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• Machine learning was valuable for 
source term inversion in complex nu
clear accidents. 

• LSTM was preferable for feature extrac
tion of time-series gamma dose rate. 

• Ambient gamma dose rate was a key 
parameter for source term inversion.  
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A B S T R A C T   

During nuclear accidents, large amounts of short-lived radionuclides are released into the environment, causing 
acute health hazards to local populations. Therefore, it is particularly important to obtain source-term infor
mation to assist nuclear emergency decision makers in determining emergency protective measures. However, it 
is extremely difficult to obtain reliable contaminant monitoring instrument readings to estimate the source term 
based on core conditions, release routes, and release conditions. Currently, a wide variety of source-term 
inversion methods are attracting increasing attention. In this study, the release rates of four typical short-lived 
nuclides (Kr-88, Sr-91, Te-132, I-131) in two complex nuclear accident scenarios were estimated using a 
machine-learning method. The results show that the best estimation performance is obtained with the long short- 
term memory network, and the mean absolute percentage errors for the release rates of the four nuclides at 10 h 
under the two nuclear accidents are 9.87% and 11.08%, 17.49% and 16.51%, 7.16% and 8.35%, and 38.83% and 
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41.87%, respectively. Meanwhile, the mean absolute percentage errors for Te-132 (7.16% and 8.35%) were the 
lowest among all the estimated nuclides. In addition, stability analysis showed that the gamma dose rate was the 
key parameter affecting the estimation accuracy.   

1. Introduction 

On 11 March 2011, a strong earthquake and tsunami struck the coast 
of Japan, causing a serious accident at the Fukushima Daiichi Nuclear 
Power Plant. Large amounts of radionuclides were released into the 
environment [19]. These radionuclides include both short- and 
long-lived radionuclides, with short-lived radionuclides decaying 
rapidly during atmospheric dispersion and surface deposition [30] and 
posing a serious health hazard to local populations [38]. Therefore, it is 
particularly important to assess the source term (i.e. nuclide release 
rate) of short-lived radionuclides quickly and accurately to assist nuclear 
emergency decision-making authorities in developing emergency plans 
[21,34]. 

Generally, two methods are used for source term inversion: one is 
based on monitoring instrument data inside a nuclear power plant ([2, 
15]) and the other is based on environmental monitoring data outside 
the nuclear power plant [12,13,9]. However, in severe nuclear acci
dents, the monitoring instruments of power plants are often destroyed, 
making it impossible to obtain operational data from these plants [20]. 
Therefore, an increasing number of studies have focused on source-term 
inversion to assess the type and release rate of nuclides from environ
mental monitoring data outside nuclear power plants. Many studies 
have been conducted on source-term inversion based on meteorological 
parameters and air concentrations of radionuclides ([8,10,14,39,44, 
45]). The concentration of radionuclides in the air was obtained by 
analysing samples from the environment, which represented the average 
value over a period. However, during nuclear accident emergencies, it is 
difficult to obtain radionuclide concentrations in real time, leading to 
difficulties in source-term inversion [36]. In contrast, the gamma dose 
rate, which can be measured in real time, may be more suitable for 
source-term inversion. Methods for source-term inversion based on the 
gamma dose rate include the source-receptor equation [36], Kalman 
filtering [24], least squares [43], and data assimilation [23]. However, 
the accuracy of these methods depends heavily on the quality and reli
ability of a priori information. Owing to the advantages of artificial 
neural networks with the ability of adaptive learning without setting a 
priori information, they are widely used in environmental radioactivity 
studies, such as radiation spectrum analysis [22,33], radionuclide con
centration assessment [5,31], and dose distribution of radionuclides 
[35,41]. In our previous study, the estimation of the nuclide release rate 
for single nuclides [28] and multi-nuclides [25] and the classification of 
release classes [42] were achieved using back-propagation neural net
works. To assess the release rate of multi-nuclides more accurately, re
searchers have used a time-serialised approach and applied recurrent 
neural networks [29] and temporal convolutional networks [26,27] 
with time-series analysis capabilities. 

Although the above-mentioned machine learning-based inversion 
methods have obtained better results for estimating the release rate of 
multiple nuclides, they were conducted on a simplified accident sce
nario, characterised by unchanged meteorological parameters and 
constant release, which may lead to insufficient applicability of the 
methods. In real situations, changes in meteorological parameters and 
the two-stage release of nuclides may pose challenges and difficulties in 
source-term inversion. Changes in meteorological parameters may affect 
the transport and diffusion processes of nuclides, leading to nonlinear 
changes in the release patterns. In addition, the gap release of nuclides 
can lead to a coupling effect between the initial and subsequent release 
processes, complicating the source term inversion. 

Two nuclear accident scenarios were investigated to study source- 
term inversion in complex nuclear accident scenarios. 1) Intermittent 

changes in meteorological parameters during off-site environmental 
monitoring, because meteorological parameters have a significant 
impact on the diffusion and transport of radionuclides into the atmo
sphere. Intermittent changes in meteorological parameters (wind speed, 
wind direction, atmospheric stability, mixed layer height, and precipi
tation) were simulated to reflect the dynamic changes in a real nuclear 
accident. 2) Setting up a two-stage release of radionuclides because 
radioactive emissions during severe nuclear accidents may appear as a 
multi-stage release, such as the Fukushima accident [16]. In this case, a 
two-stage release of radionuclides was simulated. The second release 
started two hours after the end of the first release. These studies can 
simulate and assess the radionuclide release in complex nuclear accident 
scenarios. Our approach helps to explore the adaptability of 
machine-learning-based inversion methods in complex accident sce
narios and to enhance the applicability in emergency scenarios that are 
closer to real scenarios. 

2. Methodology 

2.1. Nuclear accident data 

In this study, two nuclear accident scenarios were simulated using 
the International Radiological Assessment System (InterRAS). InterRAS 
is a set of personal computer-based tools. InterRAS, as indicated by its 
name, is an international version of RASCAL [1,37] developed by U.S. 
NRC, which is introduced by IAEA for emergency response in eastern 
European countries. InterRAS contains tools to estimate the distance 
that urgent protective actions may be needed based on nuclear power 
plant conditions or release rates (ST-DOSE), to estimate early and 
long-term dose from field measurements of radionuclide concentrations 
(FM-DOSE), and to compute decay of radionuclides (DECAY). In this 
study, ST-DOSE is used to simulate the diffusion of radionuclides into 
the atmosphere and to calculate the gamma dose from the air to the 
ground. The source terms and auxiliary data were input into InterRAS to 
obtain the gamma dose rate at five downwind monitoring sites. A script 
written in python 3.7 was used to generate 30,000 sets of data on a Win7 
system, of which 24,000 sets were used for training the neural network 
and the remaining 6000 sets were used for testing the neural network. 

