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A B S T R A C T   

Advances in sensorization and identification of information embedded inside sensor signatures during 
manufacturing processes using Machine Learning (ML) algorithms for better decision-making have become 
critical enablers in building data-driven monitoring systems. In the Laser Powder Bed Fusion (LPBF) process, 
data-driven-based process monitoring is gaining popularity since it allows for real-time component quality 
verification. Real-time qualification of the additively manufactured parts has a significant advantage as the cost 
of conventional post-manufacturing inspection methods can be reduced. Also, corrective actions or build 
termination could be done to save machine time and resources. However, despite the successful development in 
addressing monitoring needs in LPBF processes, less research has been paid to the ML model’s robustness in 
decision-making when dealing with variations in data distribution from the laser-material interaction owing to 
different process spaces. Inspired by the idea of domain adaptation in ML, in this work, we propose a deep 
learning-based unsupervised domain adaptation technique to tackle shifts in data distribution owing to different 
process parameter spaces. The temporal waveforms of acoustic emissions from the LPBF process zone corre-
sponding to three regimes, namely Lack of Fusion, conduction, and keyhole, were acquired on two different 316 L 
stainless steel powder distributions (> 45 µm and < 45 µm) with two different parameter sets. Temporal and 
spectral analysis of the acoustic waveforms corresponding to the powder distributions treated with different laser 
parameters showed the presence of offset in the data distribution, which was subsequently treated with the 
proposed unsupervised domain adaptation technique to have an ML model that could be generalized. Further-
more, the prediction accuracy of the proposed methodology between the two distributions showed the feasibility 
of adapting to the newer environment unsupervisedly and improving the ML model’s generalizability.   

1. Introduction 

The Laser Powder Bed Fusion (LPBF) process allows the direct 
fabrication of complex geometries and near-net-shaped metal parts with 
high densities from a three-dimensional Computer-Aided Design (CAD) 
design [1]. The metal-based LPBF also facilitates melting and solidifying 
different alloy compositions repeatedly layer by layer using a replen-
ishing powder bed and defined scanning of a laser heat source [1]. 
Compared to alternative metal additive manufacturing (AM) ap-
proaches, LPBF allows for the fabrication of parts with improved feature 

resolution and accuracy at the expense of build rates and maximum 
build dimensions. [2]. The part fabrication using the LPBF process in-
volves three steps [3]. The first step includes layering the metal powder 
of desired chemical composition to a certain thickness of around ~50 μm 
on a baseplate using a coating mechanism [4]. In the second step, a 
focused laser source is irradiated on the powder bed as per the sliced 
CAD cross-section. Interaction of the laser and the powder bed causes 
the metal powder particles to fuse with adjacent particles as they are 
rapidly melted and cooled. The previously deposited 2D cross sections 
become fused with the new layer, forming a 3D shape. The third and 
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final step involves gradually lowering the baseplate and replenishing the 
top layer with powder particles. The cycle of the three steps prolongs 
until the part is completely fabricated and generally takes a few hours 
for simple geometries and longer time for complex ones. 

