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A B S T R A C T

Roundwood sorting is still a manual process in many Swiss sawmills, requiring employees to visually inspect
and categorize thousands of logs per day. The heavy workload can be both physically and mentally taxing
and can lead to increased rates of human error. State-of-the-art automation systems like X-ray log scanners are
expensive and difficult to integrate into existing process lines. This paper proposes a novel recommendation
system that leverages recent advances in image classification to automate roundwood classification by quality
and species. The system integrates a camera to capture cross-sectional images of logs and record numerical
data, such as length, taper, and diameter. The analysis of the resulting dataset highlights the challenges of data
imbalance and noise, which makes classification difficult and, in some cases, impossible. However, by using
selected datasets with reduced noise, state-of-the-art Convolutional Neural Networks (CNNs) can extract quality
and species features. Quality models learn from a manually selected and simplified dataset, featuring samples
that experts can clearly classify based on the image’s information. Species models are trained on a label-noise-
reduced dataset, reflecting real-world complexity. The accuracy on the selected dataset for three quality classes
is 80%. The species determination is less challenging and reaches 91% accuracy on a synchronized dataset for
the main species spruce and fir. Overall, this paper highlights the potential of Machine Learning in augmenting
the roundwood sorting processes and presents a novel system that can improve the efficiency and accuracy of
the process.
1. Introduction

Wood, as a foundational material, has profoundly influenced our
homes, infrastructure, and culture from ancient civilizations to modern
societies. With its exceptional weight-performance properties, sustain-
able availability, and significant CO2 storage potential, wood stands as
a crucial resource for the future. As demands and global competition
continue to rise, the automation of processes in sawmills becomes
increasingly important. Optimizing the sorting of roundwood at the
beginning of the value chain ensures more efficient utilization of this
valuable resource.

The roundwood sorting process is the initial step in conventional
sawmills. It involves categorizing logs based on quality, species, and
dimensions. Despite existing systems such as X-ray scanners or CT scan-
ners, manual visual sorting is still prevalent in many sawmills (Niemz,
Teischinger, & Sandberg, 2023). However, this highly demanding and
labor-intensive task often leads to inaccurate sorting results that fluc-
tuate significantly depending on the employee, load, and time of the
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day. Furthermore, the human eye already reaches its limits, preventing
further increases in productivity.

Computer Vision algorithms, particularly Convolutional Neural Net-
works (CNNs), present a compelling solution for automating the round-
wood sorting processes. Their ability to analyze visual data and extract
meaningful information has revolutionized the way industrial tasks
are performed. Therefore this paper proposes a novel recommendation
system that captures images from roundwood logs and uses Computer
Vision algorithms to make predictions. This system has the advantage
of being cost-efficient and easy to integrate into existing process lines,
which makes it attractive especially for small sawmills. On top, state-
of-the-art Deep Neural Networks (DNNs) achieve high accuracy, are
adaptable, scalable and have the ability for continuous improvement.

The first part of the paper introduces state-of-the-art image clas-
sification models and existing automated roundwood sorting systems.
Section 3 provides background about the roundwood sorting process
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itself. The integration and implementation of the novel image classifi-
cation system are described in 4. Finally Section 5 shows the results
and concludes with a thorough evaluation. Potential future research is
discussed in Section 6.

2. Related work

2.1. State-of-the-art image classification models

There are various methods to classify images using computer vi-
sion. Traditional approaches include manual feature engineering using
statistical, structural and mathematical methods. For instance, Wang,
Wang, Yu, and Li (2019) utilized gray-level co-occurrence matrices to
distinguish wood species from boards, while Song, Li, Meng, Wu, and
Cai (2017) employed a locally encoded transform feature histogram
for classifying texture images. On the other hand Convolutional Neural
Networks (CNNs) have gained significant attention in recent years
and have been widely applied in various fields like image classifi-
cation, object detection, and image segmentation. CNNs use filters
which are applied via convolutions to extract features from images.
These features are then classified by different Machine Learning (ML)
approaches. CNNs eliminate the need for manual feature extraction in
traditional computer vision, offering an end-to-end learning approach.
Deep Learning approaches are proven to achieve higher accuracy on
image classification tasks, require less expert knowledge and provide a
high flexibility (O’Mahony et al., 2020).

There exists many state-of-the-art CNN architectures reaching con-
siderably high accuracy on the large scale visual recognition challenge
(ILSVRC). Noteworthy advancements include VGG architecture, boost-
ing performance while reducing parameters through multiple convolu-
tional layers using compact 3 × 3 filters (Simonyan & Zisserman, 2014).
One of the most popular architectures for image classification is ResNet
(Residual Network) (Kaiming, Xiangyu, Shaoqing, & Jian, 2015). It uses
a Deep Residual Network to address the problem of vanishing gradients.
The residual connections allow information to flow directly through the
network, enabling the training of very deep networks. InceptionNet is
another renowned image classification model (Szegedy et al., 2014),
which applies a combination of 1 × 1, 3 × 3, and 5 × 5 convolutions
to extract features at multiple scales and concatenate them to generate
the final output. Another emerging model is called EfficientNet (Tan &
Le, 2019). It is known for its exceptional performance and efficiency
by effectively balancing model size, accuracy, and computational re-
sources. EfficientNet achieves this balance by using a compound scaling
technique that optimizes the model’s depth, width, and resolution.
There are also many other popular image classification models like
DenseNet (Huang, Liu, Van Der Maaten, & Weinberger, 2017), Mo-
bileNet (Howard et al., 2017), and AlexNet (Krizhevsky, Sutskever, &
Hinton, 2012). Chen et al. (2021) provides a comprehensive overview
of state-of-the-art CNN architectures.

To choose an appropriate architecture, we considered task-specific
requirements like computational power, prediction times, image di-
versity, and pre-trained network availability for transfer learning. To
demonstrate our approach, we opted for well-established network –
VGG, ResNet, EfficientNet, and InceptionNet – which, with their proven
performance, effectively serve our purpose. While other architectures
may yield similar results, our selection aligns precisely with our crite-
ria, showcasing the potential success of our new approach.