2.1.1. Source term 
In this study, four short-lived nuclides, Kr-88, Sr-91, Te-132, and I- 

131, which are typical nuclear reactor fission products that can provide 
critical nuclear reactor accident information, were selected as mixed- 
source terms. Kr-88, Sr-91, and Te-132, as typical short-lived nuclides, 
decay rapidly after being released into the environment. Therefore, they 
can be used to confirm whether a nuclear accident has occurred and to 
assess its severity. I-131 can be released into the environment in large 
quantities during a nuclear accident and has serious public health ef
fects; therefore, determining the release quantity of I-131 can help assess 
the post-accident radiological risk. The release rates of the four nuclides 
were referenced from the list of fission products from IAEA-TECDOC- 
955 [18], and the radioactive properties and release rates of the four 
fission products are listed in Table 1. The reactor inventory in the 
penultimate column of Table 1 was based on a light water reactor fission 
products inventory (per 1000 MWe) after 30 min from shutdown. 

2.1.2. Auxiliary data 
The auxiliary data included the nuclear accident release height and 

meteorological parameters. The meteorological parameters that affect 
the diffusion of nuclides in the atmosphere must be set in InterRAS. The 
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meteorological parameters included wind speed [4], wind direction, 
atmospheric stability [40], mixed-layer height [11], and precipitation. 
The ranges of the values and physical meanings of the auxiliary data are 
listed in Table 2. 

2.1.3. Complex scenario 1: changing meteorological parameters 
To study the inversion of the source term of the nuclear accident with 

changing meteorological parameters, the meteorological parameters 
were changed at 2.5 and 6.5 h during the 10 h of the nuclear accident 
simulation. The initial auxiliary data were randomly generated within 
the range of values listed in Table 2 and the meteorological parameters 
were subsequently changed according to Table 3. Fig. 1 shows an 
example dataset. Five meteorological parameters were changed at hours 
2.5 and 6.5, respectively. The release rates of the four radionuclides 
were randomly generated between 1018 Bq/h and 1019 Bq/h, but not 
including 1019 Bq/h. The four radionuclides were continuously released 
for 30 min at the 0th hour. Gamma dose rates were measured at 30-min
ute intervals over a 10-hour period at each of the five monitoring sites 
downwind, for a total of 20 gamma dose rate time steps. An example of 
this dataset is presented in Table 4. 

2.1.4. Complex scenario 2: two-stage release of radionuclides 
During the 10 h of the nuclear accident simulation, the four radio

nuclides were released for 30 min at the 0th hour and 2nd hour, with the 
same release rate. Five meteorological parameters were randomly 
generated based on Table 2 and kept constant. Gamma dose rates were 
measured in the same way as for complex scenario 1. An example of this 
dataset is presented in Table 5. 

2.1.5. Simple scenario: constant meteorological parameters and release 
rates 

In order to demonstrate the adaptation of machine learning for 
source inversion in complex nuclear accident scenarios, a simple nuclear 
accident scenario was set up as a comparison experiment. In the simple 
nuclear accident scenario, the simulation maintained constant meteo
rological parameters. Radionuclides were released only once, with the 
start time at the 0th hour and a duration of 0.5 h. With the exception of 
varying meteorological parameters and nuclide release patterns, all 
other data processing in the simple scenario were consistent with the 
two complex scenarios described above. 

2.2. Source term inversion models for complex nuclear accidents 

In this study, three models with time-series analysis capability were 
used to construct inversion models of complex nuclear accident source 
terms: the Temporal Convolutional Network (TCN), Long Short-Term 
Memory (LSTM), and Gate Recurrent Unit (GRU) models. The three 
models shared the same input data, including gamma dose rates at 20 
time steps under five monitoring sites and six auxiliary data. Their 
common task was to assess the release rates of the four radionuclides. 
Since each model had different capabilities in feature extraction, this 
resulted in differences in the specific values of their output data. 

In simulating nuclear accidents, the duration of release was set at 
only 0.5 h instead of 10 h. Consequently, this study was designed to 
assess the release rate of 0.5 h using the gamma dose rate at 20 time 
steps when the release duration is assumed to be known. Due to the 
special data format requirements of the machine learning models, the 
output data must have the same time dimension as the input data. 
Therefore, the release rates for the four nuclides were also extended to 
20 time steps, but it does not mean that in the dose rate calculation 
process, the release duration is 10 h. There were differences in the 
output of the three nuclear accident scenarios. For the complex scenario 
1 and simple scenario, the release rate of each nuclide remained con
stant over the 20 time steps. For the complex scenario 2, two-stage 
release rates were included in the output of the 20 time steps. The 
time steps from 0.5 h to 2 h include only the release rate of the first 
stage, while the time steps after 2.5 h include the release rates of the first 
and second stages. In addition, the released time of the nuclide and the 
gamma dose rate monitored time were simultaneous, and the duration 
of the release was set to 0.5 h, so that there was no need to calculate the 
start time and the duration of the release. In summary, the studies in this 
paper were primarily based on nuclide release rates during gamma dose 
rate monitoring, including one or more release periods. 

Table 1 
Radioactive properties of the four short-lived radionuclides.  

Radio- 
nuclides 

Half- 
life 

Air 
immersion 
dose rate 
conversion 
factor (Sv s− 1 

per Bq m− 3) 

Ground 
shine dose 
rate 
conversion 
factor (Sv s− 1 

per Bq m− 2) 

Reactor 
inventory 
Bq/ (1000 
MW) 

Order of 
magnitude 
of release 
rate (Bq/h) 

Kr-88 2.8 h 1.18 × 10− 15 - 2.52 ×
1018 

1018 

Sr-91 9.63 h 3.20 × 10− 14 6.66 × 10− 16 4.07 ×
1018 

1018 

Te-132 3.3 d 5.50 × 10− 14 1.10 × 10− 15 4.44 ×
1018 

1018 

I-131 8.1 d 1.82 × 10− 14 3.76 × 10− 16 3.15 ×
1018 

1018  

Table 2 
The value and physical meaning of auxiliary data during the nuclear accident.  

Auxiliary data Value range Physical meaning 

Release height 0 - 60 (m) The release height affects the maximum extent 
of nuclides dispersion, and the wind speed 
varies with the height. 

Wind speed 1 - 10 (m/s) Wind speed directly affects the diffusion rate of 
radionuclides. 

