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1 Introduction 

Concrete and other cement-based materials are, with the 

exception of water, the most consumed materials globally. 

The production of cements with Portland cement clinker as 

the primary active component requires heating of lime-

stone and clays to 1450 °C. Limestone, CaCO3, used as 

main calcium source, decarbonizes during heating releas-

ing CO2 such that CO2 emissions related to concrete are 

‘hard to abate’ due to the nature of the raw materials. As 

cement based binders are employed in vast quantities, 4.1 

Gt in 2019 [1], cement manufacture accounts for as much 

as ≈8% of the global anthropogenic CO2 emissions [2, 3]. 

In the last decades, cement industry significantly reduced 

CO2 emissions by the use of alternative fuels, increased 

energy efficiency, and by substituting Portland cement 

clinker with supplementary cementitious materials 

(SCMs). The most suitable SCMs are latent-hydraulic or 

pozzolanic materials such as granulated blast-furnace 

slags (herein “slag”) and coal combustion fly ashes [2, 4]. 

However, the availability of slag and fly ash with adequate 

quality is limited to only ≈ 20 wt.-% of global cement pro-

duction [2] and this fraction will decrease further in the 

future. The recently explored calcined clays are abundant, 

but only capable of replacing in combination with lime-

stone max. approx. 50% of the clinker in the so-called 

LC3-cements [5]. The sole replacement of limestone is 

limited to 5 to 20 wt.-% because of its restricted contribu-

tion to the cement performance [6, 7].  

Thus, “alternative clinkers” with fundamentally different 

chemistry are needed to replace partially Portland cement-

based cements [8, 9]. However, most of the proposed al-

ternative materials such as e.g. calcium sulfoaluminate ce-
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ments [10, 11] or belitic cements [8], are based on cal-

cium silicates and aluminates, which strongly limits the 

maximum possible CO2 reduction, as limestone remains 

the main calcium source.  

Although magnesium is abundant in the earth crust, mag-

nesium is little used up to now for cement production. 

Magnesium oxychloride cements, also known as “Sorel ce-

ments”, magnesium oxysulfate and magnesium phosphate 

cements are used in niche applications. In recent years, 

magnesia (MgO)-based cements containing silica and/or 

carbonates have gained increasing attention. Such ce-

ments based on magnesium carbonate and silicate hydrate 

have low pH values, can have high strength and their pro-

duction is potentially associated with low CO2 emissions. 

In contrast to CaO-based cements, where CaCO3 is decar-

bonated during production, the raw materials for MgO-

based cements can be gained from desalination brines or 

magnesium silicates, without direct emissions of CO2 from 

the raw materials. However, compared to Portland ce-

ments, relatively little is known about these cements and 

their durability. This paper summarises the present under-

standing of the factors affecting the hardening of such ce-

ments, points out important gaps in our knowledge and 

potential future research routes. 

Magnesia silicate cements have a low carbon footprint, 

when the MgO sources are non-carbonate Mg-based min-

erals. Reactive magnesia silicate cements are an option to 

partially substitute Portland cements. The hydration of 

MgO-SiO2 cements results in the precipitation of a magne-

sium silicate hydrate phase (M-S-H) as primary reaction 

product: 

(a+b)·MgO + SiO2 + (a+c)·H2Oaq → a·Mg(OH)2 (brucite) + 

(MgO)b SiO2 (H2O)c (M-S-H).  

This reaction can lead to compressive strengths of up to 

50 to 70 MPa after 28 days, comparable to Ca-based ce-

ments [12-15].  

Among the different strategies to reduce the CO2 in ce-

ment industry, carbon capture and storage (CCS), and 

particularly the cementitious binders based on carbon cap-

ture and utilisation (CCU) are of interest. Cements based 

on hydrated magnesium cements, HMC, could be an at-

tractive alternative due to the potentially negative CO2 

emissions. Such HMC binders harden and gain mechanical 

strength from the reaction of reactive MgO to brucite 

Mg(OH)2(s) and HMC:  

(a+b+c)·MgO + b·CO2(g) + (a+c+d)·H2Oaq → a·Mg(OH)2 

(brucite) + (MgCO3)b(Mg(OH)2)c(H2O)d(s).  

This reaction does not generate any CO2 but consumes 

CO2, leading to a permanent sequestration of CO2 and to 

strength gain in HMC cements. 

 

2 MgO sources 

At present, magnesia is mainly produced by calcination of 

magnesite, MgCO3, in a process similar to the production 

of CaO from limestone. As the calcination of MgCO3 re-

leases 1.1 kg CO2 per kg MgO (or 0.5 g CO2 per kg MgCO3), 

the production of MgO from magnesite or dolomite, 

CaMg(CO3)2 is not sustainable. Magnesium, however, is 

not only present as carbonate rocks (magnesite, dolomite) 

at the earth's surface but also as magnesium silicate rocks. 

The largest natural deposits available are olivine, 

(Mg,Fe)2SiO4, and serpentine, Mg3Si2O5(OH)4. Serpentines 

are more abundant than olivine and originate from the 

partial hydration of olivine near the Earth's surface. Mg-

silicates are available worldwide [16, 17] as illustrated by 

Figure 1.  