2.2. State-of-the-art roundwood sorting

If we go back in time, the first timber businesses were probably
based on a simple agreement regarding the number of logs. Over time,
manual methods evolved to determine the log volume by measuring
the diameter and length. In 1960 sawmills started to apply automated
2

log scaling and sorting techniques (Niemz et al., 2023). Nowadays there
are many different techniques on the market to automatically scale and
grade logs and new techniques are constantly evolving.

Ultrasound-based technologies, radiography, and X-ray-based sys-
tems can measure the internal characteristics of a log. In 2011 the
company Microtec1 presented the first high-speed computer tomog-
raphy (CT) log scanner. The accuracy of an X-ray log scanner when
classifying into three different quality classes is approximately 85%,
which is better than achieved with optical or manual visual judg-
ment (Niemz et al., 2023). Microtec also uses AI to support the CT
log scanner in assessing wood defects such as dead branches, resin
pockets, or compression wood. The disadvantage of X-ray and CT
scanners is that they are more expensive, less scalable, and less easy
to integrate into existing process lines, compared to our lightweight
image classification approach.

3. Roundwood sorting process

The roundwood sorting process involves several steps, illustrated in
the lower part of Fig. 5. Initially, an infeed conveyor (1, 2) separates
the delivered logs, which then pass through a detector capable of
measuring length, diameter, and detecting metal (3). Next, the logs are
scaled to uniform length (4). The cut can also be done to facilitate
quality determination. Subsequently, they proceed through a house
where experts assess the quality and species of the logs (5).

The sorting process serves two main purposes: determining the ap-
propriate price for the timber vendor and achieving improved process
control and production planning. Such classification results in grouping
logs together based on their suitability for being sawn using the same
saw-line settings. The successful implementation of a sorting system has
a significant impact on both the value yield and the overall production
capacity (Niemz et al., 2023).

According to the guidelines outlined in ‘‘Schweizer Handelsge-
bräuche für Rohholz’’ (Bundesamt für Umwelt BAFU, 2010), softwood
logs are typically sorted into four distinct quality classes: A, B, C,
and D. Logs classified as grade A exhibit excellent quality, being
virtually free from defects and possessing only minor imperfections.
Grade B strains represent good to moderate quality, characterized by
a lack of heavy knots or coarse features, though slight defects may
be present. Strains with quality C fall within the medium to below
average quality range and exhibit significant defects. Quality D wood,
by its inherent characteristics, cannot be included in the other classes.
Furthermore, there are staple strains (Klammerstämme) that exhibit
different qualities on different parts of the same log. In our dataset,
these are classified into classes AB or BC. Additionally, class C strains
are reassigned to class Kae when infested with beetles, while class
Me includes wood with metal contaminants. The models in this paper
primarily focus on the quality classes B, C, and D, which occur most
frequently.

Roundwood classification is based on well-defined characteristics.
Table 1 shows permissible features for classes B, C, and D for spruce
and fir.

Most of the features can be detected by the eye either on the stem
or the cross-section. On the cross-section, several key features that are
crucial to learning include average annual ring width, reaction wood,
cracks, ring dish, pitch pockets, and discoloration. These features can
be accurately measured and calculated using the formulas provided
in Fig. A.18 in Appendix A. The remaining features, predominantly
observed on the stem itself, encompass fused and non-fused branches,
curvature, and spiral growth. Corresponding formulas are presented in
Fig. A.19 in Appendix A.

The most important numeric feature is the so-called taper, which
refers to the gradual reduction in trunk thickness from the base to the
crown. Therefore three different diameters are measured, D1 (root),

1 https://www.microtec.eu/.

https://www.microtec.eu/
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Table 1
Overview of key characteristics for various quality categories B, C, and D for spruce and fir species (modified from Bundesamt für Umwelt BAFU
(2010)). Visually assessable features are indicated in light blue, numerical attributes in dark blue. Green markings represent visual information
visible on the cross-section, while red markings indicate features on the stem.
D2 (mid), and D3 (bottom). The taper 𝑡 is then calculated with the
following formula, where 𝑙 is the length of the stem:

𝑡 = 𝐷1 −𝐷3
𝑙

[cm/m] (1)

A higher taper value (depending on D2) has a detrimental effect on the
quality.

The expression of characteristics/features can vary depending on
the location. Our partner sawmill OLWO,2 for instance, experiences a
prevalence of reaction wood due to its location in an area with nu-
merous slopes and exposures. Additionally, resin pockets are frequently
encountered.

It is worth mentioning that there exists a concept called discretion
in the quality assessment, as outlined in paragraph 2.2.3 of ‘‘Schweizer
Handelsgebräuche für Rohholz’’ (Bundesamt für Umwelt BAFU, 2010).
This provision allows sporadic shortcomings to be balanced by superior
qualities. But, if these shortcomings accumulate excessively, they could
lead to a lower quality classification. Some features are only impor-
tant for distinct species, e.g. eccentric growth is only considered an
important feature for douglas fir, pine, and larch.

Overall, the sorting process is a complex task influenced by nu-
merous factors. It is essential to consider the high variability of wood,
which significantly complicates the automatic classification of round-
wood.

4. Materials and methods

The main idea behind our research, is to use Convolutional Neural
Networks to predict the quality and species of logs based on images
and numerical data. The development of the roundwood classification
method comprises six iterative phases, which are visualized in Fig. 1:
Data acquisition, analysis, cleaning, preprocessing as well as model
training and deployment. Subsequent chapters will provide an in-depth
exploration of each of these phases.

2 https://www.olwo.ch/de/.
3

4.1. Data acquisition

The initial phase is the data acquisition, as depicted in the lower
part of Fig. 5. Hence, we integrated a camera system into the pro-
duction line at our partner sawmill, OLWO. While pushing the tree
trunk through position 1, the system detects the distance to the front
end of the stem. The position of the camera is adjusted in 𝑥-direction
accordingly to ensure a consistent distance between the camera and the
stem. When the tree trunk has reached position 2, the trigger signal for
the camera is generated and a pixel image is acquired. The file name of
the image is always provided with a consecutive, unique number, date
(dd,mm,yyyy), and time (h:m:s:ms). At position 5 the operator enters a
quality and species decision, which is logged as the label of the image.
The metadata measured at position 3 is also saved.