Wind direction 0 - 360 Wind direction affects the direction of 
movement of the radioactive plume. 

Atmospheric 
stability 

A - G Pasquill atmospheric stability category. The 
tendency and degree to which an air mass 
returns to or leaves its original equilibrium 
position after a perturbation in the vertical 
direction. A-G indicates a state ranging from 
extremely unstable to extremely stable. 

Mixed layer 
height 

307 - 1030 
(m) 

Mixed layer height affects the diffusion of 
nuclides in the vertical direction. 

Precipitation None 
Light Rain 
Moderate 
Rain 
Heavy Rain 

None 
Light Rain (rainfall rate < 25 mm/h) 
Moderate Rain (rainfall rate between 25 and 
75 mm/h) 
Heavy Rain (rainfall rate > 75 mm/h)  

Table 3 
The variations of meteorological parameters during the nuclear accident.  

Meteorological 
parameters 

Variation 

Wind speed The wind speed at the later time step is equal to the wind 
speed at the earlier time step minus 1 or plus 1 or 
unchanged. 

Wind direction The wind direction at the later time step is equal to the 
wind direction at the earlier time step minus 10 or plus 10 
or unchanged. 

Atmospheric stability Atmospheric stability is determined based on the wind 
speed according to Pasquill’s atmospheric stability 
classification. 

Mixed layer height When the mixed layer height at the earlier time step is 
greater than 669 m (average height), the value of the mixed 
layer height at the later time step is reduced by 50 m; when 
the value of mixed layer height at the earlier time step is 
less than or equal to 669 m, the value of mixed layer height 
at the later time step is increased by 50 m. 

Precipitation Changes are made in the following order: 
None – Light Rain – Moderate Rain –Heavy Rain – None  
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2.2.1. TCN model 
TCN [3] is a CNN-based sequence model that uses layer-wise con

volutional operations to learn the features of temporal data. Specifically, 
a TCN comprises a series of convolutional layers, each of which contains 
convolutional kernels of different sizes to perform convolutional oper
ations on the input sequence. Moreover, each convolutional layer is 
followed by an optional normalisation layer and an activation function, 
allowing the network to train and learn better. 

In addition, the TCN employs residual blocks and a causal convolu
tion to enhance the performance and stability of the network. The re
sidual blocks allow the network to maintain deeper layers during 
training, thereby improving the expressiveness of the model and miti
gating the gradient disappearance problem. In contrast, causal convo
lution allows the model to make assessment only from past data, 
avoiding information leakage and enhancing the robustness of the 
model. 

As shown in Fig. 2, the inversion model of the nuclear accident 
source term based on TCN contains an input layer, two TCN layers, and a 
fully connected layer (FC). The input layer contained 24,000 input 
datasets, each containing the gamma dose rates for the five monitoring 
points at 20-time steps, where the gamma dose rates were normalised 
using Eq. (1). 

y′ =
y − ymin

ymax − ymin
(1) 

Fig. 1. An example dataset of meteorological parameters over time.  

Table 4 
An example dataset under changing meteorological parameters.  

Source term Time 
step (h) 

Gamma dose rate (mSv/h) 

Nuclide Release rate 
(Bq/h) 

1 km 2 km 5 km 25 km 50 km 

Kr-88 1.98 × 1018 0.5 428 211 89.6 0.12 0 
Sr-91 3.11 × 1018 1 72 42 12.4 15.28 0 
Te-132 4.95 × 1018 1.5 90 47 15 2.6 3.15 
I-131 3.57 × 1018 2 100 60 17 1.8 1.65   

2.5 110 50 18 1.9 0.7   
3 110 70 19 2.1 0.6   
3.5 120 60 19 2.2 0.7   
4 120 70 20 2 0.7   
4.5 130 60 20 2 0.7   
5 90 70 20 3 0.7   
5.5 200 70 20 2 0.7   
6 100 70 30 2 0.8   
6.5 100 80 20 3 0.7   
7 200 70 20 2 0.8   
7.5 100 70 20 2 0.8   
8 100 70 20 3 0.3   
8.5 200 110 30 2 1   
9 100 0 20 3 1   
9.5 100 100 20 2 1   
10 200 100 20 2 0  

Table 5 
An example dataset under two-stage release of radionuclides.  

Source term Time step (h) Gamma dose rate (mSv/h) 

Nuclide Release rate (Bq/h) 1 km 2 km 5 km 25 km 50 km 

Kr-88 5.97 × 1018 0.5 7800 2530 313 0 0 
Sr-91 5.59 × 1018 1 8500 2900 310 0 0 
Te-132 9.89 × 1018 1.5 10,000 3400 350 0 0 
I-131 7.69 × 1018 2 12,000 3600 410 0 0 
Auxiliary data(Constant) 2.5 19,800 6530 713 2.64 0 

3 20,500 6900 810 10.73 0 
Release height (m) 42 3.5 23,000 8400 750 4.09 0 
Wind speed (m/s) 2 4 26,000 7600 910 0.09 0 
Wind direction 299 4.5 24,000 9000 900 2.72 0.013 
Atmospheric stability B 5 32,000 8000 1000 10.82 0.307 
Mixed layer height (m) 751 5.5 23,000 10,000 900 4.18 1.18 
Precipitation Heavy Rain 6 24,000 9000 1000 0.18 1.6   

6.5 32,000 10,000 1000 0.17 0.813   
7 30,000 9000 1000 0.2 0.707   
7.5 30,000 9000 1000 0.19 1.18   
8 20,000 10,000 1000 0.19 1.7   
8.5 40,000 10,000 1100 0.19 0.8   
9 20,000 10,000 1000 0.11 0.4   
9.5 40,000 9000 1000 0.2 0   
10 20,000 10,000 1000 0.2 0.1  
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where, y′ is the normalized gamma dose rate, y is the raw gamma dose 
rate, ymin is the minimum gamma dose rate, ymax is the maximum gamma 
dose rate. For the normalization calculation process, the data were 
normalized for the 30,000 data sets, not only for a data set containing 20 
time steps. 

The model first extracts features through the first layer of the TCN 
(64 filters with a convolutional kernel size of 2) and then further extracts 
features through the second layer of the TCN (32 filters with a con
volutional kernel size of 4). The extracted features were flattened, 
concatenated with six auxiliary data points, and fed into an FC layer 
containing 128 hidden nodes. Finally, the release rates of the four nu
clides were assessed using an FC layer containing four hidden nodes. 