 

Figure 1 Worldwide availability of ultramafic rocks (Mg-silicate-rich 

rocks) illustrating a high potential of Mg-based cement as a major bind-

ing system. Reproduced from Scott et al.[17]. 

 

However, magnesium silicates react only very slowly with 

water and CO2. Therefore, in a first step they need to be 

decomposed to MgO, SiO2, Fe2O3 and minor quantities of 

Al2O3, depending on the composition of the raw material. 

Recent breakthroughs in hydrometallurgy make economi-

cal extraction of high-purity MgO from Mg-rich minerals 

such as olivine and serpentine possible [17-19]. Silica and 

iron compounds are the main by-products of the extraction 

of MgO from olivine or serpentine, while Al2O3 as well 

many other elements are present as minor component 

[17, 18], as illustrated in Figure 2.  

 

Figure 2 Scheme of MgO extraction and production of HMC cements. 
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Both, the MgO as well as the SiO2-rich by-product, will 

contain in addition either SiO2 or MgO, together with Al, 

Fe, K, Na, Ca and many other elements [17]. The (partial) 

re-use of the SiO2-rich by-product in the production of 

HMC cements would contribute to close the material cycle 

and avoid waste deposition. SiO2-rich by-products can also 

be used as supplementary cementitious materials in PC 

blends, where they show comparable properties to silica 

fume [20]. Similarly, other, little used industrial by-prod-

ucts such as pyro-metallurgical slags [21] or bauxite resi-

dues [22] could possibly be used in HMC. The use of in-

dustrial by-products however, will also increase the 

amount of minor elements present, such as Zn2+, Co2+ or 

Pb2+. 

MgO can also be produced from seawater, resp. desalina-

tion brines, via precipitation of brucite at controlled pH. In 

the first step of the process, brucite is precipitated by add-

ing alkaline bases such as sodium hydroxide, ammonia or 

lime [23-27]. The obtained brucite can on the one hand be 

calcined at rather low temperatures of 450-550°C to ob-

tain reactive magnesia for further use in construction 

products [24, 25], as discussed in more detail in the next 

section.  

On the other hand, brucite can also be carbonated directly 

to obtain hydrated magnesium carbonates (HMC) such as 

nesquehonite, dypingite and hydromagnesite [23, 26]. In 

another approach, sodium carbonate/bicarbonate solution 

can be used to directly precipitate HMC from seawater [28, 

29] resulting in the formation of nesquehonite and/or hy-

dromagnesite like-products depending on the experi-

mental conditions. Calcium, which is part of the brines as 

well, precipitates as calcium carbonate monohydrate 

and/or dolomite. The obtained HMCs could be used in 

blends with MgO to make hydrated magnesium carbonate 

cements (as discussed in the next section). The obtained 

nesquehonite phase also can be partially dehydrated at 

moderate temperatures (≈ 100-250°C) [30]. Upon rehy-

dration, the dehydrated nesquehonite develops a com-

pressive strength of up to 5 MPa, which could be used to 

manufacture construction materials similar to plaster-

boards [31]. Both approaches do not release chemically 

bound CO2, as they do not start from carbonates. Thus, 

magnesium-based binding systems show a high potential 

to become a major binder and to enable a leap closer to 

the carbon-negative cements. 

3 Hydrated magnesium carbonate cements 

Two different reaction mechanisms lead to setting and 

hardening of such hydrated magnesium carbonate (HMC) 

cements: i) hydration of MgO-Mg-carbonate blends with 

water or salt solutions (such as sodium bicarbonate solu-

tion) at ambient conditions [32] or ii) carbonation harden-

ing of MgO-based systems at increased CO2 partial pres-

sure and possibly at increased temperatures [33], see 

Figure 2. Carbonation hardening is of potential interest for 

pre-fabricated products (precast), and has the added ad-

vantage that it consumes large amounts of CO2 in the 

hardening process (CO2 negative binder). The potential 

value of a HMC binder based on the hydration of MgO-Mg-

carbonate is much greater, as it can be used to make 

ready-mix concrete for on-site applications.  

The hydration of magnesium oxide in the presence of hy-

dromagnesite (Mg5(CO3)4(OH)2・4H2O) results in a poorly-

crystalline form of brucite, which is thought to be the co-

hesive phase in MgO-hydromagnesite blends [32, 34]. 

Carbonation hardening at higher CO2 pressures can lead 

to faster reaction and the formation of different HMCs such 

as hydromagnesite, dypingite, nesquehonite or lans-

fordite, depending on CO2 pressure, relative humidity, 

temperature and time [33, 35, 36], although the exact 

conditions are not yet clarified.  

Despite the acceptable performance of HMC cements, un-

hydrated MgO and uncarbonated brucite have been ob-

served in HMC binders [32, 36, 37], which leads to a low 

efficiency of carbon utilization as well as to the risk of late 

expansion due to the continued reaction of MgO and bru-

cite. In addition, the stability of the different HMC phases 

depends on CO2 pressure, relative humidity, and temper-

ature, which could lead to serious long-term instabilities 

as a conversion of water-rich HMC such as nesquehonite 

or lansfordite to HMC with less water per Mg such as hy-

dromagnesite would lower the volume of such a binder by 

more than 40% [35], leading to cracking and destabiliza-

tion in the long-term. Furthermore, CO2 is released during 

this conversion [19], which also can cause volume 

changes and thus internal cracking.  