Although the process appears theoretically straightforward, the un-
derlying dynamics in the melt pool due to rapid melting and cooling, 
properties of the powder stock material, surrounding environments, and 
complex thermal history over time make it complicated to produce fully 
dense parts with desired properties. The difficulty in process reproduc-
ibility and the ensuing discrepancies in workpiece quality limit the 
technology from being adopted easily by industries [5,6]. The LPBF 
process parameters, such as laser power, powder composition, scan 
speed, layer thickness, scanning strategy, and chamber environment, 
particle size distribution, directly correlate with the quality of the 
fabricated part [7–11]. Processing metallic powder particles at 
sub-optimal laser parameters in the LPBF process results in defects such 
as balling, cracks, delamination, Lack of Fusion (LoF) and keyhole porosity. 
Such defects decrease the density of the part, which is unfavourable to 
the mechanical properties of the fabricated workpiece. During the LPBF 
process, high scanning speed causes high capillary instability of the melt 
pool, making them spheroid to minimize free energy, giving rise to the 
first type of balling phenomenon [12,13]. Also, the reduction in the 
thermal energy density imparted into the powder bed by insufficient 
laser power causes poor wettability and molten pool fluidity leading to 
another type of balling phenomenon [14,15]. Balling tends to increase 
surface roughness and aggravate pore formation during subsequent 
melting. Similar to balling, the LoF defects appear as an incomplete 
overlap between adjacent laser tracks or layers due to insufficient en-
ergy input [16]. Consequently, incomplete overlaps trap unmelted 
powders, forming irregular pores that remain permanently in the 
fabricated part [17]. Unlike balling and LoF, keyhole porosity is caused 
when the high thermal energy density is imparted [18]. The rapid in-
crease in thermal density creates deeper melt pools and vapour chan-
nels. As the vapour cavity collapses, some metal vapor and shielding gas 
get trapped as they cannot exit the molten surface in time, resulting in 
pores with spherical morphologies [19]. Thus, searching for optimized 
process parameters for each new alloy combination with minimum de-
fects or full density is time-consuming [20]. Fabrication of the part in a 
predefined favorable parameter window also does not guarantee that 
the produced part is defect-free due to the non-linear thermal dynamic 
of the previous layers, which can result in defect formation [21,22]. The 
parts fabricated by the LPBF process tend to have a complex thermal 
history as the heat source moves rapidly [23,24]. In addition, thermally 
induced cracks and delamination tend to initiate when the thermal 
gradients result in the build-up of residual stresses [25–27]. The thermal 
conductivity and thermal expansion coefficient heavily influence heat 
transfers with the environment in the melt pool’s vicinity [28]. In 
addition to sub-optimal parameter selection, improper thermal cycle 
optimization yields process anomalies due to unfavourable melt pool 
temperature profile and morphology [17]. 

The addition of sensors around the laser-material interaction zone 
and decoding the patterns in the sensor signatures corresponding to 
secondary emissions from the process zone will enable us to monitor and 
know the current status of the process, thereby ensuring targeted qual-
ity. Real-time sensing systems can replace time- and money-consuming 
offline postmortem techniques for defect diagnosis like Computed To-
mography (CT) and ultrasonic scanning. For defect monitoring during 
the LPBF process, a wide variety of sensors have been used that can 
capture the process zone’s thermal, optical, and acoustic emissions [21, 
22,29,30]. Pyrometers have been applied for a very long time to mea-
sure and monitor the temperature field surrounding the process zone 
[31,32]. The significant advantage of pyrometers is that the amount of 
light striking the detector surface can be correlated to a temperature 
distribution to understand the process zone. The sensor’s disadvantage 
is that it lacks spatial resolution because melt pools are typically in the 
range of 10 to 250 µm [33,34]. To counteract this, more works have 

recently been performed in imaging radiations at the Infra-Red (IR) 
regime and using high-speed imaging systems in the visible spectrum 
[35]. Although incorporating suitable optics with the IR and high-speed 
imaging techniques has also enabled the retrieval of high-resolution 
spatial information from the melt pool surface, there are issues with 
emissivity calibration [36–39]. Additionally, it should be emphasized 
that they are not economical for managing the hardware, data man-
agement, and its treatment. Moreover, the optics have to be mounted 
co-axially with the laser head for better visualization of the melt pool, 
which requires alteration to the existing industrial machines. Acoustic 
emission (AE)-based sensors are an alternative for more efficient data 
processing and cost-effective sensing methods [40,41]. They can 
monitor melt pool dynamics on time scales of about 10 to 100 μs as they 
have great temporal resolution [42–44]. However, the correct location, 
distance and orientation of AE sensors need comparable attention as 
pyrometers and are definitely more complicated as compared to imaging 
sensors. 

