local resonators in Fig. 13(c),
there exist more frequency components correspond to higher modal frequencies for the strong impact case, which indicates the
modal coupling ability of the nonlinear metamaterial for efficient energy redistribution of the host beam for shock wave and impact
attenuation.

4. Conclusion

This paper presents a practical, tunable nonlinear resonator based on the nonlinear damping effect induced by rotational inertia
amplifiers. This resonator is used to create a nonlinear metamaterial for broadband vibration attenuation, combining a broader
bandgap and general modal vibration dissipation within the host structure. Revisiting the nonlinear damping effect mechanism, we
establish the nonlinear dispersion relationships for a semi-infinite nonlinear metamaterial case. More importantly, with respect
to practical applications, the nonlinear frequency response of a finite structure is studied with modal analysis and Alternating
Frequency Time (AFT) multiple harmonic balance methods for general nonlinearities in nonlinear metamaterials. The theoretical
results reveal that the bandgap is broadened with the increase of excitation level. Especially, the nonlinear interactions between
the local resonators and the mode shapes of the host beam lead to efficient modal frequency dissipation ability in the proposed
metamaterial. Finally, experiments were carried out with both the single nonlinear resonator level and the full metamaterial system.
The experimental results validate both the nonlinear bandgap and modal dissipation as mechanisms for broadband and shock wave
attenuation. By incorporating the effect of nonlinearity with the concept of conventional locally resonant metamaterials, our findings
enable new possibilities for vibration attenuation beyond the conventional linear bandgap range.
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ppendix. Modal superposition

The mass-normalized shape function of the host beam with clamped-free boundary condition can be shown as:

𝜙𝑖(𝑥) =
1

√

𝜌0𝐿

[

cos
(

𝜆𝑖𝑥
𝐿

)

− cosh
(

𝜆𝑖𝑥
𝐿

)

+
(

sin 𝜆𝑖 − sinh 𝜆𝑖
cos 𝜆𝑖 + cosh 𝜆𝑖

)(

sin
(

𝜆𝑖𝑥
𝐿

)

− sinh
(

𝜆𝑖𝑥
𝐿

))]

,

𝑖 = 1, 2,… , 𝑁

(35)

where 𝜆𝑖 is the positive eigenvalue of the characteristic equation read as:

cos 𝜆𝑖 cosh 𝜆𝑖 + 1 = 0. (36)

By substituting Eq. (19) into Eq. (18), applying the orthogonality conditions with 𝜙𝑠(𝑥), and integrating over the span of the
ost beam, Eq. (18) is transformed into:

�̈�𝑖 + 𝜔2
𝑖 𝜂𝑖 −

𝑆
∑

𝑗=1

(

𝑘𝑗𝑤𝑟𝑗 + 𝑐𝑗 |�̇�𝑟𝑗 |�̇�𝑟𝑗
)

𝜙𝑖(𝑥𝑗 )

= −𝜌0�̈�𝑏 ∫

𝑥=𝐿

𝑥=0
𝜙𝑖(𝑥)𝑑𝑥,

(37)

here 𝜔𝑖 is the natural frequency of the 𝑖th mode of the host beam. Follow the same procedure to substitute Eq. (19) into Eq. (17),
t gives:

𝑚𝑗

( 𝑁
∑

𝑖=1
�̈�𝑖𝜙𝑖(𝑥𝑗 ) + �̈�𝑟𝑗

)

+ 𝑐𝑗 |�̇�𝑟𝑗 |�̇�𝑟𝑗

+ 𝑘𝑗𝑤𝑟𝑗 = −𝑚𝑗�̈�𝑏.