HMC cements suffer from poor a workability due to a high 

water demand such that a high water/cement ratio is 

needed resulting in limited strength, slow reaction kinetics 

and slow strength gain, which makes their use in construc-

tion not yet practical. The long-term development of the 

hydrate assemblage and their mechanical properties and 

the expected changes upon interaction with the environ-

ment are not yet investigated.  

 

4 Magnesium silicate cements  

The mixing of MgO with silica and water results in the ra-

ther formation of magnesium silicate hydrates (M-S-H). 

The formation of M-S-H has also been observed at the sur-

face of cements in contact with solutions with high mag-

nesium concentrations such as seawater or the interstitial 

solution of clayey rocks [38, 39]. Magnesium from the sea-

water or clay water reacts with the amorphous silica from 

the degradation of C-S-H in cement leading to the for-

mation of M-S-H [40]. M-S-H has also been observed in 

Roman cements rich in chert and dolostone [41] indicating 

a long-term stability of M-S-H. Electron microprobe, 

SEM/EDS and TEM analyses indicate that M-S-H contains 

not only magnesium, silica, hydroxides and water but that 

aluminium, calcium and iron can be incorporated in its 

structure [42, 43]. 

M-S-H prepared from MgO and silica in water or carbonate 

solutions shows Mg/Si ratios from ~0.8 to ~1.5 after long 

equilibration time [12, 44, 45]. The presence of carbonate 

accelerates the reaction of the intermediate brucite to M-

S-H [12]. The Mg/Si ratio in M-S-H is limited by brucite 

formation at high Mg/Si and by the presence of amorphous 

SiO2 at low Mg/Si ratio. 
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Detailed studies of synthetic M-S-H indicated a sheet silica 

structure similar to phyllosilicates [44, 45]. 29Si NMR data 

indicate that silica is arranged in tetrahedral sheets next 

to magnesium oxide in octahedral sheets (Figure 3), com-

parable to the structure of phyllosilicates such as talc or 

antigorite. M-S-H, however, is less ordered, has very small 

coherent areas as visible by the high fraction of Q2 signals, 

contains significant amounts of water and hydroxide 

groups and has a high specific surface area [44-46]. 

 

Figure 3  29Si MAS NMR spectra of the synthesized M-S-H samples 

with total Mg/Si ratios ranging from 0.4 to 1.7. Effective Mg/Si in C-S-

H ranged from 0.8 to 1.4 due to the formation of brucite at high Mg/Si 

and the persistence of silica at low Mg/Si. Reproduced with permission 

from [45].  

 

The formation of M-S-H from MgO and silica fume in water 

is rather slow such that significant amounts of brucite form 

as intermediate product. Brucite reacts only very slowly 

further to M-S-H as the dissolution of brucite is kinetically 

hindered by silicates [44]. The reaction of brucite can 

greatly be accelerated in the presence of hexametaphos-

phate or carbonates [12, 14, 47].  

M-S-H has, such as low Ca/Si C-S-H, a negative surface 

charge which decreases further with increasing pH. The 

negative charge is partially compensated by the presence 

of exchangeable Mg2+ on the surface; the effect, however, 

is relatively weak as the Mg concentrations in equilibrium 

with M-S-H are generally low [46]. In the presence of cal-

cium, Mg2+ can be replaced by Ca2+. Also aluminium has 

been observed to be taken up in M-S-H [48]. Aluminium 

is present in both the tetrahedral silica and octahedral 

magnesium oxide sheets [48-51]. Aluminium distributes 

relatively evenly between tetrahedral and octahedral sites, 

such that no significant difference in charge can be ob-

served independent on the amount of aluminium present. 

In the presence of aluminium and carbonate, nitrate or 

higher hydroxide concentrations also the formation of hy-

drotalcite has been observed [49, 51, 52]. The formation 

of hydrotalcite increases the volume of solid phase formed, 

lowers the porosity and thus improves the mechanical 

properties [13, 53-55]. 

Long-term and durability studies of M-S-H cements are not 

reported in literature. However, M-S-H cements show a 

high resistance against carbonation [12, 13] as also un-

derlined by the observation of M-S-H in some Roman ce-

ments [41].  

Similarly to the HMC cements, the M-S-H cement have a 

high water demand resulting in limited compressive 

strength. The use of hexametaphosphate does not only 

accelerate the brucite reaction, but also lowers the water 

demand resulting in compressive strengths of M-S-H 

pastes and concretes similar to Portland cements after 28 

days [14, 15]. 

 

5 Thermodynamic stability of hydrated magne-

sium cements 

Thermodynamic modelling can be used to predict the kind 

and volume of the solid phases in hydrated cements as a 

function of MgO reaction degree, SiO2, Al2O3 and iron con-

tent, temperature and CO2 pressure, which helps to opti-

mise solid volume, long-term volume stability and durabil-

ity and to identify composition with maximum CO2 binding. 

For reliable prediction of stable mixes and compositions, a 

good and adequate thermodynamic database will be of ut-

termost importance.  