It is challenging for human operators to comprehend the highly non- 
linear temporal and spatial information captured by the sensors due to 
the transitory nature of the laser-material interaction from the LPBF 
process zone [45]. Using signal processing methods on the temporal 
waveform data, sparse lower-dimensional statistical features can be 
extracted in the time, frequency, and time-frequency domains. The 
distribution of these statistical features throughout the different LPBF 
regimes allows correlation [46,47]. Additionally, for decision-making, 
these are integrated with appropriate standard ML algorithms. To 
evaluate the part quality, traditional ML models such as K-Nearest 
Neighbor (KNN) and Decision Tree (DT) have been trained on data from 
optical and thermal sensors [48]. Khanzadeh et al. [49] proposed 
monitoring the AM process using a multilinear principal component 
analysis (MPCA) method computed on the thermal maps. Gobert et al. 
[50] trained a linear support vector machine (SVM) on multidimen-
sional visual features extracted from the digital images of each build 
layer to assess its quality. Additionally, it has been claimed that ran-
domized singular value decomposition (SVD) features obtained from a 
photodiode sensor can be used to determine the build quality using the 
Gaussian mixture model (GMM) [51]. Utilizing statistical data calcu-
lated from acoustic signals, the classifiers based on linear SVM, Random 
Forest (RF), and logistic regression have successfully identified various 
processing regimes in LPBF [47,52]. However, the robustness of the ML 
model trained on manual feature extraction techniques depends on the 
choice of the features, which is directly dependent on human intelli-
gence, which is a downside in such approaches. Unlike conventional ML 
algorithms that require preprocessing of the data streams to obtain a 
sparse representation based on human knowledge before training, ML 
techniques based on deep learning (DL) that can work on raw sensor 
data with minimum preprocessing are of interest to the research com-
munity to monitor the LPBF process [53,54]. The DL techniques based 
on convolutional neural networks (CNNs) trained on images of the 
powder bed before laser scanning have been proposed as a machine 
vision strategy to predict anomalies caused by the recoater blade on the 
LPBF process [55,56]. Anomalies due to irregularities in the powder bed, 
such as warpage, part shifting, and short feed, have been detected based 
on training the digital images using deep residual and region proposal 
neural networks supervisedly [57]. The CNNs have also been trained on 
two-dimensional spectrograms obtained from raw acoustic emission 
signatures captured from the process zone for the classification of the 
quality of the process, such as porosity and density levels [40,58–60]. 
Similar to this, CNNs have been trained on melt pool images corre-
sponding to various laser regimes to spot variations in the melt pool 
characteristics. [61,62]. CNN’s have been reported to detect defects 
such as delamination based on the images of the process zone acquired 
at the infrared wavelength [63]. Deep belief networks (DBN) have been 
supervisedly trained on microphone data to categorize balling and other 
mechanisms [64]. In order to monitor anomalies in the LPBF process, 
Alessandra Caggiano et al. [65] combined the data streams from the 
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powder bed and process zone to take a decision using a Bi-stream CNN. 
Additionally, CNNs have been supervisedly trained on heterogeneous 
data streams such as optical, thermal and acoustics acquired from the 
process zone to predict the printed part’s quality in real-time[66–68]. 
Semi-supervised training of CNNs has been proposed as a monitoring 
strategy with minimum effort in data collection to identify and catego-
rize abnormalities in the LPBF process [69,70]. 