(38)

The nonlinear reaction forces induced by the local resonators that are applied on the host beam can be represented by Eq. (38).
herefore, Eq. (37) can be rewrite as:

�̈�𝑖 + 𝜔2
𝑖 𝜂𝑖 +

𝑆
∑

𝑗=1
𝑚𝑗𝜙𝑖

(

𝑥𝑗
)

𝑁
∑

𝑖=1
�̈�𝑖𝜙𝑖

(

𝑥𝑗
)

+
𝑆
∑

𝑗=1
𝑚𝑗�̈�𝑟𝑗𝜙𝑖

(

𝑥𝑗
)

= 𝑞𝑖, 𝑟 = 1, 2,… , 𝑁

(39)

here

𝑞𝑖 = −�̈�𝑏

(

∫

𝑥=𝐿

𝑥=0
𝜌0𝜙𝑖(𝑥)d𝑥 +

𝑆
∑

𝑗=1
𝑚𝑗𝜙𝑖

(

𝑥𝑗
)

)

. (40)

By combining Eqs. (38) and (39), the matrix form equations of the nonlinear metamaterial can be achieved.

eferences

[1] A. Preumont, Vibration Control of Active Structures: an Introduction, Vol. 246, Springer, 2018.
[2] J. Ormondroyd, Theory of the dynamic vibration absorber, Trans. ASME 50 (1928) 9–22.
[3] H.A. Sodano, D.J. Inman, G. Park, A review of power harvesting from vibration using piezoelectric materials, Shock Vib. Dig. 36 (3) (2004) 197–206.
[4] A.F. Vakakis, Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoust. 123 (3) (2001) 324–332.
[5] Y. Starosvetsky, O. Gendelman, Vibration absorption in systems with a nonlinear energy sink: nonlinear damping, J. Sound Vib. 324 (3–5) (2009) 916–939.
[6] L. Zuo, S.A. Nayfeh, Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems, J. Vib. Acoust. 127 (1)

(2005) 77–83.
[7] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (5485) (2000) 1734–1736.
[8] A. Casalotti, S. El-Borgi, W. Lacarbonara, Metamaterial beam with embedded nonlinear vibration absorbers, Int. J. Non-Linear Mech. 98 (2018) 32–42.
[9] M. Gutierrez Soto, H. Adeli, Tuned mass dampers, Arch. Comput. Methods Eng. 20 (2013) 419–431.

[10] B. Zhao, J. Qiu, J. Liang, Circuit solutions toward broadband piezoelectric energy harvesting: An impedance analysis, IEEE Trans. Circuits Syst. I. Regul.
Pap. (2023) 1–12.

[11] A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, Y.S. Lee, Nonlinear Targeted Energy Transfer in Mechanical and Structural
Systems, Vol. 156, Springer Science & Business Media, 2008.
16

[12] B. Zhao, J. Wang, J. Liang, W.-H. Liao, A dual-effect solution for broadband piezoelectric energy harvesting, Appl. Phys. Lett. 116 (6) (2020) 063901.

http://refhub.elsevier.com/S0888-3270(23)00987-1/sb1
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb2
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb3
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb4
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb5
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb6
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb6
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb6
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb7
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb8
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb9
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb10
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb10
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb10
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb11
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb11
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb11
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb12


Mechanical Systems and Signal Processing 208 (2024) 111079B. Zhao et al.
[13] B. Zhao, J. Wang, G. Hu, A. Colombi, W.-H. Liao, J. Liang, Time-sharing orbit jump and energy harvesting in nonlinear piezoelectric energy harvesters
using a synchronous switch circuit, Mech. Syst. Signal Process. 200 (2023) 110601.

[14] M. Gzal, A.F. Vakakis, L.A. Bergman, O.V. Gendelman, Extreme intermodal energy transfers through vibro-impacts for highly effective and rapid blast
mitigation, Commun. Nonlinear Sci. Numer. Simul. 103 (2021) 106012.

[15] M. Gzal, B. Fang, A. Vakakis, L. Bergman, O. Gendelman, Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact
nonlinearity, Nonlinear Dynam. 101 (2020) 2087–2106.