4.2. Data analysis

The resulting data undergoes further analysis through a series of
experiments and studies. Section 5 provides further information on the
dataset size and class distributions. Furthermore, three different noise
sources are analyzed: image noise, direct and indirect label noise (see
Fig. 7). Image noise is caused by variations in intensity levels and loss
of sharpness, affecting the clarity and quality of visual information.
On the other hand, there is direct label noise, which means that the
label assigned to an image does not align with the ground truth of
the sample. This can be due to human uncertainty or asynchronization.
Asynchronization means that labels and images get shifted with respect
to each other in the production timeline. Reasons can be images with
either two stems or no stem on them, connection problems, or system
reboots. This results in labeling an image with the label of the previous
or following image, which then propagates over time. The last kind
of noise, indirect label noise, is caused by missing information in the
data, which can occur either due to information being hidden/occluded
(e.g. by dirt, or color) or not captured in the image. In particular, there
is a lack of information about features on the stem (see Table 1) since
the current dataset only contains cross-section images. Furthermore,
it is possible that certain characteristics, such as rot or discoloration,
disappear after cutting, or new features, such as resin pockets, become
visible.

https://www.olwo.ch/de/
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Fig. 1. ML-Pipeline: Overview of the development process.
For each of the noise sources, some experiments are carried out
to determine the number of affected samples. For analyzing the im-
age noise, 500 random samples are scrutinized for overexposure and
blurring. In order to analyze the indirect label noise, 1478 stems were
observed over a period of 2 days. For each stem, it was observed if there
were important features on the stem that became visible/neglected
after scaling at position 4. The last study examines the synchronization
problem over a period of 16 days and thus the direct label noise.
Since for technical reasons it was not possible to check at which time
of the day the asynchronization took place, an average corruption
rate of 50% was assumed. With that, an estimation of the percentage
of affected labels can be derived. Through these systematic analyses,
valuable insights into the dataset’s characteristics and noise sources are
obtained. These findings contribute to a comprehensive understanding
of the challenges and potentials associated with the dataset.

4.3. Data cleaning and selection

Due to the high noise content (see Section 5.1), especially label
noise, models are not able to learn from the entire dataset. Since it
is not possible to filter out all affected samples, two separate, noise-
reduced datasets were created, one for training the species and one for
the quality model. The species models learn from an asynchronization-
free dataset, ensuring that each label matches the image. It is collected
during the 16 days of the study mentioned in Section 4.2. This dataset
is label noise reduced but retains the complexity of the original data set.
It contains 6577 samples and is further referred to as species dataset.

Quality models learn from a manually selected and simplified
dataset, featuring samples that experts can clearly classify based on the
cross-sectional image information. This reduces the complexity as well
as the noise in the dataset. We further call this dataset a quality dataset.
The overall quality dataset includes 1800 samples (600 in each class).

The real-time prediction requires the recognition of image noise
including overexposure and blurriness during the image preprocessing.
For the detection of the blurry images, the suggested system uses
the variance of the Laplacian with a threshold of 𝜃 = 10. The idea
is to convolve one channel of an image with the Laplacian 3 × 3
kernel (Rosenbrock, 2015):

⎡

⎢

⎢

⎣

0 1 0
1 −4 1
0 1 0

⎤

⎥

⎥

⎦

(2)

To get the amount of blurriness, one can take the variance of the
response. If the variance falls below the threshold 𝜃 in this case, the
image is classified as blurry. In more detail, the Laplacian operator
measures the second derivative of an image, which means that it
highlights regions with a rapid intensity change, which in the end
detects edges. The lower the variance the fewer edges are present in
the image and the higher the probability of having a blurry image.

To accurately identify overexposed images, an algorithm utilizes
a pixel analysis approach. This involves evaluating the proportion of
bright pixels within the cross-sectional part of the image. The algorithm
employs two experimentally determined thresholds. The first thresh-
old is used to classify pixels as excessively bright, while the second
4

threshold establishes the desired proportion of such pixels within the
cross-section. The first one is set to 245 and the second one to 0.34
based on experiments. Both detectors are tested on a dataset with
500 randomly selected samples and compared to manual determination
of blurriness and overexposure. The number of blurry images was
artificially expanded to be able to make better statements.

4.4. Data preprocessing

Prior to training the models, a customized preprocessing pipeline
performs several steps to generate a suitable tensorflow (tf) input
dataset for training. Fig. 3 shows an overview of the preprocessing
pipeline. The initial step in the pipeline is the segmentation of the
cross-sectional area to remove the background. This unifies the input
images and helps the final model to find relevant features. This is
helpful due to the high variability of the data (different sizes, exposure,
etc.) and the small size of the dataset. To accomplish this, the paper
proposes employing a UNet (Ronneberger, Fischer, & Brox, 2015) im-
age segmentation model pre-trained on MobileNetV2 (Howard et al.,
2017). The model is trained on a dataset containing 154 manually
labeled images and tested on a dataset with 38 labeled images. In
order to remove isolated pixels which are still left in the background
three morphological transformations are carried out: Opening (erosion
followed by dilation) followed by two times closing (dilation followed
by erosion) with different kernel sizes (5 × 5, 20 × 20, 2 × 2) each.
By identifying the border pixels of the segmentation mask, the images
are subsequently cropped and resized with a pad to 1024 × 1024
pixels. Fig. 2 shows some example images for classes B, C, and D with
segmented backgrounds.

The next steps are carried out during runtime/training of the model.
After reading the data to the memory, image and numerical data are
shuffled by random permutation. The quality and wood species labels
are one-hot encoded to make them machine-readable. After that, the
dataset is split into training (80%) and validation dataset (20%). The
training dataset is balanced by over-, under-sampling, or re-weighting
if necessary, followed by another random shuffling. After casting the
dataset to a tf dataset, the images are preprocessed including parsing
and normalizing. The normalization/scaling depends on the method
used in the ImageNet pre-trained network. Simple augmentation like
flipping and rotation can be applied optionally. For the numerical data,
a standard scaling (sklearn standard scaler) is used. In the end, the
dataset is batched for training the model.