A comprehensive examination of Machine Learning (ML) algorithms 
trained in supervised, semi-supervised, and unsupervised ways on 
different sensors has given confidence in real-time monitoring of the AM 
processes [71]. However, a downside of such trained ML models is 
generalization, where their performance depends on the distribution of 
the information embedded inside the data streams. Owing to the sig-
nificant differences in the chamber design across machines, laser pa-
rameters, powder particle size distribution, and the alloy composition of 
powders across vendors, it is always difficult to attain a similar distri-
bution in the information that is collected by sensors compared to 
trained ML models. Furthermore, the offsets in sensor making, orienta-
tion, and location across machines contribute to these offsets in the 
sensor distribution. The variation in the distribution of the sensor sig-
natures can be explained from a physical point of view as the optical, 
acoustic, and thermal emissions correlate directly with the material and 
machine parameters. As a result of this shift in sensor signature distri-
bution, the DL algorithms created for in-situ monitoring of a specific 
process space inside the process map are undeployable for another 
space. Machine learning models usually perform well when processing 
samples from the same distribution as the training data; however, when 
processing samples from different distributions is involved, they meet a 
phenomenon known as "domain shift," which lowers their performance. 
Training individual models for each scenario inside LPBF process maps 
adds cost and time, which is not a viable solution. The authors of this 
work have already tackled this domain shift problem between two 
process map spaces using transfer learning on two CNN architectures 
[59]. Transfer learning allows the retraining of certain network layers, 
thereby allowing knowledge augmentation after network retraining. 
The downside of the approach was that new data spaces had to be 
labelled, which added to the cost and time. In this work, we attempt to 
narrow this gap by proposing a deep learning-based unsupervised 
domain adaptation technique to tackle shifts in data distribution 
without the knowledge of ground truths owing to different process 
parameter spaces for classification. The LPBF regimes, such as LoF pores, 
conduction mode and keyhole pores, are inferred from known process 
space to unknown process spaces based on AE signatures. The temporal 
waveforms of acoustic emissions from the LPBF process zone were 
recorded on two different 316 L stainless steel powder distributions (>
45 µm and < 45 µm), with two different parameter sets corresponding to 
three regimes LoF, conduction, and keyhole pores. The presence of offset 
in the data distribution was discovered through a temporal and spectral 
analysis of the acoustic waveforms corresponding to the powder distri-
butions treated with various laser parameters. This data was then pro-
cessed using the unsupervised domain adaptation technique that was 
suggested to create a generalizable ML model. 

This paper is divided into six sections. Section 1 concisely overviews 
the LPBF process and defines the problem statement. Section 2 provides 
in-depth information on the LPBF experimental setup, sensor configu-
ration and presents findings from powder characterization. Section 3 is 
dedicated to analysing AE signals’ spectrum and temporal feature dis-
tributions during laser-material interaction across various process 
spaces. This section also briefly introduces the domain adaptation 
learning technique. Section 4 showcases the predictions made by the 
CNN, both with and without the incorporation of domain adaptation, 
using AE data from two distributions. Finally, Sections 5 and 6 sum-
marize the paper’s findings, discuss limitations in the proposed meth-
odology pipeline, and outline future directions for in-situ monitoring in 
the LPBF process. 

2. Materials and methods 

2.1. Experimental setup 

The experiments in this work were performed using a commercial 
LPBF machine SISMA MySint 100 (SISMA, Italy). It is equipped with a 
fiber laser of 1070 nm wavelength and a Gaussian laser spot with a 1/e2 

of 55 µm. The laser can operate with a power of up to 200 W in a 
continuous mode. In addition, an in-situ AE sensing system was installed 
in the processing chamber, as shown in Fig. 1. 