2.2.2. LSTM model 
The LSTM [17] is a neural network model commonly used for 

time-series data. This solves the problems of gradient disappearance and 
gradient explosion of traditional recurrent neural networks (RNN) and 
improves the memory capability of RNN. 

The basic structure of LSTM is a series of gates, each of which is a 
nonlinear function that can be learned. The LSTM model has three gates: 
forget gate, input gate, output gate, and a large long-term memory cell. 

The calculation process is illustrated in Fig. 3. Fig. 3(a) shows the LSTM 
structure at three time steps: Xt denotes the gamma dose rate at time step 
t, σ denotes the sigmoid activation function, tanh denotes the hyperbolic 
tangent function, ht denotes the hidden state at time step t, and Ct de
notes the cell state at time step t. 

Fig. 3(b) shows the cell state, which is calculated as follows: 

Ct = ft × Ct− 1 + it × C′
t (2)  

where, ft is the forget gate, indicating which features of Ct− 1 are used to 
calculate Ct. it denotes which features of C′

t are used to update Ct . 
Fig. 3(c) shows the forget gate, which is calculated as follows: 

ft = σ(Wf • [ht− 1, xt] + bf ) (3)  

where Wf and bf denote the weight and threshold of the forget gate, 
respectively. The values are mapped to the interval [0,1] by the sigmoid 
activation function, and if ft is zero, the data are forgotten. 

Fig. 3(d) shows the input gate, which is calculated as follows: 

it = σ(Wi • [ht− 1, xt] + bi) (4)  

C′
t = tanh(WC • [ht− 1, xt] + bC) (5) 

Fig. 2. Inversion model of nuclear accident source term based on TCN.  

Fig. 3. Inversion model of nuclear accident source term based on LSTM.  
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where Wi and bi denote the weight and threshold of the input gate, 
respectively. it denotes the input data. 

Fig. 3(e) shows the output gate, which is calculated as follows: 

ot = σ(Wo • [ht− 1, xt] + bo) (6)  

ht = ot × tanh(Ct) (7)  

where Wo and b0 denote the weight and threshold of the output gate, 
respectively. ot denotes the output data. 

2.2.3. GRU model 
GRU [7] is similar to LSTM in that both are variants of the RNN. 

Compared with the LSTM model, the GRU model has only two gates, 
thus reducing the complexity of the model. A standard GRU unit has two 
gates: an update gate and a reset gate. These two gates determine the 
weight ratio between the input at the current moment and the output at 
the previous moment, thereby determining the output of the GRU at the 
current moment. The specific calculation process is shown in Fig. 4, with 
Fig. 4(a) showing the update gate calculation: 

zt = σ(Wz • [ht− 1, xt]) (8) 

Fig. 4(b) shows the reset gate, which is calculated as follows: 

rt = σ(Wr • [ht− 1, xt]) (9) 

Fig. 4(c) shows the candidate hidden state, which is calculated as 
follows: 

h′
t = tanh(W • [rt × ht− 1, xt]) (10) 

Fig. 4(d) shows the hidden state, which is calculated as follows: 

ht = (1 − zt) × ht− 1 + zt × h′
t (11)  

where zt denotes the update gate, rt is the reset state, ht is the hidden 
state. 

As shown in Eqs. (8)–(11), the GRU model first calculates the update 
gate and reset gate based on the hidden state at the previous moment 
and the input data at the current moment. Subsequently, the hidden 
state at the current moment is calculated based on the update and reset 
gates. 

2.3. Evaluation metrics 

Two commonly used evaluation metrics were used to fully evaluate 
the assessment performance of the model: the mean square error (MSE) 
and mean absolute percentage error (MAPE). The MSE was set as the loss 
function of the neural networks and was designed to assess the model’s 
error throughout the optimization process, providing a quantitative 
measure of the model’s fitting performance with the test dataset. MAPE 
was used to measure the estimative performance of a model in a test 
dataset. It shows the relative deviation of the assessed value from the 
observed value; a smaller value indicates that the model assess the re
sults more accurately. The formulas for calculating the two evaluation 
metrics are shown in Eqs. (12) and (13). 

Loss = MSE =
1
n

∑n

i=1
(y′

i − y′
i)

2
(12)  

MAPE =
100%

n

∑n

i=1
|
y′

i − y′
i

y′
i

| (13)  

where, n denotes 120,000 release rates that include 6000 test sets, each 
containing 20 time steps of release rates. y′

i denotes the real value of the 
normalized release rate, normalized by using Eq. (1). y′

i denotes the 
assessment of the normalized release rate. 

2.4. Optimisation method 

Optuna is an open-source Python software for hyperparametric 
automatic optimisation [32]. It uses a Bayesian optimisation algorithm 
and sample parallelisation to minimise the validation error of the neural 
network, thus improving the accuracy and convergence speed of the 
model. One advantage of Optuna is that it can quickly perform 
large-scale hyperparametric searches. In addition, it can be integrated 
with multiple deep learning frameworks such as TensorFlow, Keras, and 
PyTorch, which makes the model-tuning process more automated and 
efficient. In this study, the loss value of the test dataset was defined as 
the objective function when Optuna was used to optimise the 
hyperparameters. 

2.5. Optimiser 

The optimiser is an important part of a deep learning model that 
determines how the parameters are updated using a gradient descent 
algorithm. In deep learning, the model usually needs to optimise thou
sands, tens of thousands, or even more parameters, which directly affect 
its performance, generalisation ability, and accuracy. Therefore, it is 
crucial to select an appropriate optimiser that can effectively accelerate 
the training of the model and improve its performance. 

In Keras [6], a deep learning framework, provides optimisers 
including SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, and 
Nadam. Each of the seven optimisers had different hyperparameters. To 
determine the optimal hyperparameter configuration for each optimiser, 
the Optuna optimisation method was used to optimise each of the seven 
optimisers, in which the search space of the hyperparameters was set 
based on the default values of Keras. The hyperparameters of the seven 
optimisers are listed in Table 6. 

3. Experimental result 

3.1. Neural network optimisation 

To maximise the estimative performance of the neural network, 
some crucial parameters must be tuned during the training process of the 
neural network, including the optimiser and neural network structure. 

Fig. 4. Inversion model of nuclear accident source term based on GRU.  

Y. Ling et al.                                                                                                                                                                                                                                     



Journal of Hazardous Materials 465 (2024) 133388

7

3.1.1. Optimiser 
To save computational resources, a simple TCN model was con

structed to search for the optimal hyperparameter configuration of the 
optimiser. The model structure was set up as a single-layer TCN con
taining six convolutional kernels of size 4 and a hidden layer containing 
32 hidden nodes. 