4.5. Model building and training

After preprocessing the data, several different models are built, to
predict either quality or species. Therefore four different state-of-the-art
models are used: ResNet50, EfficientNetB0, VGG19 and Inception-
NetV3. Utilizing the Keras framework, all networks are built upon
pre-trained models from the ImageNet dataset. The initial layers (165
for ResNet50, 100 for EfficientNetB0 and InceptionNetV3, and 10 for
VGG19) are kept frozen, while the remaining layers are fine-tuned on
the roundwood dataset. The architecture remains consistent across all

four models, featuring an AveragePooling2D layer, followed by Flatten,
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Fig. 2. Example images for each quality class B, C and D after image segmentation.
Fig. 3. Customized preprocessing pipeline used for all models.
a Dense layer with ReLU activation containing 128 neurons, and a
Dropout layer. This is succeeded by a final dense layer with a softmax
activation function, consisting of 3 neurons for quality (B, C, and D)
and 2 for species (spruce and fir). For the loss function, categorical
cross entropy is used together with an Adam optimizer. To prevent the
model from overfitting, the early stopping method is used with patience
of 5 with a maximum of 300 epochs. On top dropout regularization and
the L2-regularization in the last layer help to generalize well on unseen
data. All manually tuned hyperparameters can be found in Appendix B.

A mixed model includes numerical data, mainly taper, which is
important for quality prediction. This model gets the image and the
numerical data as input, combines both in a concatenate layer, and
makes a combined prediction. Fig. 4 shows the general architecture
used for all models including the layers needed for the MixedModel.
In addition, numerical data is used as a hard constraint (based on
Table 1). This means that after getting the prediction from the image
classification results are downgraded in case of a too-high taper value
(see Table 1).

The proposed models were trained with keras based on tensorflow
platform. The used Python version is 3.7. The experiments were done
on an AMD Ryzen Threadripper 3970X CPU with 3.70 GHz and 32-
Cores and the models are trained on ASUS GeForce RTX 2080 Ti TURBO
(11 GB, high-end) GPUs.

The species models were trained as binary classifiers for the classes
spruce and fir. The quality models focus on the three quality classes
B, C, and D mentioned above. For hyperparameter tuning a stratified
5-fold-cross validation is carried out. The final model is trained on
the whole training dataset and is tested with a separated, stratified
test dataset, which includes 20% of the overall dataset. Since the
quality dataset is already balanced, no extra treatment for imbalance
is necessary. For the species dataset reweighting is used.

4.6. Model deployment

Enabling real-time utilization of the recommendation system in-
volves a series of distinct steps. Initially, the uploaded image undergoes
parsing and error verification. In case of a damaged image file, manual
5

intervention is necessary. After segmenting, the image is assessed for
blurriness or overexposure (as detailed in Section 4.3). In case of a
positive result, an alert is issued to prompt manual intervention by the
sorter. The software then addresses potential synchronization problems
within the image, such as dual stems or the absence of a stem. In
instances of dual stems, the image is split into separate entities, while
an empty image is excluded from consideration. After sequentially
propagating the images through the models, the uncertainty of the
prediction can be evaluated further. This was not examined in more
detail in the paper. Fig. 5 shows how the models predict species and
quality during the running process.

5. Results and discussion

This section analyzes the dataset, shows the results of the pre-
processing and the models, and evaluates them. It involves not only
assessing model accuracy but also analyzing training and prediction
times. Using this information, the system throughput can be calculated
and compared to the current one. Additionally, it shows the potential
impact of incorporating more data and higher image resolutions.

5.1. Results and evaluation of data analysis

The overall dataset contains 54.594 samples where 97.15% (53.039)
of them are either of class B, C, or D. 43% (23.058 samples) of them
are of class B, 50% (26.317 samples) of class C and 7% (3644) are of
class D. Besides classes B, C and D, there are also 0.004% (2) samples
in class AB, 0.2% (82) in class BC, 2.3% (1306) in class Kae and 0.3%
(165) in class Me. 99.7% (54.438) of all samples are either of species
spruce or fir. 79.9% (43.483) of them are spruces and 20.1% (10.955)
firs. Only 0.08% (46) samples are of class douglas fir, 0.06% (32) of
class pine, and 0.13% of class larch. Fig. 6 shows a statistical overview
of the distribution of samples across quality and species classes. This
barplot highlights the class distribution imbalance. Notably, classes B
and C exhibit substantially higher representation compared to class
D, with the remaining categories being present in mere fractional
quantities. This pattern is also evident in the case of the spruce and
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Fig. 4. General architecture of quality models. Pretrained network either stands for ResNet50, EfficientNetB0, VGG19 or InceptionNetB0. Layers colored in blue belong to the
MixedModel, white marked layers belong to the general architecture. Values marked with 𝑑 are different and depend on the pretrained network (𝑑𝑅𝑒𝑠𝑁𝑒𝑡50 = 2048, 𝑑𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑁𝑒𝑡𝐵0 = 2048;
𝑑𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡𝐵0 = 1280; 𝑑𝑉 𝐺𝐺19 = 51). Input for mixed models are the numerical parameters D1, D3 and length. Species models have the same architecture with the last dense layer
having only 2 neurons.
fir classes, which enjoy significantly higher occurrence rates than the
other species. Regrettably, the available data for all other species is
insufficient to adequately train meaningful models.

Next, different sources of noise are studied in more detail. Fig. 7
shows the different sources of noise described in 4.1, including the
results of the studies and possible solutions. The image noise is 7.4%
with 6.4% of the images being overexposed and 1% being blurry. Both
noise sources significantly reduce the information content in the image
and thus can negatively affect the predictive power of the models. In
addition, the strongly varying light and quality conditions can affect the
model, which is not further investigated in this context. On top 34% of
the 500 tested images are sprayed with color, partially making features
less visible. Affected images need to be identified in advance to give
warnings for manual intervention in the real-life process.

The occlusion noise affects 34% of the images. In 20% of the cases,
features were no longer visible after the cut (often superficial rot) and
in 14% of the cases, features became visible after the cut (often because
features were previously covered by dirt or pitch pockets appeared). In
general 98% of all stems are cut either for scaling or quality decisions.
The information gap noise affects 25% of the images. In most cases, the
missing information is related to non-fused or fused branches (19%). In
6% of cases, tree trunks are curved, discolored, or have spiral growth. It
6

is important to note that affected samples do not necessarily have incor-
rect labels. For instance, in case the information from fused branches is
missing but the cross-section still exhibits features pointing to the same
class, there is no label noise for that particular sample. Furthermore,
in the case of cuts, new features can emerge/disappear subsequently,
without impacting the quality assessment decision. Possible solutions
would be to add a second image from the stem and reposition the
camera after the cut (position 4). To ensure coverage of all possible
important features, each part of the trunk would have to be seen in
one image, whereby it can be assumed that two images cover enough
features to make a meaningful quality and species decision.