The in-situ sensing system comprises a photodiode trigger coupled 
with a collimator using a fiber patch cable with a core diameter of 
550 µm and an airborne acoustic emission sensor. The collimator 
(F220SMA-980, Thorlabs) of fixed focus type is installed in an off-axial 
configuration to collect optical signals from the full zone of interaction 
between the laser and material. These signals are guided to the photo-
diode (PDA20CS2, 800–1700 nm; Thorlabs) and converted to an 
analogue voltage signal proportional to the detector’s absorbed in-
tensity. The acoustic emission sensor used in this work is from Avisoft 
Bioacoustics (CM16/CMPA), which has a flat frequency response of 
0–150 kHz. The AE sensor was fixed near the built plate facing the built 
plate at 45 degrees with a suitable fixture (see Fig. 1). The sensor sig-
natures from the two sensors were extracted outside the processing 
chamber using suitable feed-throughs. They were captured with a dy-
namic range of ± 5 V using a PCIe data acquisition card (Advantech 
1840) at a sampling rate of 400 kHz using custom-coded software based 
on the C# framework. The signals from both channels are acquired 
automatically based on the preset thresholding value in the channel 
corresponding to the photodiode. As the laser interacts initially with the 
powder in every new layer, the optical intensity recorded by the 
photodiode exceeds 0.5 V, resulting in automatic data recording. The 
Nyquist-Shannon theorem [72] was ensured by selecting a data acqui-
sition rate of 400 kHz to satisfy the frequency response of the AE sensor. 
It should also be noted that both the channels that record the optical and 
acoustic emissions are synchronized, as shown in Fig. 2. As seen in Fig. 2, 
every time the laser irradiates the powder bed (here every 50 ms), the 
photodiode gain is preset so that the recorded intensity hits the upper 
saturation limit of 5 V, and corresponding AE signatures in this window 
correspond to each scan track, which can be processed afterwards. 

2.2. Materials 

In this work, the material feedstock was a gas-atomized 316 L 
stainless steel powder with a mostly spherical shape from Oerlikon 
Metco in Switzerland. The original particle size distribution ranged from 
15 μm to 60 μm. The powder was sieved using a mesh 325 vibrating 
siever (45 μm distance between the wires) to obtain two distributions, 
D1 (upper range of the sieved distribution) and D2 (powder sieved < 45 
μm diameter). The aim of generating two powder size distributions was 
also to understand how the powder particle size distribution change 
affects the acoustic spectra characteristics as they interact with a laser 
source. 

Fig. 3 shows the density distribution of the 316 L powder particles 
corresponding to the two distributions, D1 and D2, measured using the 
Mastersizer 3000® (Malvern, UK) particle size analyzer based on the 
laser diffraction technique. Comparing the two distributions from Fig. 3, 
it can be seen that nearly ≈ 75% of the particle sizes overlap. However, 
in the case of D1, most particle sizes are centered around 40 μm with 
only a small fraction of particles < 20 μm. On the other hand, D2 exhibits 
a significant amount of finer particles less than 20 μm. Table 1 represents 
the statistical particle size distribution in three metrics, namely D10, 
D50, and D90. All three metrics for the two distributions are quite 
different from each other. The characterization of the two distributions 
suggests that any deviation in the acoustic signatures from the process 
zone can be directly related to the different particle size distributions. 

In addition to the particle size characterization, the rheological 
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properties, such as the flowability and cohesion within the particles of 
the two distributions, D1 and D2, were analyzed using GranuDrum 
(GranuTools, Belgium). Therefore, the flow characteristics of the pow-
der particles in the drum can be directly correlated with the spreading 
behaviour of the powder particles using the recoating mechanism in 

commercially available LPBF printers. Powders from the two batches, 
D1 and D2, were progressively rotated at five RPMs, namely 2, 4, 6, 8 
and 10, to determine the dynamic flowability properties. Table 2 shows 

Fig. 1. Sisma MYSINT 100 coupled with airborne acoustic sensor and photodiode trigger for LPBF process.  

Fig. 2. a) Time-synced photodiode trigger and corresponding acoustic emission for each scanning length. b) Frequency spectrum computed over acoustic signals.  

Fig. 3. Particle size distribution in the two 316 L powders D1 and D2 used in 
the study. 

Table 1 
Statistics of cumulative particle size distribution in terms of D10, D50 and D90.  

Category D10 D50 D90 

Particle distribution above 45 µm [D1] 30.9 μm 42.3 μm 57.9 μm 
Particle distribution below 45 µm [D2] 19.1 μm 29.6 μm 45.3 μm  

Table 2 
Flowability and cohesive index of the two different 316 L powder distributions, 
D1 and D2.  