 

5.1 HMC 

Thermodynamic data for several hydrated magnesium car-

bonates are known as illustrated by the data summarised 

in Table 1. The thermodynamic data of brucite and peri-

clase are well known [56, 57]. Accurate thermodynamic 

data for hydromagnesite, dypingite and nesquehonite have 

been published in last decade [58, 59]. Data for other 

magnesium carbonate are less reliable, as they are either 

estimated [60] or indirectly calculated from calorimetric 

measurements [61]: artinite, MgCO3·H2O, barringtonite, 

lansfordite and MgCO3·6H2O. In addition, the data for 

many other magnesium carbonates such pokrovskite: 

Mg2(CO3)(OH)2, giorgiosite: Mg5(CO3)4(OH)2·5H2O, dyp-

ingite-like phase Mg5(CO3)4(OH)2·8H2O, protohydromag-

nesite: Mg5(CO3)4(OH)2·11H2O and shelkovite: Mg7(CO3)5 

(OH)4·24H2O and for the unknown poorly crystalline phase 

reported by [32, 34] are not known at all. 

Thermodynamic modelling can be used to calculate the 

relative stability of the different HMCs at different temper-

atures or CO2 partial pressures [60] and as illustrated in 

Figure 4 and Figure 5. Under all conditions magnesite 

(MgCO3) is most stable,  
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which is only observed at temperatures well above ambi-

ent temperatures [62-64]: Magnesite formation is kinet-

ically hindered by the strong hydration shell around the 

small Mg2+ ion resulting in a slow kinetics of Mg2+·6H2O 

dehydration as a relatively high free energy is needed to 

dehydrate Mg2+·6H2O to the anhydrous Mg2+ [63, 65]. 

 

 

 

 

 

 

 

Figure 4 Relative stability in kJ/mol of artinite (A), dypingite (D), hy-

dromagnesite (H), lansfordite (L), magnesite (M), and nesquehonite 

(N) with respect to brucite at ambient conditions (1 bar, pCO2 = 400 

ppm) and saturated with respect to H2O, as a function of temperature. 

Calculated based on the thermodynamic data compiled in Table 1.  

While the formation of magnesite is not expected due to 

its extremely slow formation kinetics, other HMC such as 

hydromagnesite, artinite, and dypingite together with 

(metastable) brucite could precipitate at above ambient 

temperatures, while at lower temperature rather 

nesquehonite or lansfordite can be expected to form (see 

Figure 4) depending on the exact temperature conditions, 

time, pH values and CO2 partial pressure.  

At increased partial CO2 pressure, HMCs with a higher frac-

tion of carbonate are stabilised, in particular magnesite 

(MgCO3). Also nesquehonite (MgCO3·3H2O) and lansfordite 

(MgCO3·5H2O) are stabilised relatively to hydroxide con-

taining HMCs such as hydromagnesite 

(Mg5(CO3)4(OH)2·4H2O), artinite (Mg2(CO3)(OH)2·3H2O), 

or dypingite (Mg5(CO3)4(OH)2·5H2O) as illustrated in Figure 

5.  

Table 1 Thermodynamic data of selected inorganic phases in the MgO-CO2-H2O system. Values are given 

relative to 25°C and 1 bar, adapted from [12].  

Phase Chemical formula log K° a 
ΔfG° 

[kJ/mol] 

ΔfH° 

[kJ/mol] 

S° 

[J/(mol·K)] 

Cp° 

[J/(mol·K)] 

Vm 

[cm3/mol] 

Periclase MgO  −569.38 −601.66 26.95 37.8 11.25 

Brucite Mg(OH)2 −11.16 −832.23 −923.27 63.14 77.28 24.63 

Magnesite MgCO3 −8.29 −1029.3 −1112.9 65.69 75.85 28.02 

Nesquehon-

ite 
MgCO3·3H2O −5.27 −1723.6 −1981.7 180.2 237.7 74.8 

Lansfordite MgCO3·5H2O −5.24 −2197.8 −2574.3 249.5 317.8 103.19 

Hydromag-

nesite 
Mg5(CO3)4(OH)2·4H2O −37.08 −5856.8 −6514.9 478.7 526.6 208.8 

Dypingite Mg5(CO3)4(OH)2·5H2O −34.94 −6081.7 −6796.2 522.8 566.6 225.9 

Artinite Mg2(CO3)(OH)2·3H2O −18.67b −2568.6b −2920.6 232.9 296.1 96.9 

a solubility products referring to Mg2+, CO3
2-, OH- and H2O0; b Thermodynamic data of artinite are based on calori-

metric measurements resulting in a high (potential) error of ΔfG° and log K°.  

 

346
 25097075, 2023, 6, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/cepa.2774 by Paul Scherrer Institut PSI, W
iley O

nline L
ibrary on [12/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

Figure 5 Relative stability in kJ/mol of artinite (A), dypingite (D), hy-

dromagnesite (H), lansfordite (L), magnesite (M), and nesquehonite 

(N) with respect to brucite at pCO2 = 1%  and saturated with respect 

to H2O, as a function of temperature. Calculated based on the thermo-

dynamic data compiled in Table 1. 