Using the SGD optimiser as an example, 20 searches were conducted 
during the hyperparameter search to ensure that each hyperparameter 
value in the search space was fetched. The search results were shown in  
Fig. 5(a) (results with large loss values for the individual test datasets 
were excluded to reduce bias). When the learning rate was 10− 1, mo
mentum was 0.8, and Nesterov was True, the test dataset had the 
smallest loss value of 0.0360. In addition, when the learning rate was set 
to 10− 4, the loss values of the test datasets were all greater than 0.07, 
indicating that the learning rate had an important impact on the 
assessment performance of the model. 

To avoid the influence of momentum and Nesterov on the experi
mental results and to determine the optimal learning rate, a univariate 
method was used to compare the loss values of the test dataset at 
different learning rates by selecting trials in which both momentum and 
Nesterov were equal in the search results. The comparison results were 
shown in Fig. 5(b) for four comparison trials. In the first comparison 
trial, the learning rate was ranked as 10− 2, 10− 3, and 10− 4 when the 
momentum was 0.8, and Nesterov was False. In the second comparison 
trial, the learning rate was ranked as 10− 1, 10− 2 when the momentum 
was 0.2, and Nesterov was True. In the third comparison trial, the 
learning rate was ranked as 10− 1, 10− 3 and 10− 4 when the momentum 
was 0.2, and Nesterov was False. In the fourth comparison trial, the 
learning rates were ranked as 10− 2 and 10− 4 when the momentum was 
zero and Nesterov was False. Combining the results of the four com
parisons, the best learning rates were ranked as 10− 1, 10− 2, 10− 3, and 
10− 4. Therefore, the optimal learning rate for the SGD was 10− 1. 

As shown in Fig. 5(c), based on the above identified optimised 
learning rate of 10− 1, two trials were set up to study the optimal value of 
momentum by fixing Nesterov to False and True and changing mo
mentum from 0 to 1.0. It could be observed that Nesterov had little effect 
on the model performance, and the best value of momentum was 0.8 
when the optimiser was SGD. The other optimisers were used to search 
for hyperparameters in the same manner as in SGD, and the results were 
listed in Table 7. As shown in Table 7, the Nadam optimiser had the 
smallest loss value for the test dataset; therefore, it was selected as the 
best optimiser. 

3.1.2. Structure optimisation of models under the complex scenario 1 
To maximise the performance of neural networks, several network 

structure hyperparameters must be optimised, including the number of 
layers, number of filters per layer, kernel size for the TCN model, and 
number of layers and number of nodes per hidden layer for the LSTM 
and GRU models. Because the nuclear accident source term inversion 
model consists of each of these three models combined with a fully 
connected layer, the number of nodes in the hidden layer of the fully 
connected layer must also be optimised. The search spaces involved in 
these hyperparameters were listed in Table 8. 

The optimisation results of the LSTM model obtained using the 
Optuna algorithm were shown in Figs. 6 and 7. For the single-layer 
LSTM model, the smallest loss value of 0.0242 could be achieved 
under the number of hidden nodes of 49, the number of hidden nodes in 
the fully connected layer of 128, and the learning rate of 10− 3. While, for 
the double-layer LSTM model, the smallest loss value of 0.0245 could be 
achieved under the number of hidden nodes of 27 and 61, the number of 
hidden nodes in the fully connected layer of 234, and the learning rate of 
10− 3. In addition, Figs. 6–7 showed that the scatter points were roughly 
distributed around the optimal point. This indicated that the Optuna 
optimisation algorithm gradually approached the optimal point and 
concentrated most of the search resources around the optimal point, 
indicating high efficiency and stability. This stability could make the 

Table 6 
The hyperparameters of the seven optimisers.  

Optimiser Hyperparameter Usage Search space 

SGD Learning Rate Control the step size of 
parameter update. 

(10− 4, 10− 3, 
10− 2, 10− 1) 

Momentum Mitigate the fluctuation of 
gradient update direction. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Nesterov Reduce the impact of gradient 
oscillation. 

(Ture, False) 

RMSprop Learning Rate Control the step size of 
parameter update. 

(10− 5, 10− 4, 
10− 3, 10− 2, 
10− 1) 

Rho Reduce the fluctuation of 
instantaneous gradient value. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Momentum Mitigate the fluctuation of 
gradient update direction. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Adam Learning Rate Control the step size of 
parameter update. 

(10− 5, 10− 4, 
10− 3, 10− 2, 
10− 1) 

Beta1 Adapt to tasks with large 
gradient variations and 
improve the overall 
effectiveness of the model while 
maintaining gradient 
variations. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Beta2 Adapt to tasks with large 
gradient variations and high 
dimensionality, and improve 
the overall effectiveness of the 
model while maintaining 
gradient variations and high 
dimensionality. 

(0.90, 0.92, 
0.94, 0.96, 
0.98, 1.0) 

Adadelta Learning Rate Control the step size of 
parameter update. 

(10− 5, 10− 4, 
10− 3, 10− 2, 
10− 1) 

Rho Reduce the fluctuation of 
instantaneous gradient value. 

(0.90, 0.92, 
0.94, 0.96, 
0.98, 1.0) 

Adagrad Learning Rate Control the step size of 
parameter update. 

(10− 5, 10− 4, 
10− 3, 10− 2, 
10− 1) 

Initial 
Accumulator 
Value 

Initialise the learning rate and 
reduce the variance of 
parameter updates. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Adamax Learning Rate Control the step size of 
parameter update. 

(10− 5, 10− 4, 
10− 3, 10− 2, 
10− 1) 

Beta1 Adapt to tasks with large 
gradient variations and 
improve the overall 
effectiveness of the model while 
maintaining gradient 
variations. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Beta2 Adapt to tasks with large 
gradient variations and high 
dimensionality, and improve 
the overall effectiveness of the 
model while maintaining 
gradient variations and high 
dimensionality. 

(0.90, 0.92, 
0.94, 0.96, 
0.98, 1.0) 

Nadam Learning Rate Control the step size of 
parameter update. 

(10− 5, 10− 4, 
10− 3, 10− 2, 
10− 1) 

Beta1 Adapt to tasks with large 
gradient variations and 
improve the overall 
effectiveness of the model while 
maintaining gradient 
variations. 

(0.0, 0.2, 
0.4, 0.6, 0.8, 
1.0) 

Beta2 Adapt to tasks with large 
gradient variations and high 
dimensionality, and improve 
the overall effectiveness of the 
model while maintaining 
gradient variations and high 
dimensionality. 