Sequence velocity Particle distribution above 
45 µm [D1] 

Particle distribution below 
45 µm [D2] 

Speed [rpm] Angle [◦] Cohesive Index Angle [◦] Cohesive Index  

2  32.21  2.41  33.75  3.87  
4  31.81  1.40  34.11  1.78  
6  33.91  2.32  33.08  4.20  
8  34.52  2.70  36.42  3.85  
10  36.69  3.10  34.07  5.69  
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the obtained avalanche angles and cohesive indeces for the two distri-
butions. The value obtained with D2 from Table 2 shows that the 
powder’s flowability is reduced with smaller particle sizes, resulting in 
higher angles and a higher cohesive index. The rheological character-
ization of the two distributions also suggests that any deviation in the 
acoustic signatures from the process zone results from the differences in 
the flowability of the powders, which indirectly affects their packing 
density after recoating. 

2.3. Process parameters 

The primary goal of this work is to map dissimilar process parameter 
spaces that produce the same LPBF process regimes – LoF, conduction 
mode and keyhole pores – using the corresponding acoustic signature 
without supervision. Therefore, two cuboid samples (width: 20 mm, 
length: 20 mm) were fabricated from the two powder batches, D1 and 
D2. The three different processing regimes were realized using different 
combinations of laser power and scanning speed, as listed in Table 3. 
Apart from particle size distribution change, the laser power parameters 
were also slightly offset across each regime between the two cubes to 
introduce the shift in the distribution of the acoustic signature datasets. 
A bidirectional scanning strategy with 90º rotation between the layers 
was used. The layer thickness was empirically set to 30 μm and a hatch 
distance of 0.1 mm for all three processing regimes of both powder 
fractions. Prior to laser irradiation, the powder layer typically has a 
greater thickness than the powder particles that melt to form a dense 
layer due to cavity filling. As a result, once the powder bed is renovated, 
the cavity of the new layer thickness is more than the maintained layer 
thickness [73]. Therefore, though a layer thickness of 30 μm is main-
tained, the powder particles above 45 μm from the distribution D1 and 
D2 could be accommodated. 

The experiments were conducted in argon gas containing < 0.1% 
oxygen. Samples were fabricated with the different regimes in the 
following order (from the bottom to the top): keyhole pores, conduction 
mode, and LoF regimes in each cube after the preliminary “build-up” 
stage. This order was selected to ensure that artifacts of the previous 
regimes do not affect the acoustic signature from the current regime. 

The occurrence of the three regimes was confirmed by inspecting the 
workpiece cross-sections via optical microscopy that were cut perpen-
dicular to the scan tracks and further ground and polished according to 
metallographic preparation standards. The different levels of build 
density, porosities and voids across each regime, as shown in Fig. 4, 
confirmed that the selected laser powers and scanning speeds resulted in 
the desired regimes for the two cubes printed using different particle size 
distributions. 

2.4. Dataset preparation 

As the laser interacts with the powder bed while fabricating the cube, 
the optical intensity crosses the threshold of 0.5 V for every scan length, 
which triggers data acquisition from the AE sensor. As the gain of the 
photodiode trigger is adjusted to saturate at 5 V, the corresponding 
continuous-time window where the optical signal remains at 5 V for 
12.5 ms is computed and chopped to form the dataset. Irrespective of the 
regime and the cube, the signals are chopped into the window of 12.5 ms 
(5000 data points), and a low-pass Butterworth filter is applied offline 
with a cut-off frequency of 150 kHz and stored for further processing. 

The choice of 150 kHz for the frequency cut-off was based on the fre-
quency response specification of the AE sensor. A detailed description of 
the AE dataset used in this work is shown in Table 4. 