 

Figure 4 and Figure 5 also illustrate the diversity of phases 

that may form at near ambient conditions, i.e. at temper-

atures between 5 and 40°C. 

The different water, CO2 and hydroxide contents of HMC 

lead to largely different molar volumes of these solids (ex-

pressed per 1 Mg in their chemical formula), and thus to 

large differences in solid volume, which can potentially 

lead to serious long-term instabilities in some HMC ce-

ments [35]. Both the late destabilisation of MgO or brucite 

to water rich HMC such as nesquehonite or lansfordite as 

well as their potential destabilization to hydromagnesite 

would change the solid volume of such binders by more 

than 40% ([35], Figure 6), possibly leading to cracking and 

destabilization in the long-term. It should be noted that 

the potential conversion of lansfordite (MgCO3·5H2O) or 

nesquehonite (MgCO3·3H2O) to hydromagnesite 

(Mg5(CO3)4(OH)2·4H2O) or dypingite (Mg5(CO3)4(OH)2 

·5H2O) would also liberate some CO2. 

Such destabilisation problems may be tackled either by di-

rectly stabilising some HMC, e.g. enabling the direct for-

mation of hydromagnesite (instead of forming initially 

nesquehonite) based on the inclusion of other cations or 

anions to enable the formation of a solid solution [66], 

which can stabilise solid phases. Alternatively also the 

presence of other magnesium or carbonate containing hy-

drates such as M-S-H or LDH phases, can shift the relative 

stability of HMC by changing pH values, magnesium and 

carbonate concentrations [12, 13].  

 

Figure 6 Comparison of the molar volume of different magnesium 

phases per cm3/mol Mg. Data as compiled in Table 1. 

 

5.2 M-S-H and hydrotalcite 

Preliminary thermodynamic models to describe the solu-

bility of M-S-H and the uptake of aluminium in the main 

layers and of calcium as an exchangeable cation have been 

published [13, 38, 45, 48, 67], although a robust thermo-

dynamic solid solution model taking into account the struc-

tural knowledge is still missing. Thermodynamic models 

for the uptake of other elements such as Fe2+, Fe3+, Na+, 

K+, and Zn2+ in M-S-H are not available due to the lack of 

systematic experimental data.  

LDHs have a layered structure consisting of a positively 

charged brucite-like main layer, with variable Mg/(Al+Fe) 

ratio [68-71]: [Mgl-x(Al,Fe)x(OH)2]x+ [Ax/n
n- mH2O]x-, with 

0 < x < 0.33 and An- representing an anion. Mg2+ can be 

replaced by Zn2+, Co2+, Fe2+and other bivalent cations [72-

74]. The isomorphic substitution of Mg2+ by Al3+ or Fe3+ in 

the main layer generates positive charges, which are com-

pensated by anions in the interlayer region [68, 75]. Gen-

erally, divalent anions such as CO3
2–, SO4

2– are preferred 

over monovalent anions such as OH−, Cl−, or NO3
−, with a 

clear preference for carbonates [74-76]. While crystalline 

LDHs are frequently studied and used as adsorbents, cat-

alysts and anion exchangers [77], their solubility is not 

well-known. The variable composition in terms of 

Mg/(Al+Fe) ratio in the main layer and in interlayer anions, 

make the development of adequate thermodynamic mod-

els for LDH phases very challenging as also visible in the 

large difference between the few reported solubility prod-

ucts [76, 78]. Even less data are available for Fe(II)-, 

Fe(III)- and Zn-containing LDH [70, 71, 79, 80]. These 

large variations and missing data limit the potential to use 

thermodynamic modelling to predict conditions where LDH 

might be stabilised.  
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For only recently described or still unknown phases, such 

as amorphous magnesium silicate [81], amorphous mag-

nesium carbonate hydrate [32, 34] or magnesium-based 

zeolitic precursors, neither the composition, nor structure 

and solubility data are available and will need to be meas-

ured or estimated as far as relevant.  

 

6 Blended HMC and M-S-H cements  

6.1 Effect of SiO2 on HMC cements 

The (partial) re-use of the SiO2-rich by-product (see Figure 

2), of pyro-metallurgical slag or bauxite residue in the pro-

duction of a HMC cement would contribute to close the 

material cycle and avoid waste. The formation of M-S-H in 

pure systems has been intensely investigated in the last 

years, e.g. [45, 48, 49], while much less is known about 

the effect of magnesium silicate hydrates (M-S-H) and 

LDH on different HMCs or on the potential stabilising effect 

of iron (II/III), aluminium and alkali ions on HMC at ambi-

ent conditions.  

The presence of SiO2 will lead to the formation of magne-

sium silicate hydrates (M-S-H). Compressive strengths up 

to 55-70 MPa have been reported for M-S-H mortar and 

concrete specimens [15, 53], i.e. well above the strength 

required for most construction applications. Additional car-

bonation can increase compressive strength up to 90 MPa 

after 180 days. Such magnesium silicate hydrate cements 

are stable between pH 9 – 13 [45, 82] making them suit-

able for non-structural and potentially structural applica-

tions. The addition of alkali carbonate solutions seems to 

accelerate to their setting and leads in addition to M-S-H 

also to the formation of yet unidentified HMCs [12, 83].  