(0.90, 0.92, 
0.94, 0.96, 
0.98, 1.0)  
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model reach the optimal point faster, which helped improve the accu
racy and robustness of the model and provided a strong guarantee for 
large-scale applications. 

The optimisation results of the three models were listed in Table 9. 
Among the three models, the LSTM and GRU models had similar test 
dataset loss values, both of which were significantly lower than those of 

the TCN model. This was because LSTM and GRU introduced a gating 
mechanism to control the flow of information, which could prevent the 
disappearance and explosion of gradients, thus outperforming TCN in 
processing long-sequence data. In addition, because the TCN used 
convolution for data feature extraction, it led to a significant increase in 
training time. 

3.1.3. Structure optimisation of models under the complex scenario 2 
The models for complex scenario 2 were optimised using the 

hyperparametric search space of complex scenario 1. The optimal 
structures of the three models were listed in Table 10. The double-layer 
LSTM model had the smallest loss value of the test dataset and was 
selected as the best model for complex scenario 2 in this study. 

Fig. 5. The hyperparametric search results of SGD.  

Table 7 
Hyperparameter search results for seven optimisers.  

Optimiser Hyperparameter Best value Test dataset Loss 

SGD Learning Rate 10− 1  0.0360 
Momentum 0.8 
Nesterov True 

RMSprop Learning Rate 10− 3  0.0353 
Rho 0.6 
Momentum 0.4 

Adam Learning Rate 10− 3  0.0350 
Beta1 0.8 
Beta2 0.96 

Adadelta Learning Rate 10− 1  0.0463 
Rho 0.92 

Adagrad Learning Rate 10− 1  0.0377 
Initial Accumulator Value 0.2 

Adamax Learning Rate 10− 2  0.0348 
Beta1 0.4 
Beta2 0.98 

Nadam Learning Rate 10− 3  0.0339 
Beta1 0.8 
Beta2 0.98  

Table 8 
Search space for network structure parameters.  

Models Hyperparameters Search space 

TCN Number of layers 2 
Number of filters (4 ~ 64) 
Kernel size (2, 4, 8) 

LSTM Number of layers 2 
Number of nodes in hidden layer (4 ~ 64) 

GRU Number of layers 2 
Number of nodes in hidden layer (4 ~ 64) 

FC Number of nodes in hidden layer (16 ~ 256)  
Learning Rate (10− 5, 10− 4, 10− 3, 10− 2, 10− 1)  
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3.1.4. Structure optimisation of models under the simple scenario 
The optimization process of the neural network structure for the 

simple scenario was the same as for the two complex scenarios. The 
optimal structures of the three models were listed in Table 11. The 
single-layer LSTM model had the smallest loss value of the test dataset 
and was selected as the best model for the simple scenario in this study. 

3.2. Source term inversion for three nuclear accident scenarios 

Based on the optimised results of the neural network, the best-saving 
model was imported to assess the release rates of the four nuclides. To 
compare the advantages and disadvantages of the three models accu
rately, their MAPE on the test dataset were first compared, as shown in  
Fig. 8. The trends of the three models were the same for the three nuclear 
accident scenarios, and the MAPE of the four nuclides gradually 
decreased with increasing time steps, among which Kr-88 and Te-132 
decreased sharply and remained stable after the 4th hour. Sr-91 lev
elled off after the 7th hour, while I-131 remained on a rapid downward 
trend for 10 h. From the value of MAPE, the inversion accuracies for the 
four nuclides were ranked as Te-132, Kr-88, Sr-91, and I-131. Among the 
three models, the TCN model had the fastest MAPE decline with the time 
step for the four nuclides, and the LSTM model had the highest assess
ment accuracy for the four nuclides. Comparing the two complex nu
clear accident scenarios, the MAPE values of Kr-88, Sr-91, and Te-132 

were slightly lower than those of complex scenario 2, and I-131 was 
significantly lower than that of complex scenario 2 in complex scenario 
1. The MAPEs for the four nuclides under the two complex nuclear ac
cident scenarios were different from those of the simple nuclear accident 
scenario, but the difference was not significant. 

Fig. 6. Optimisation results for single-layer LSTM model. The size of the circle 
of the scatter represents the loss value of the test dataset. 

Fig. 7. Optimisation results for double-layer LSTM model.  

Table 9 
Optimisation results of network structure parameters under the complex sce
nario 1.  

Models Hyperparameters Best 
value 

Test 
dataset 
Loss 

Training 
time (s) 

single-layer 
TCN 

Learning rate 10− 4  0.0269 11,711 
Number of filters 52 
Kernel size 2 
Number of nodes in hidden 
layer of FC 

142 

double- 
layer TCN 

Learning rate 10− 4  0.0282 18,015 
Number of filters of TCN1 24 
Number of filters of TCN2 24 
Kernel size of TCN1 4 
Kernel size of TCN2 4 
Number of nodes in hidden 
layer of FC 

94 

single -layer 
LSTM 

Learning rate 10− 3  0.0242 5614 
Number of nodes in hidden 
layer of LSTM 

49 

Number of nodes in hidden 
layer of FC 

128 

double 
-layer 
LSTM 

Learning rate 10− 3  0.0245 8923 
Number of nodes in hidden 
layer of LSTM1 

27 

Number of nodes in hidden 
layer of LSTM2 

61 

Number of nodes in hidden 
layer of FC 

234 

single -layer 
GRU 

Learning rate 10− 3  0.0247 5312 
Number of nodes in hidden 
layer of GRU 

39 

Number of nodes in hidden 
layer of FC 

208 

double 
-layer 
GRU 

Learning rate 10− 3  0.0251 8420 
Number of nodes in hidden 
layer of GRU1 

64 

Number of nodes in hidden 
layer of GRU2 

44 

Number of nodes in hidden 
layer of FC 

224  

Table 10 
Optimal structure of three models for the complex scenario 2.  

Model Hyperparameter Best 
value 

Test 
dataset 
Loss 

Training 
time (s) 

single-layer 
TCN 

Learning rate 10− 4  0.0195  7312 
Number of filters 64 
Kernel size 8 
Number of nodes in 
hidden layer of FC 

152 

double 
-layer 
LSTM 

Learning rate 10− 3  0.0182  7212 
Number of nodes in 
hidden layer of LSTM1 

46 

Number of nodes in 
hidden layer of LSTM2 

48 

Number of nodes in 
hidden layer of FC 

173 

double 
-layer 
GRU 

Learning rate 10− 3  0.0187  7211 
Number of nodes in 
hidden layer of GRU1 

62 

Number of nodes in 
hidden layer of GRU2 

39 

Number of nodes in 
hidden layer of FC 

92  
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As shown in Table 12, there was a slight increase in MAPE for all four 
nuclides under the two complex scenarios compared with the results 
from the simple accident scenario with constant meteorological condi
tions and a single homogenous release of nuclides. The largest increase 

in MAPE (5.86%) was from the inversion of I-131 under complex acci
dent scenario 2. This suggested that source-term inversion could be 
effectively performed using the LSTM model under both the simple and 
complex accident scenarios described in this study. 