The direct label noise comprises more than 15% due to human
uncertainty (Niemz et al., 2023) and 19% due to asynchronization.
However, it is important to note that the 19% only applies to images
affected by synchronization issues and does not necessarily imply incor-
rect labeling. 44% of the 19% asynchronized labels coincide with the
correct label by chance, resulting in 10.6% of mislabeled samples (see
Appendix D.1). Direct label noise needs to be disregarded during the
training phase of a model and improved during real-time and testing.

Moreover, it is crucial to understand that the same image can be
affected by more than one noise source at the same time, which is why
the probabilities cannot be added. To estimate the overall label noise,
one can use the inclusion–exclusion principle (Björklund, Husfeldt, &
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Fig. 5. Schematic illustration of the roundwood sorting process including the Machine Learning (ML) recommendation system. First the travel distance for the camera is calculated
and the displacement is tracked for synchronization. Next the trigger signal for the camera is generated and picture is taken. At position 3 a scanner measures length and diameter.
In position 4 the stems are cut to the appropriate length. In the last step, the operator enters his quality and species decision. The upper half of the image shows the Machine
Learning process running synchronously. After preprocessing the image, predictions are made by state-of-the-art CNNs like ResNet, followed by Pooling, Dropout and Dense layers.
Fig. 6. Data analysis for wood species and qualities. It shows the number of samples
in each of the seven different quality classes. The colors show different species within
each quality class.

Koivisto, 2009). Since there are no fixed percentages of wrong labels
for occlusion noise and information gap noise, a range of possible label
noise is calculated. First, we assume that occlusion and information gap
noise is 0. Next, we assume that all affected samples also have a wrong
label. With that, we calculated a label noise range between 24% and
62% (see Appendix D.2). This shows that there is a significant amount
of label noise that needs to be handled in the future. The first goal is
it to minimize the noise as much as possible by incorporating a second
image of the stem and addressing asynchronization with hardware and
software (see 4.6). To handle the remaining label noise, the literature
suggests different methods. Song, Kim, Park, Shin, and Lee (2022)
provides an overview of existing label noise-handling techniques.

In summary, we have faced common real-world data challenges,
which are also stated in the literature. Liu and Panagiotakos (2022) for
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example described real-world data as noisy, heterogeneous, incomplete,
and unbalanced. Others also mention the problem of imbalance (Kot-
siantis, Kanellopoulos, Pintelas, et al., 2006) and data quality in real-life
data for smart manufacturing (Wang, Ma, Zhang, Gao, & Wu, 2018; Xu
et al., 2022).

5.2. Results of data preprocessing/image segmentation

Fig. 8 shows the loss and accuracy of the Unet segmentation model
over 30 epochs for training and validation dataset. The final train
accuracy is 0.98 with a loss of 0.05, while the validation accuracy is
0.98 with a loss of 0.07.

The blur detector reaches an F1 score of 0.84 while the overexposed
detector has an F1 score of 0.87. Appendix D.3 shows the confusion
matrices for both detectors. Carefully tuning the thresholds for both
detectors could improve the accuracy/F1 score. An alternative would
be to train a neural network to detect overexposure and blurriness.
Although this could lead to higher accuracy, this approach requires
significantly more computational power.

5.3. Results of model training

This section shows the results of the quality and species models. The
manually tuned hyper-parameters which are used for training are listed
in Appendix B. Table 2 shows an overview of the results of the quality
models. ResNet50, EfficientNetB0, VGG19 and InceptionV3 networks
were trained respectively with and without hard numerical constraints,
which is downgrading quality in case of a too high taper value (see
Section 4.5) as well as a corresponding mixed input models.

Fig. 9 shows the confusion matrices of the final quality ResNet50
model without (a) and with (b) hard numerical constraint. The model
reaches an accuracy of 78% and an F1 score of 0.79. Adding the numer-
ical constraint slightly improves the accuracy mainly by downgrading
B-classified samples to class C. EfficientNetB0 also reaches an accuracy
of 78% and an F1 score of 0.78. Fig. 10 shows the confusion matrices
of EfficientNetB0 without (a) and with (b) numerical constraint. The
accuracy again increases after applying the numerical constraint to an
accuracy of 80% and an F1 score of 0.8.
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Fig. 7. Overview of different noise categories including the estimated number of affected samples based on studies. The main noise sources are image noise and direct and indirect
label noise.
Table 2
Results of quality models.
Model Avg. val

acc/loss
Avg. val
F1 score

Test
acc/loss

Test
F1 score

ResNet50 0.78 (±0.03)/
0.84 (±0.09)

0.78 (±0.03) 0.78/0.76 0.79

Constraint – – 0.79 0.79
Mixed 0.58 (±0.05)/

1.69 (±0.54)
0.56 (±0.07) 0.52/1.03 0.44

EfficientNetB0 0.79 (±0.01)/
0.93 (±0.12)

0.79 (±0.02) 0.78/0.99 0.78

Constraint – – 0.80 0.80
Mixed 0.62 (±0.11)/

0.91 (±0.08)
0.58 (±0.13) 0.56/0.98 0.56

VGG19 0.75 (±0.03)/
1.43 (±0.17)

0.75 (±0.02) 0.63/2.45 0.61

Constraint – – 0.68 0.67
Mixed 0.43 (±0.07)/

1.06 (±0.03)
0.42 (±0.07) 0.64/0.95 0.63

InceptionNetV3 0.63 (±0.07)/
2.21 (±0.33)

0.62 (±0.05) 0.68/2.02 0.68

Constraint – – 0.68 0.69
Mixed 0.65 (±0.05)/

2.21 (±0.33)
0.65 (±0.05) 0.71/1.91 0.71
The matrices show that EfficientNetB0 performs worse on class C
but better on class B and D than ResNet50. In the future, ensemble
methods may be used to achieve better accuracy. Rokach (2009) pro-
vides a review of different strategies to combine models of the same or
different families.