 

6.2 Effect of Al2O3 and SiO2 

The performance of HMC cement may also be improved by 

adding Al, which has received little attention so far. The 

combination of MgO with metakaolin  leads to comparable 

compressive strength as MgO plus silica fume [13, 53]. For 

sodium-carbonate activated Mg-cements a significant in-

crease in compressive strength is observed in the presence 

of Al (Figure 7, [13]) confirming that Al in fact plays an 

important role in HMC cements. The presence of alumin-

ium leads to the formation of M-S-H with Al (M-A-S-H gels) 

[49, 53, 84], where Al3+ can replace Mg2+ in the octahedral 

sites and Si4+ in the tetrahedral position [48]. In addition, 

layer-double hydroxides (LDH) can form [13], in many 

cases stabilised by CO3
2– in the interlayer, which is 

strongly preferred over SO4
2– or monovalent anions such 

as OH−, Cl−, or NO3
− [74-76]. The presence of Al and high 

alkali concentrations can lead in addition to the formation 

of zeolitic phases [49, 51, 52]. At very high alkali concen-

trations also the formation of an amorphous magnesium 

silicate phase has been reported [81].  

 
Figure 7 Compressive strengths of mortar samples containing MgO 

and SiO2 (circles) or MgO, SiO2 and Al2O3 (diamonds) activated by so-

dium carbonate. Adapted from Bernard et al. [13]. 

 

Experimentally, the formation of M(-A)-S-H and CO3-

hydrotalcite (LDH) has been observed in hydrated cements 

based on MgO, hydromagnesite and metakaolin [13]. 

Thermodynamic modelling predicts also formation of M-A-

S-H and CO3-LDH at a high fraction of metakaolin (see Fig-

ure 8) in agreement with the experimental observations. 

However, modelling also predicts only a minor consump-

tion of hydromagnesite, while experimentally a more im-

portant reaction of hydromagnesite was observed [13]. 

The over-prediction of hydromagnesite by thermodynamic 

modelling is due to the absence of thermodynamic models 

describing the potential uptake of carbonates by M-S-H 

and/or amorphous magnesium carbonates due to the lack 

of systematic experimental data. 

The blending of MgO with industrial by-products such as 

fly ash, blast furnace or pyro-metallurgical slags [85] or 

bauxite residues will also lead to the presence of SiO2 and 

Al2O3, albeit released at a much slower rate than from me-

takaolin or calcined clays. Little research is available, alt-

hough it has been shown that a high fraction of MgO is 

beneficial for alkali activated cements due to the formation 

of LDH phases [86].  
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Figure 8 Effect of the amount of metakaolin (Al2O3·2SiO2) replacement 

on a 1:1 MgO:hydromagnesite (HY) blend on the volume of hydrate 

phases: brucite, hydromagnesite, M-A-S-H and CO3-LDH (in cm3 per 

100 g unhydrated cement) calculated based on the thermodynamic 

data compiled in Table 1 and in [13]. 

The formation of HMC such as nesquehonite depends on 

pH value and on the availability and concentration of mag-

nesium, carbonate, pH and temperature [87]. The pres-

ence of silica, iron, or aluminium in addition to MgO will 

change the hydrates formed, the concentrations in solution 

and thus stabilize and destabilize individual HMC. These 

changes can be drastic as illustrated in Figure 8, where the 

presence of metakaolin (Al2O3·2SiO2) led to the formation 

of carbonate-LDH and M-A-S-H, while brucite was 

destabilised in agreement with experimental observations, 

while the reaction of hydromagnesite was underestimated 

due to lack of thermodynamic data to consider the poten-

tial uptake of carbonates by M-S-H and/or amorphous 

magnesium carbonates.  

 

6.3 Effect of Fe(II) and Fe(III) 

Iron present in magnesium silicates such as olivine 

(Mg,Fe)2SiO4 will be present as impurities containing Fe(II) 

or Fe(III) or mixtures thereof, in the extracted MgO and 

SiO2-rich fraction. The presence of Fe(III) can affect the 

stability of the HMC and magnesium silicates formed, as i) 

its uptake can stabilise one of the hydrates formed via the 

formation of a solid solution, or ii) new phases form, which 

change the kind and amount of HMC and magnesium sili-

cates formed. The presence of iron with different redox 

states could lead to the formation of Fe(II)-Fe(III) contain-

ing LDH phases as observed in iron rich slag cements and 

in corroding steel under marine environments [21, 72, 88]. 

In addition, as Fe(II) is common in natural magnesium sil-

icates [89], an uptake of Fe(II) in M-S-H phases seems 

probable. Also Fe(III) might be taken up by M-S-H [42], 

similarly as Al(III) [43, 48]. Fe(II) and Fe(III) uptake in 

M-S-H has not yet been systematically investigated, and 

for most Fe-LDH solubility measurements are missing. 