[16] A. Colombi, D. Colquitt, P. Roux, S. Guenneau, R.V. Craster, A seismic metamaterial: The resonant metawedge, Sci. Rep. 6 (1) (2016) 27717.
[17] B. Davies, G.J. Chaplain, T.A. Starkey, R.V. Craster, Graded quasiperiodic metamaterials perform fractal rainbow trapping, Phys. Rev. Lett. 131 (2023)

177001.
[18] X. Pu, A. Palermo, A. Marzani, Topological edge states of quasiperiodic elastic metasurfaces, Mech. Syst. Signal Process. 181 (2022) 109478.
[19] J.M. De Ponti, L. Iorio, G.J. Chaplain, A. Corigliano, R.V. Craster, R. Ardito, Tailored topological edge waves via chiral hierarchical metamaterials, Phys.

Rev. A 19 (3) (2023) 034079.
[20] H.R. Thomsen, B. Zhao, A. Colombi, Boundless metamaterial experimentation: Physical realization of a unidirectional virtual periodic boundary condition,

Phys. Rev. A 19 (2023) 064019.
[21] B. Zhao, H.R. Thomsen, J.M. De Ponti, E. Riva, B. Van Damme, A. Bergamini, E. Chatzi, A. Colombi, A graded metamaterial for broadband and

high-capability piezoelectric energy harvesting, Energy Convers. Manage. 269 (2022) 116056.
[22] L. Rosafalco, J.M. De Ponti, L. Iorio, R. Ardito, A. Corigliano, Optimised graded metamaterials for mechanical energy confinement and amplification via

reinforcement learning, Eur. J. Mech. A Solids 99 (2023) 104947.
[23] X. Fang, P. Sheng, J. Wen, W. Chen, L. Cheng, A nonlinear metamaterial plate for suppressing vibration and sound radiation, Int. J. Mech. Sci. 228 (2022)

107473.
[24] X. Fang, J. Wen, B. Bonello, J. Yin, D. Yu, Ultra-low and ultra-broad-band nonlinear acoustic metamaterials, Nature communications 8 (1) (2017) 1288.
[25] Y. Xia, M. Ruzzene, A. Erturk, Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam, Nonlinear Dynam. 102 (3)

(2020) 1285–1296.
[26] K.A. Chondrogiannis, A. Colombi, V. Dertimanis, E. Chatzi, Computational verification and experimental validation of the vibration-attenuation properties

of a geometrically nonlinear metamaterial design, Phys. Rev. A 17 (5) (2022) 054023.
[27] Q. Xu, J. Wang, Y. Lv, H. Yao, B. Wen, Vibration characteristics of linear and nonlinear dissipative elastic metamaterials rotor with geometrical nonlinearity,

Int. J. Non-Linear Mech. 157 (2023) 104543.
[28] M.H. Bae, J.H. Oh, Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency, Mech. Syst. Signal Process. 170 (2022) 108832.
[29] M.H. Bae, J.H. Oh, Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials, J. Mech. Phys. Solids 139 (2020) 103930.
[30] R. Seydel, Practical Bifurcation and Stability Analysis, Vol. 5, Springer Science & Business Media, 2009.
[31] B. Zhao, H. Thomsen, X. Pu, B.V. Damme, A. Bergamini, E. Chatzi, A. Colombi, A nonlinear metamaterial induced by nonlinear damping effect with

inertia amplifiers, in: 10th ECCOMAS Thematic Conference on Smart Structures and Materials, Dept. of Mechanical Engineering & Aeronautics University
of Patras, 2023.

[32] B. Van Damme, G. Hannema, L. Sales Souza, B. Weisse, D. Tallarico, A. Bergamini, Inherent non-linear damping in resonators with inertia amplification,
Appl. Phys. Lett. 119 (6) (2021) 061901.

[33] K. Worden, G.R. Tomlinson, Nonlinearity in experimental modal analysis, Phil. Trans. R. Soc. A 359 (1778) (2001) 113–130.
[34] S. Sepehri, M.M. Mashhadi, M.M.S. Fakhrabadi, Wave propagation in nonlinear monoatomic chains with linear and quadratic damping, Nonlinear Dynam.