Fig. 11 shows the accuracy (a) and loss (b) plot of ResNet50,
which achieved the highest accuracy without numerical constraint. It
shows clearly that the model is still overfitting due to the lack of
data. VGG19 and InceptionNetB0 exhibit poorer performance compared
to the other two models. The introduction of a numerical constraint
for taper improves the accuracy/F1 score in all four models how-
ever, this enhancement is most pronounced in the case of VGG19.
Among the mixed models, InceptionNetB0 performs best with a final
accuracy and F1 score of 71%/0.71. Anticipating greater strides in
quality predictions from numerical data is more likely in datasets with
real-world complexity. In the present dataset, only images where the
cross-sectional view already provides clear indicators of quality were
selected. Consequently, substantial improvements from the inclusion of
numerical data are less likely to materialize.

Existing literature primarily focuses on wooden board quality as-
sessment and wood defect detection. For example, Affonso, Rossi,
Vieira, de Leon Ferreira, et al. (2017) achieved 82.11% accuracy in
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categorizing wooden boards into three quality levels, and Nurthohari,
Murti, and Setianingsih (2019) classified cedar boards into five quality
classes with 90% accuracy. For a comprehensive overview of wood de-
fect detection research, consult (Kryl et al., 2020). The work by Norell
(2009) introduces an automated technique for quantifying annual rings
in noisy sawmill images of logs, enabling the identification of a single
quality attribute. In comparison to an X-ray scanner at approximately
85% accuracy (Niemz et al., 2023), our system’s performance is only
slightly lower. However, it is crucial to acknowledge that our dataset
lacks the full complexity.

Table 3 shows an overview of the species model results. The best
model is EfficientNetB0 with an accuracy of 91% and an F1 score of
0.88. The confusion matrix is shown in Fig. 13. Fig. 14 shows the
accuracy (a) and loss (b) plot for the training and validation dataset
of EfficientNetB0. ReNet50 reaches an accuracy of 90% with an F1
score of 0.87, followed by VGG19 and InceptionNetV3. The confusion
matrix is shown in Fig. 12. All other accuracy, loss plots, and confusion
matrices of quality and species models can be found in Appendix C.

The models were also tested with simple augmentation, like flipping
and rotating, but this made the results slightly worse (0.01%). This
can be due to the already existing high variance in image brightness,
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Table 3
Results of species models.
Model Avg. val

acc/loss
Avg. val
F1 score

Test
acc/loss

Test
F1 score

ResNet50 0.92 (±0.01)/
0.41 (±0.05)

0.89 (±0.01) 0.90/0.47 0.87

EfficientNetB0 0.91 (±0.01)/
0.37 (±0.03)

0.90 (±0.01) 0.91/0.37 0.88

VGG19 0.90 (±0.01)/
0.71 (±0.04)

0.87 (±0.01) 0.88/0.78 0.85

InceptionNetV3 0.84 (±0.04)/
0.86 (±0.19)

0.80 (±0.03) 0.83/0.86 0.80
Fig. 8. Accuracy and loss over 30 epochs for training and validation of the Unet
segmentation model.

shapes, and contrast. Nevertheless, in the future, it might be useful to
apply augmentation techniques to make models more robust.

The literature primarily deals with species classification on wooden
boards using magnified images. One example is the CAIRO dataset (Kryl
et al., 2020), which magnifies images by 10x and covers over 100
tropical species. Most research focuses on tropical wood species, with
models achieving accuracies ranging from 72% to 99.84% (Kryl et al.,
2020). In another study, Fabijańska, Danek, and Barniak (2021)
achieved 98.7% accuracy in distinguishing 14 European tree species
using wood core images. Compared to prior studies, our dataset is being
acquired in a real-time process rather than a controlled experimental
environment, which is generally more difficult. Despite this we can still
achieve a respectable 91% accuracy.

We conducted an in-depth analysis to explore the potential ben-
efits of enhancing either the resolution or the quantity of training
samples. Fig. 15 shows a positive correlation between resolution and
accuracy/F1 score for ResNet50 quality and species model. It shows
asymptotic behavior and the increase in accuracy is merely 1% between
512 and 1024 pixels. This indicates that the used resolution of 1024
pixels is sufficient.

Fig. 16 shows the impact of the number of samples on the accu-
racy/F1 score for quality (a) and species (b) model built upon the
ResNet50 architecture. Accuracy and F1 score tend to increase as the
dataset’s size expands. Notably, the quality prediction model demon-
strates a considerably more pronounced increase than the species clas-
sification. This leads to the hypothesis that the quality model stands
to experience substantial enhancements through the introduction of a
larger and more diverse training dataset, while the species model can
also be improved, but not significantly.

It is also interesting how long it takes to train the models and make
predictions for individual samples. Plot Fig. 17 shows an overview of
9

the training times for the quality and species models (5-fold cross-
validation and final model each). It is important to note that the
models are trained for a different number of epochs to achieve their
best accuracy. The number of epochs is denoted in blue. For the
quality model, EfficientNetB0 final model takes the longest time, fol-
lowed by ResNet50, InceptionNetV3, and VGG19. For the species
model, ResNet50 needs the most time, followed by InceptioNetV3,
EfficientNetB0, and VGG19. ResNet50 has the fastest runtime per epoch
(4.3 min for the species model, 1 min for the quality model), followed
by EfficientNet (5.5 min for the species model, 1.2 min for the quality
model). Due to the higher number of data, the species models need a
significantly longer time to train than the quality models.

We further analyzed the prediction times for single images. Ta-
ble 4 shows an overview of the prediction times for each quality and
species model as well as the time needed to preprocess one image.
Therefore three different images were randomly selected, preprocessed,
and put through each quality and species model. The average time
needed for preprocessing (including the segmentation) was 16.1 s. The
fastest model for prediction is VGG19 with 24.7 s overall, followed
by ResNet50 and EfficientNetB0, while InceptionNetV3 is the slowest.
For the time predictions, we used a sequential computing approach as
described in Section 4.6. By parallelizing the process, the overall pre-
diction time can be accelerated. This includes for example computing
the species and the quality model at the same time.