It was worth noting from Tables 9 and 10 that during the optimisa
tion of the neural network, the loss values of the test dataset of the LSTM 
model under complex scenario 1 were larger than those of complex 
scenario 2. However, Fig. 8 and Table 12 showed that the MAPE under 
complex scenario 1 was lower than that under complex scenario 2. This 

Table 11 
Optimal structure of the three models for the simple scenario.  

Model Hyperparameter Best 
value 

Test 
dataset 
Loss 

Training 
time (s) 

single- 
layer 
TCN 

Learning rate 10− 4  0.0254 11,811 
Number of filters 64 
Kernel size 2 
Number of nodes in hidden 
layer of FC 

138 

single- 
layer 
LSTM 

Learning rate 10− 3  0.0231 5714 
Number of nodes in hidden 
layer of LSTM1 

64 

Number of nodes in hidden 
layer of FC 

210 

single- 
layer 
GRU 

Learning rate 10− 3  0.0238 5614 
Number of nodes in hidden 
layer of GRU1 

42 

Number of nodes in hidden 
layer of FC 

200  

Fig. 8. MAPE of the three models on the test dataset.  

Table 12 
MAPE of four nuclides in three nuclear accident scenarios based on LSTM model.  

Nuclear accident scenario Kr-88 Sr-91 Te- 
132 

I-131 

Simple scenario (Constant 
meteorological parameters and 
release rates) 

9.17% 15.22% 5.80% 36.01% 

Complex scenario 1 (Changing 
meteorological parameters and 
constant release rates) 

9.87% 17.49% 7.16% 38.83% 

Complex scenario 2 (Constant 
meteorological parameters and 
changing release rates) 

11.08% 16.51% 8.35% 41.87%  
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indicated that the accuracy of the source-term inversion under complex 
scenario 2 was worse. In complex scenario 2, the four radionuclides were 
continuously released for 30 min at the 2nd hour, indirectly reducing 

the release rate for the first 4 time steps. Therefore, normalizing the 
radionuclide release rate decreased the overall radionuclide release rate 
over a 10 h period. 

Fig. 9. Distribution of radionuclide release rate under two nuclear accident scenarios.  

Fig. 10. Evolution of the assessed values over time for a set of test dataset under the three nuclear accident scenarios.  
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Fig. 9 showed violin plots of 600,000 release rates distributions for 
four radionuclides, comprising 30,000 sets of samples. Each set 
encompassed 20 time steps release rate data. The horizontal width of the 
violin plot (e.g., the distance between points A and B in Fig. 9(a)) rep
resented the probability density of the release rate, and the vertical 
height indicated the magnitude of the corresponding release rate. 

As shown in Fig. 9(a), in complex scenario 1, the release rate 
exhibited a uniform distribution spanning from 1 × 1018 Bq/h and 
1 × 1019 Bq/h. For complex scenario 2, the release rates for the last 16 
time steps were twice as high as those in the first 4 time steps within 
each set of release rate data, accounting for 80% of the total 20 time 
steps. Within each of the 30,000 sets of release rate data, the first 4 time 
steps showed a uniform distribution ranging from 1 × 1018 Bq/h to 
1 × 1019 Bq/h. It was notable that only when the release rates for the 
first 4 time steps were between 0.5 × 1019 Bq/h and 1 × 1019 Bq/h, the 
release rates for the last 16 time steps were distributed between 1 × 1019 

Bq/h and 2 × 1019 Bq/h. This distribution accounted for 50% of the 
30,000 sets of release rate data. Consequently, among the 600,000 
release rates, only 40% were observed between 1 × 1019 Bq/h and 
2 × 1019 Bq/h, leading to the narrower width of the upper half of the 
violin plot compared to the lower half. 

The dashed line at the middle of the violin plot represented the 
median release rate, revealing significantly higher release rates in 
complex scenario 2 when compared to complex scenario 1. As shown in 
Fig. 9(b), after normalizing the release rate using Eq. 1, the normalized 
release rates under complex scenario 2 were significantly lower than 
those under complex scenario 1 according to the median line of the 
violin plot. Therefore, the test dataset under complex scenario 2 showed 
smaller test dataset loss values during model training when MSE was 
used as the loss function. 

To analyse the variation in the assessed values over time, a set of data 
was selected from each of the 6000-test dataset under the three nuclear 
accident scenarios, as shown in Fig. 10. Fig. 10(a) indicated that the 
assessed values of the four nuclides gradually converged to the real 
values under the simple scenario. Fig. 10(b) showed that, for complex 
scenario 1, the assessed value of Te-132 was already very close to the 
real value at the 2nd hour and stabilised near the real value at the 
subsequent time step. The assessed value for Kr-88 also began to stabilise 
at approximately the real value at the 3rd hour. For Sr-91 and I-131, the 
assessed values gradually converged to the real values during 10 h. As 
shown in Fig. 10(c), for complex scenario 2, the real values of the four 
nuclides increased rapidly in the 2nd hour, indicating that the two-stage 

Fig. 11. Scatter plot of assessed values for the last time step on the test dataset for the three nuclear accident scenarios. (a) Simple scenario; (b) Complex scenario 1; 
(c) Complex scenario 2. The scatter represented the assessed values, and the red line indicated that the assessed values overlap with the real values. 
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release of the four nuclides began in the 2nd hour. Te-132, Kr-88, and Sr- 
91 all started to stabilise near the real values at the 2nd hour, and I-131 
gradually converged to the real values during 10 h. 

The scatter plot (Fig. 11) showed the overall assessment of the four 
nuclides in the last time step based on the LSTM model, which helped to 
analyze the deviation density distribution between the assessed and real 
values. It could be real from Fig. 11 that there was no significant dif
ference in the scatter density distributions between the simple and 
complex scenarios. For Kr-88, Sr-91, and Te-132, the scattered points 
had a narrow distribution width and were heavily concentrated around 
the ideal agreement line, indicating high reliability. For I-131, although 
the distribution of the scattered points was broad, there was still a 
decent number of scattered points clustered around the ideal agreement 
line. 