108 (1) (2022) 457–478.
[35] J. Lou, X. Fang, J. Du, H. Wu, Propagation of fundamental and third harmonics along a nonlinear seismic metasurface, Int. J. Mech. Sci. 221 (2022)

107189.
[36] M.I. Hussein, Theory of damped Bloch waves in elastic media, Phys. Rev. B 80 (21) (2009) 212301.
[37] A. Palermo, B. Yousefzadeh, C. Daraio, A. Marzani, Rayleigh wave propagation in nonlinear metasurfaces, J. Sound Vib. 520 (2022) 116599.
[38] M.I. Hussein, M.J. Frazier, Band structure of phononic crystals with general damping, J. Appl. Phys. 108 (9) (2010) 093506.
[39] L. Van Belle, C. Claeys, E. Deckers, W. Desmet, On the impact of damping on the dispersion curves of a locally resonant metamaterial: Modelling and

experimental validation, J. Sound Vib. 409 (2017) 1–23.
[40] B. Van Damme, A. Zemp, Measuring dispersion curves for bending waves in beams: a comparison of spatial fourier transform and inhomogeneous wave

correlation, Acta Acustica United Acustica 104 (2) (2018) 228–234.
[41] T.C. Choy, Effective Medium Theory: Principles and Applications, Vol. 165, Oxford University Press, 2015.
[42] C. Sugino, S. Leadenham, M. Ruzzene, A. Erturk, On the mechanism of bandgap formation in locally resonant finite elastic metamaterials, J. Appl. Phys.

120 (13) (2016) 134501.
[43] F. Farzbod, M.J. Leamy, Analysis of Bloch’s method in structures with energy dissipation, J. Vib. Acoust. 133 (5) (2011).
[44] A. Bergamini, M. Miniaci, T. Delpero, D. Tallarico, B. Van Damme, G. Hannema, I. Leibacher, A. Zemp, Tacticity in chiral phononic crystals, Nat. Commun.

10 (1) (2019) 4525.
[45] S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2022.
[46] L. Rouleau, J.-F. Deü, A. Legay, A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping,

Mech. Syst. Signal Process. 90 (2017) 110–125.
[47] T.M. Cameron, J.H. Griffin, An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems, J. Appl.

Mech. 56 (1) (1989) 149–154.
[48] M. Krack, J. Gross, Harmonic Balance for Nonlinear Vibration Problems, Vol. 1, Springer, 2019.
[49] G.H. Golub, C.F. Van Loan, Matrix Computations, JHU Press, 2013.
[50] G. Hu, L. Tang, R. Das, General framework for modeling multifunctional metamaterial beam based on a derived one-dimensional piezoelectric composite

finite element, J. Aerosp. Eng. 31 (6) (2018) 04018088.
[51] Y.-F. Wang, Y.-S. Wang, V. Laude, Wave propagation in two-dimensional viscoelastic metamaterials, Phys. Rev. B 92 (10) (2015) 104110.
17

http://refhub.elsevier.com/S0888-3270(23)00987-1/sb13
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb13
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb13
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb14
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb14
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb14
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb15
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb15
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb15
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb16
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb17
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb17
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb17
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb18
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb19
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb19
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb19
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb20
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb20
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb20
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb21
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb21
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb21
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb22
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb22
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb22
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb23
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb23
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb23
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb24
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb25
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb25
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb25
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb26
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb26
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb26
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb27
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb27
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb27
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb28
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb29
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb30
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb31
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb31
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb31
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb31
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb31
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb32
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb32
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb32
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb33
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb34
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb34
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb34
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb35
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb35
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb35
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb36
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb37
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb38
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb39
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb39
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb39
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb40
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb40
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb40
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb41
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb42
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb42
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb42
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb43
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb44
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb44
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb44
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb45
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb46
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb46
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb46
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb47
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb47
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb47
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb48
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb49
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb50
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb50
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb50
http://refhub.elsevier.com/S0888-3270(23)00987-1/sb51

	A nonlinear damped metamaterial: Wideband attenuation with nonlinear bandgap and modal dissipation
	Introduction
	Theoretical Analysis
	Nonlinear Dispersion Relationship
	Nonlinear Frequency Response
	Nonlinear Modal Dissipation

	Experiments
	Setup
	Experimental Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Modal Superposition
	References