To find a suitable model for deployment in the process, both pre-
diction time and the model’s accuracy play a role. Depending on
the requirements, these considerations may vary from one sawmill to
another. However, it is generally important to fulfill both requirements
as effectively as possible, which is why we recommend ResNet50. Com-
pared to EfficientNetB0, which exhibits the highest accuracy, ResNet’s
accuracy is merely 1% lower for species and equivalent for the quality
model, showcasing notably faster prediction times.

To evaluate the models, the throughput, i.e. the number of eval-
uations per minute, was considered for Resnet50 using a sequential
computing approach. The throughput of a single GPU is 1.9stems/min.
By harnessing the computational power of 3 GPUs/ calculating 3
predictions in parallel, the throughput is 5.7stems/min and it already
surpasses the existing throughput of 4 stems per minute within the
current operational process of our partner sawmill. However, it must
be noted that an installation of the camera after the cut (position 4)
would reduce the throughput. The time that the trunk is in the process
before the image is taken must be added. This underscores a pivotal
rationale for advocating the camera’s placement as expounded in this
paper.

6. Conclusion

This paper provides a proof-of-concept for sorting roundwood based
on quality and species. It shows a successful image acquisition as
well as models that are able to learn quality and species features
from a selected dataset. The system offers a flexible, adaptable, and
scaleable solution for automating the process. The same software can
be used for several process lines and only the costs of the camera and
installation are incurred. With the help of different methods such as
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Fig. 9. Confusion matrices of the final quality model of ResNet50. (a) without the numerical constraint, (b) with numerical constraint for taper.
Fig. 10. Confusion matrices of the final quality model of EfficientNetB0. (a) without numerical constraint, (b) with numerical constraint for taper.
Fig. 11. (a) Accuracy plot and (b) loss plot of final ResNet50 model over 30 epochs.
Table 4
Prediction times for perprocessing, quality and species model for single images with sequential computing approach.
Model Time for preprocessing Time for quality model Time for species model Overall time

ResNet50 16.1 s 7.6 s 7.7 s 31.4 s
EfficientNetB0 16.1 s 12.8 s 11.0 s 39.9 s
VGG19 16.1 s 4.3 s 4.3 s 24.7 s
InceptionNetV3 16.1 s 12.3 s 13 s 41.4 s
10
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Fig. 12. Confusion matrix of the final species model of ResNet50.

Fig. 13. Confusion matrix of the species quality model of EfficientNetB0.

transfer learning, the adaptability to domain shifts can be implemented.
For example, for the use in a different sawmill or the occurrence of
other species.

However, it is important to note that the used quality dataset does
not reflect real-world complexity. The training and prediction with the
overall quality dataset remains a challenge. Future research is planned
to overcome this problem and train more robust models. Therefore a
second image of the trunk is necessary to reduce the missing informa-
tion in the dataset. Asynchronized data should be reduced as much
as possible manually and with the help of hardware and software.
In order to deal with the remaining noise, approaches such as loss
corrections should be applied. To further improve the accuracy, special
architectures for fine-grained image analysis and ensemble models
should be used.

Looking ahead, the industrial deployment of the system entails
several objectives. Enhancing model explainability and analyzing the
uncertainty of predictions are paramount for engendering trust and
providing valuable intervention insights. As data accumulates, the pur-
suit of encompassing the four unexplored quality classes and additional
species in model learning is anticipated. In order to improve throughput
and reduce the number of GPUs and computing power required, a
common model for quality and species could be trained. Moreover,
it is necessary to optimize the code in terms of time and effort and
build the necessary infrastructure. This also includes sufficient ver-
sion control management, code reviews and continuously updating the
models (Paleyes, Urma, & Lawrence, 2022).
11
In summation, this paper validates the feasibility of automating
log sorting. However, for seamless integration into real-world opera-
tions, specific enhancements are imperative. This holistic perspective
underscores both the achievements and the ongoing strides necessary
to actualize the potential of the proposed automation framework.
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Appendix A. Detailed quality features

This section provides detailed quality feature calculations on the
cross-section and the stem. Fig. A.18 shows the most important fea-
tures on the cross section including the formulas for calculating their
expressions. The table in Fig. A.19 shows the feature on the stem.

Appendix B. Hyperparameter

The following hyperparameters are fixed for all final models:

• Resolution: 1024 𝑥 1024 pixel
• Color channels: 3
• Batch size: 4
• Balancing strategy: reweighting for species, None for quality
• Augmentation: No augmentation
• Transfer learning: based on imagenet
• Stratified 5 fold cross validation
• Optimizer: Adam with learning rate of 0.00001 for quality and

0.000001 for species, 𝑏𝑒𝑡𝑎1 = 0.8 and 𝑏𝑒𝑡𝑎2 = 0.9
• Early stopping: max epochs: 300 patience of 5 based on val loss
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Fig. 14. (a) Accuracy plot and (b) loss plot of final EfficientNetB0 species model over 46 epochs.
Fig. 15. Accuracy/F1 score with increasing resolution for species and quality ResNet50
model.

• No cleaning of overexposed/blurry images (left to keep models
robust)

Manually tuned hyperparameters:

• ResNet50 quality: 𝑑𝑟 = 0.6, alpha 𝐿2 = 0.4, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.01,
number of frozen layers: 165

• EfficientNetB0 quality: 𝑑𝑟 = 0.6, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.4, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.01,
number of frozen layers: 100

• VGG19 quality: 𝑑𝑟 = 0.7, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.5, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.05, number
of frozen layers: 10

• InceptionNetV3 quality: 𝑑𝑟 = 0.6, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.4, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.01,
number of frozen layers: 100

• ResNet50 species: 𝑑𝑟 = 0.7, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.6, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.01,
number of frozen layers: 165

• EfficientNetB0 species: 𝑑𝑟 = 0.6, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.4, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.01,
number of frozen layers: 100

• VGG19 species: 𝑑𝑟 = 0.6, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.4, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.1, number
of frozen layers: 10

• InceptionNetV3 species: 𝑑𝑟 = 0.7, 𝑎𝑙𝑝ℎ𝑎𝐿2 = 0.5, 𝑎𝑙𝑝ℎ𝑎𝐿22 = 0.1,
number of frozen layers: 100

These are the number of parameter each model has:

• ResNet50 quality: Total parameters: 90.697.091; Trainable pa-
rameters: 71.575.043; Non-trainable parameters: 19.122.048

• EfficientNetB0 quality: Total parameters: 45.993.126; Trainable
parameters: 45.783.903; Non-trainable parameters: 209.223

• VGG19 quality: Total parameters: 36.802.115; Trainable param-
eters: 35.066.627; Non-trainable parameters: 1.735.488
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• InceptionNetV3 quality: Total parameters: 80.785.699; Trainable
parameters: 78.609.283; Non-trainable parameters: 2.176.416

• ResNet50 species: Total parameters: 90.696.962; Trainable pa-
rameters: 71.574.914; Non-trainable parameters: 19.122.048

• EfficientNetB0 species: Total parameters: 45.992.997; Trainable
parameters: 45.783.774; Non-trainable parameters: 209.223

• VGG19 species: Total parameters: 36.801.986; Trainable param-
eters: 35.066.498; Non-trainable parameters: 1.735.488

• InceptionNetV3 species: Total parameters: 80.785.570; Trainable
parameters: 78.609.154; Non-trainable parameters: 2.176.416

Appendix C. Detailed results

This section shows the confusion matrices, loss and accuracy plots of
ResNet50, EfficientNetB0, VGG19 and InceptionNetV3 for quality and
species, not shown in the main text (see Figs. C.20–C.28).

Appendix D. Label noise calculation

D.1. Label noise by synchronization

A synchronization error happened on 38% of the 16 observed days.
With the assumption that the mismatch happens after 50% of the
time, 19% of all samples are affected by the synchronization problem.
In order to answer the question of how many labels are wrong, we
calculate the probability of an affected sample to get the right label
by chance:

• Probability of an instance to belong to class B: 𝑃 (𝐵) = 0.43
• Probability of an instance to belong to class C: 𝑃 (𝐶) = 0.5
• Probability of an instance to belong to class D: 𝑃 (𝐷) = 0.07
• Probability that a B instance gets a B label reassigned: 𝑃 (𝐵) ∗
𝑃 (𝐵) = 0.1849

• Probability that a C instance gets a C label reassigned: 𝑃 (𝐶) ∗
𝑃 (𝐶) = 0.25

• Probability that a D instance gets a D label reassigned: 𝑃 (𝐷) ∗
𝑃 (𝐷) = 0.0049

• Probability that one instance gets the right label: 0.1849 + 0.25 +
0.0049 = 0.4398

• Probability that the technical mismatch problem causes an actual
change of labels: (1 − 0.4398) ∗ 0.19 = 0.106

D.2. Estimation of label noise

Since one sample can be affected by different kinds of label noise
at the same time, we need to calculated the probability that a label is
wrong compared to the ground truth. For that we are looking at the
worst case and a best case scenario. In the worst case the occlusion
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Fig. 16. Accuracy/F1 score increase with increasing number of samples per class for (a) quality model and (b) species model.
Fig. 17. Training times for (a) quality model and (b) species model.
Fig. A.18. Features which can be seen on the cross section of a stem, which are important for quality classification including formulas. Based on Bundesamt für Umwelt BAFU
(2010).
Fig. A.19. Features which can be seen on the stem, which are important for quality classification including formulas. Based on Bundesamt für Umwelt BAFU (2010).
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Fig. C.20. (a) Loss plot and (b) accuracy plot of final quality EfficientNetB0.
Fig. C.21. (a) Loss plot and (b) accuracy plot of final quality VGG19. Intense overfitting results in a rise in test loss, a challenge that can be mitigated by expanding the dataset
in subsequent iterations.
Fig. C.22. (a) Loss plot and (b) accuracy plot of final quality InceptionNetV3.
noise has the probability P(O) = 0.34 and the missing information has
P(I) = 0.25. The human error is P(H) = 0.15 and the previously techni-
cal mismatch is at P(T) = 0.106. The probability that a label is wrong
in the dataset can be approximates with the following calculation:

𝑃 (𝑂) +𝑃 (𝐼) +𝑃 (𝐻) +𝑃 (𝑇 ) −𝑃 (𝑂, 𝐼) −𝑃 (𝑂,𝐻) −𝑃 (𝑂, 𝑇 ) −𝑃 (𝐼,𝐻) −
𝑃 (𝐼, 𝑇 ) − 𝑃 (𝐻, 𝑇 ) + 𝑃 (𝑂, 𝐼,𝐻) + 𝑃 (𝑂, 𝐼, 𝑇 ) + 𝑃 (𝐼,𝐻, 𝑇 ) + 𝑃 (𝐻, 𝑇 ,𝑂) −
𝑃 (𝑂, 𝐼,𝐻, 𝑇 ) = 0.34+0.25+0.15+0.106−0.085−0.051−0.03604−0.0375−
0.0265−0.0159+0.01275+0.00901+0.003975+0.005406−0.0013515 = 0.62

Looking at the best case in which only the human error P(H) =
0.15 and the technical mismatch exists P(T) = 0.106. The resulting
14
probability of having label noise is at: 𝑃 (𝐻) +𝑃 (𝑇 ) −𝑃 (𝐻, 𝑇 ) = 0.256−
0.0159 = 0.2401 In conclusion the label noise lies in between 24% and
62%.

D.3. Results of noisy and blur detector

The results of the image noise detectors are shown in Fig. D.29. The
blur detector (a) reaches an F1 score of 0.84. The overexposed detector
(b) reaches an F1 score of 0.87.
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Fig. C.23. Confusion matrices of VGG19 quality model (a) without and (b) with numerical constraint.

Fig. C.24. Confusion matrices of InceptionNetV3 quality model (a) without and (b) with numerical constraint.

Fig. C.25. (a) Loss plot and (b) accuracy plot of final species ResNet50.
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Fig. C.26. (a) Loss plot and (b) accuracy plot of final species VGG19.
Fig. C.27. (a) Loss plot and (b) accuracy plot of final species InceptionNetV3.
Fig. C.28. Confusion matrices of (a) VGG19 model and (b) InceptionNetV3.
16
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Fig. D.29. Confusion matrices of Noise Detectors. (a) Blur detector tested on 500 samples, (b) Overexposed detector tested on 500 samples.
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