From Figs. 8 and 11, the assessment accuracies of the four nuclides 
were ranked as Te-132, Kr-88, Sr-91, and I-131, regardless of the source 
term inversion model or nuclear accident scenario. To analyse the rea
sons for this phenomenon, an analysis of the dose produced by a single 
nuclide over a 10 h period was performed using the auxiliary data in 
Table 5, with a fixed release rate of 1 × 1019 Bq/h for each nuclide. The 
ambient gamma doses for the four nuclides at the five downwind 
monitoring sites were shown in Fig. 12. Among the five monitoring 
points, the gamma dose rates at the first three points had the largest 
proportion, thus significantly impacting the accuracy of source term 
inversion. Among the three solid particle radionuclides (Te-132, Sr-91, 
and I-131), Te-132 contributed the highest gamma dose during the 10- 
hour nuclear accident simulation period, displaying a significant dif
ference in gamma dose contribution compared to the others. Therefore, 
during the source term inversion process, Te-132 could be effectively 
identified by the three machine learning models, showing the highest 

accuracy in source term inversion. 
Even though the gamma dose contribution of I-131 was not signifi

cantly different from Sr-91, due to the much longer half-life of I-131 (3.3 
days) compared to Sr-91 (9.63 h), the quantity of I-131 experienced 
minimal changes within the 10-hour simulation of a nuclear accident. 
This resulted in a 21.34% higher MAPE for I-131 compared to Sr-91 in 
complex scenario 1. As for the only gaseous radionuclide in the study, 
Kr-88, despite having the lowest gamma dose contribution at the first 
three monitoring points, its sufficiently short half-life (2.8 h) ensured 
significant change in its quantity within the 10-hour period. This change 
was effectively captured by the three machine learning models, leading 
to higher accuracy in source term inversion. 

In summary, the gamma dose contribution and half-life of radionu
clides appear to be the primary factors determining the accuracy of 
source term inversion. Nuclides with higher gamma dose contributions 
and shorter half-lives show higher accuracy in the source term inversion 
process, and these two factors together affect the accuracy of the source 
term inversion. 

3.3. Stability analysis 

In real applications, the data are subject to certain errors during the 
measurement process. It is critical to verify the stability of the LSTM 
model and to identify the key parameters affecting its accuracy. Simu
lation experiments with artificially added errors were conducted on the 
raw data under complex scenario 1, including the gamma dose rate, 
release height, wind speed, wind direction, atmospheric stability, mixed 
layer height, and precipitation, to further analyse the model perfor
mance after adding errors. From these experiments, it was possible to 
gain a deeper understanding of the stability of the model and assess its 

Fig. 12. Ambient gamma dose contributed by the four nuclides at the five monitoring sites downwind during 10 h.  
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reliability in practical applications. 
As shown in Fig. 13, noise was added to the data for the seven inputs 

in complex scenario 1. The gamma dose rate was the most sensitive to 
noise, and the MAPE of the four nuclides gradually increased in the last 
time step as the noise level increased. After adding 100% noise, the 
MAPE of Kr-88, Sr-91, Te-132, and I-131 increased to 49.04%, 65.94%, 
31.57%, and 71.62%, respectively, indicating that the gamma dose rate 
significantly affected the estimative performance of LSTM. Although the 
assessment performance of the four nuclides deteriorated after being 
affected by the strong noise, Te-132 still exhibited good assessment re
sults, indicating its high stability in noisy environments. The release 
height had a significant effect on the gaseous nuclide Kr-88, with the 
MAPE increasing by 11.95% when the noise level reached 100%, 
whereas this effect was not significant for the other radionuclides. Wind 
speed has been identified as an important factor influencing the diffu
sion of radionuclides. As the noise level increases, the MAPE of the four 

radionuclides gradually increase. Because the five monitoring points in 
this study were located downwind, the impact of the wind direction on 
the estimated source term was deemed insignificant. Atmospheric sta
bility had an acceptable effect on the estimated release rates of the four 
radionuclides. The mixed-layer height had a minor effect on the esti
mation of the source term. Furthermore, precipitation was identified as a 
factor causing the wet deposition of radionuclides. With increasing noise 
levels, the MAPE of the four nuclides gradually increased. 

4. Conclusions 

In this study, a methodology was developed for source term inver
sion based on the gamma dose rate under two complex nuclear accidents 
(changing meteorological parameters and two-stage release of radio
nuclides). This method adopted three neural network models (TCN, 
LSTM, and GRU) to estimate the release rates of four radionuclides (Kr- 

Fig. 13. Assessment performance at the last time step after adding noise to the test dataset.  
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88, Sr-91, Te-132, and I-131). Through Optuna optimisation, the Nadam 
optimiser and LSTM model were selected as the best optimiser and 
source term inversion model, respectively, for two complex nuclear 
accidents. The best models for the two complex nuclear accidents were 
the single-layer LSTM (where the learning rate was 10− 3 and the number 
of nodes in the hidden layer of the LSTM was 49, and the number of 
nodes in the hidden layer of the FC was 128) and the double-layer LSTM 
(where the learning rate was 10− 3, the number of hidden layer nodes for 
the first LSTM was 46, the number of hidden layer nodes for the second 
LSTM was 48, and the number of hidden layer nodes for the FC layer was 
173). The results of the model estimation showed that for the two types 
of complex nuclear accidents, the MAPE of the release rate for the four 
radionuclides gradually decreased as the time-series gamma dose rate 
was the input, in which the MAPE of Te-132 in the last time step was 
7.16% and 8.35%, respectively, indicating that the LSTM model has a 
high accuracy. Stability analysis showed that the gamma dose rate had a 
crucial influence on the source term inversion, and the wind speed, at
mospheric stability, and precipitation also influenced the model 
assessment, which should be maintained as accurately as possible. Based 
on these results, the proposed method provided a framework for source- 
term inversion in complex nuclear accident scenarios. 

It can be concluded that the models have some limitations in multi- 
nuclide source term inversion, mainly due to the lack of sufficient in
formation on the nuclides with low gamma dose rate contributions, 
which leads to significant discrepancies between the assessed and real 
values for these nuclides. 

Environmental implication 

Kr-88, Sr-91, Te-132, and I-131 are the main short-lived nuclides 
released into the atmosphere during nuclear accidents, and their source 
terms are necessary to study the consequences and environmental 
behavior of short-lived nuclides. However, variations of meteorological 
parameter and two-stage release of radionuclides can increase the dif
ficulty of source term inversion. We propose three machine learning 
models for source term inversion and obtain a good accuracy. 
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