7 Roadmap towards the establishment of dura-

ble MgO-based cements  

7.1 Reaction kinetics  

Promising methods to accelerate the reaction of MgO and 

brucite could either be based on the use of HMC precursors 

as nucleation sites for the formation of HMC [32, 90], hy-

dration agents such as magnesium acetate [33] or with the 

use of inorganic accelerators such as sodium phosphates 

[47], which strongly accelerates the reaction of M-S-H ce-

ments. The use of nucleation agents such as calcite or cal-

cium silicate hydrates (C-S-H) in Portland cement based 

systems has recently received increasing attention as they 

are very efficient to accelerate the nucleation of C-S-H 

leading to faster hydration and strength gain for Portland 

cements [91, 92]. In HMC cements the presence of hydro-

magnesite, artinite, or dypingite as nucleation agent has 

been reported to increase the early reaction of MgO from 

slightly to considerably depending on the experimental 

conditions [32, 90], but seems to have little effect on the 

long-term reaction degree. An alternative, potentially 

more promising route is the use of organic hydration 

agents such as magnesium acetate, which increases the 

carbonation degree and the strength development consid-

erably [33, 66]. The principal mechanism of interaction be-

tween the organic ligand, dissolution and precipitation is 

unknown, but is presently studied. 

As detailed previously, sodium phosphates have been suc-

cessfully used to accelerate the reaction of brucite with 

amorphous silica to form magnesium silicate cements [14, 

47, 93]. Sodium or potassium phosphates are also used to 

strongly accelerate the MgO reaction in magnesium phos-

phate cements, where they lead to the rapid precipitation 

of magnesium phosphates [94]. It can be hypothesized 

that phosphates would also have a strongly accelerating 

effect on HMC cements leading to faster reaction.  

Also small organic molecules might play an important role. 

Nguyen et al. [66] observed the formation of a giorgiosite-

like phase instead of hydromagnesite in the presence of 

acetate, indicating that the use of organic and inorganic 

accelerators could lead to different HMC, either due to ki-

netic reason or because they are stabilized due to the in-

corporation of the accelerator (solid solution formation). 

The presence of alkalis, ammonium, sulfates, carbonates, 

nitrates and chlorides are known to strongly affect the hy-

dration kinetics of Portland cements [95], of calcium sul-

foaluminate [96, 97] and calcium aluminate cements [98-

100] as well as to affect the calcite nucleation rate [101]. 

Also the reaction kinetics of MgO and brucite in silicate 

bearing systems is affected by the presence of different 

salts such as e.g. NaCl, NaOH, NaNO3, Na2SO4, and by 

temperature [49], pointing into possible directions to mod-

ify the reaction kinetics, which have not yet systematically 

been addressed in literature. The presence of a small 

amount of inorganic salts in the system can lead to dispro-

portionately large effects on the dissolution of brucite [87] 

as well as the stability of HMC [102]. However, little is 

known about the driving forces of these phenomena, and 

obviously, such systematic studies are missing for HMC ce-

ments as well as any knowledge of potential effects on the 

long-term stability of HMC cements.  
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Once the fundamental mechanisms of enhanced reaction 

kinetics and stabilized Mg-based cements are uncovered, 

one could tune the binding systems to maximize the car-

bon utilization and selectively stabilize wanted HMCs in the 

binders. 

 

7.2 Stabilisation of selected HMCs by solid solu-

tions  

The term solid solution describes the incorporation of for-

eign anions or cations in a mineral. Solid solutions are 

common in nature, are preferably formed with ions of sim-

ilar charge, size and structural arrangement and can sta-

bilise those solids [103]. The best-known solid solution of 

magnesium carbonate is dolomite (CaMg(CO3)2), consist-

ing of alternating arrangements of calcium and magnesium 

[104, 105]. The possibility of solid solution formation for 

other HMC is little investigated although a few indications 

exist that such solid solution could play an important role 

in the stabilisation of different HMC. Other cations with a 

comparable charge and ionic radius as Mg2+, e.g. Zn2+ , 

Co2+ or Cu2+, have been observed to be incorporated in 

magnesium carbonates [106, 107], leading to a change in 

kinetics or to a stabilization of HMC due to solid solution 

formation. Similarly the formation of a giorgiosite-like 

phase instead of hydromagnesite was observed in the 

presence of acetate [66], which might indicate a stabiliza-

tion due to a solid solution formation between carbonate 

and acetate. The effect different cations with comparable 

ionic radius to Mg2+ such as Zn2+, Co2+, Cu2+ or Li+ on the 

kind of HMC formed has not yet been systematically inves-

tigated.  

7.3 Durability 

The long-term durability of construction materials is of 

outmost importance for the end-users. For Portland ce-

ment-based concrete, 150 years of experience are availa-

ble, the underlying degradation mechanisms are well ex-

plored in science, and reasonable test methods for 

durability parameters such as sulfate attack, chloride in-

gress, carbonation and frost action (w/wo de-icing salts) 

are available. Also for potential low-CO2 alternatives such 

as alkali-activated binders or calcium sulfoaluminate ce-

ments, research has made significant progress in the re-

cent years. For construction materials based on HMC and 

magnesium silicates, however, information on durability is 

extremely scarce: carbonated materials based on MgO 

with added clay showed a good performance against 

freeze-thaw [108] and sulfate attack [109], while they 

showed a decrease of strength and E-modulus during ac-

celerated ageing (drying/wetting cycles). Mild steel rein-

forcement, as generally used in reinforced concrete struc-

tures, seems to be subjected to corrosion in carbonated 

MgO-systems, as the steel is not passivated due to the low 

pH of 10-10.5 [110]. Weathering resistance seems to be 

similar to Portland cement-based products, and bio-based 

fibres are not degraded due to the low pH [111-113].  

Most degradation processes in concrete structures are re-

lated to the moisture content. Both chemical reactions in-

volving solid phases and the transport of ions from the 

environment are strongly dependent on the moisture con-

tent of the material [114],  

while drying and rewetting is strongly dependent on pore 

size distribution and pore space connectivity as well as 

moisture content spatial gradients. Porosity and permea-

bility properties in M-S-H cements were found to be similar 

or even more favourable compared to Portland cement 

products [115, 116]. Pore sizes somewhat smaller, and 

chloride diffusion coefficients much lower compared to 

Portland cement have been reported [117]. Towards in-

gress of calcium ions, M-S-H seems to be quite stable as 

well, at least at low pH, only a very slow ingress of Ca ions 

has been observed [38]. 

Based on the limited information available it can be con-

cluded that systems with HMC plus M-S-H might be more 

durable than systems based on HMC only, but a huge re-

search gap exists, and poor durability performance will 

strongly hamper a wide application of Mg-based construc-

tion materials. Systematic and fundamental studies and 

modelling approaches as available in the field of Portland 

cement regarding sulfate attack [118], chloride and sea-

water ingress [119, 120] or carbonation [121] are missing 

for Mg-carbonate/-silicate cements. 

 

8 Conclusions and outlook  

The massive use of M-S-H cements or of HMC cements, 

where CO2 is no longer an emitter but a precursor, to pro-

duce cement needed to build infrastructure would lower 

the amount of Portland cement produced (and thus lower 

CO2 emissions). At the same time HMC cements could act 

as a major carbon sink in construction industry. This would 

allow to make a large step towards the necessary global 

approach to decrease the CO2 emissions related to con-

crete industry. The impact of the development and imple-

mentation of such very low CO2 or carbon-negative ce-

ments will go beyond a purely scientific one, due to the 

socio-economic relevance of cement and concrete, and is 

expected to lead to technological breakthroughs to the 

benefit of society and environment.  

While the use of the HMC cements has been suggested 

already in 2001 [16], HMC cements started to receive in-

creasing attention in the last 5 years only. In the papers 

exploring HMC cements, e.g. [32-35, 37, 85, 108-110], 

only selected aspects of HMC cements were investigated; 

many of the investigations focussed mainly on strength 

development. Together they point towards a potential of 

HMC cements, although how to increase workability, steer 

the kinetics, their long-term volume stability, the extent 

of their CO2 binding and many other aspects are still highly 

uncertain.  

The structure of M-S-H, the poorly crystalline main phase 

in magnesium silicate cements has been relatively well 

characterized in the last decade [14, 38, 44-46, 48, 49, 

67, 82, 122-124]. M-S-H cement prepared with water re-

ducing agents such as hexametaphosphate, can reach 

compressive strengths comparable to Portland cements 

[14, 15, 116] and M-S-H cements show a high resistance 

against carbonation [12, 13]. The combination of M-S-H 

with HMC cements could potentially result in good me-

chanical and durability properties. However, there is a lack 

of experimental studies.  
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There is an urgent need to not only address many new, up 

to now not explored fundamental aspects such as e.g. 

steering the kinetics and stabilisation of specific HMC by 

solid solution formation from the nano- to the macroscale, 

but to tackle at the same time in a combined effort the 

most important aspects related to the development and 

implementation of such carbon binding magnesium ce-

ments. Pioneering, high-risk/high gain work in the field of 

HMC and M-S-H cements is needed, to create a fundamen-

tal understanding of the factors influencing carbon stor-

age, reaction kinetics, phase assemblages, porosity/per-

meability, mechanical properties and durability of HMC 

and M-S-H binders. A profound understanding is urgently 

needed to enable industry to upscale this technology and 

use it in a wide range of construction materials, potential 

utilisations range from precast, and ready mix concrete. 

Fundamental understanding is urgent to ensure its sus-

tainability and durability and as well as its possible use in 

new construction technologies such as e.g. digital fabrica-

tion (see www.dfab.ch). Fundamental work on the hard-

ening process, on the impacts of the residues in the raw 

materials and additives, on the volume stability, and po-

rosity changes will directly influence the optimization of 

the properties of HMCs in terms of enhanced CO2 mineral-

isation, mechanical properties and durability.  

In addition, thermodynamic data for magnesium-based 

solids, which are fundamental to predict phase assem-

blages and their potential changes induced by tempera-

ture, relative humidity and CO2 partial pressure or due to 

interaction with the environment, are urgently needed. 

Such thermodynamic data for M-S-H, HMC and LDH 

phases, will not be only of importance to understand Mg-

based cements, but also for the efficient use of industrial 

by-products containing Mg, Fe, or Zn as well as for life cy-

cle assessment and modelling carbon storage. We are con-

vinced that a combination of systematic experiments with 

thermodynamic and or molecular modelling will contribute 

to the development of well-understood and well-designed 

durable HMC concretes within the next decade(s).  
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