3. Proposed methodology 

3.1. AE signal analysis 

To initially confirm that changes in the distribution of the powder 
particles and offset in laser power parameters have influenced the 
acoustic signature distribution from the process zone, the windows 
corresponding to each regime across regimes were resolved in the time 
domain and frequency domain for analysis. First, the Root Mean Square 
(RMS) was computed across all the windows for individual regimes in 
the time domain analysis. The comparison of the RMS distribution 
across the distributions within the regimes, as shown in Fig. 5, shows 
that there are areas with significant overlap and with unique distribu-
tion. The AERMS for the keyhole regime was more or less the same as for 
other regimes. 

The energies corresponding to the fifteen frequency bands 
(0–10 kHz, 10–20 kHz, 20–30 kHz, 30–40 kHz, 40–50 kHz, 50–60 kHz, 
60–70 kHz, 70–80 kHz, 80–90 kHz, 90–100 kHz, 100–110 kHz, 
110–120 kHz, 120–130 kHz, 130–140 kHz, and 140–150 kHz) were 

Table 3 
LPBF process parameters on the two different powder distributions.  

Class labels Particle distribution above 45 µm [D1] Particle distribution below 45 µm [D2]  

Lack of Fusion (LoF) Conduction mode Keyhole pores Lack of Fusion (LoF) Conduction mode Keyhole pores 

Laser Power (W)  110  160  160  90  140  180 
Scan speed (mm/s)  800  400  75  800  400  75  

Fig. 4. Optical micrograph for each regime across two 316 L powder distri-
butions D1 and D2. 

Table 4 
Total number of AE windows of 12.5 ms (5000 data points) extracted for 
building the two cubes from to the particle distribution D1 and D2.  

Particle distribution LoF Conduction mode Keyhole 

Above 45 µm [D1]  10450  9576  10082 
Below 45 µm [D2]  9875  8977  11750  
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computed by the periodogram method for all the windows in the dataset 
to analyze the AE waveform signal in the frequency domain. Fig. 6 
shows the cumulative energy values for the regimes corresponding to 
the two distributions across the fifteen frequency bands. Fig. 6 also re-
veals that most of the energy components for the regimes are concen-
trated in the frequency range below 100 kHz for both powder 
distributions. The peak energy of AE waves’ for the keyhole regime was 
between 0 to 60 kHz. For the LoF regime, the dominant frequencies were 
between 10 and 90 kHz, and the dominant frequencies for the conduction 
mode were between 10 and 90 kHz. The comparison of cumulative en-
ergy distribution across the fifteen frequency bands confirms deviations 
in the AE waves’ energy content due to the powder particle distribution 
and the laser power parameter. 

Owing to the differences in the feature space, a model trained on 
either distribution cannot have a robust prediction of the other resulting 
in having separate models of each distribution and parameter space 
which would be cumbersome. 

3.2. Domain adaptation and proposed methodology 

The likelihood of the trained deep learning model performing well on 
the training data (Source domain) on the test data set drawn from the 
different data distribution (Target domain) is very low, as shown in Fig. 7 
(a) and (b). Building a generalizable model trained on a single source 
dataset and applying it to another target dataset with variations to 
generate accurate classifications and judgments is the aim of domain 

Fig. 5. Distribution of AERMS feature for the three regimes across two 316 L powder distributions, D1 and D2.  

Fig. 6. Comparison of AE energy contents between fifteen frequency bands across three regimes from two 316 L powder distributions, D1 and D2.  
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adaptation [74], as shown in Fig. 7(c). Transfer learning and domain 
adaptation are not the same concepts while being closely linked. For 
example, the input distribution p(X) is mapped to the labels p(Y|X) in a 
standard classification setup. In transfer learning, the input distribution 
remains the same while the labels change, and for domain adaptation, 
the input distribution changes while the labels stay the same. 

Finding the shared latent characteristics between the source and 
target domains and adapting them to lessen the marginal and condi-
tional mismatch in terms of the feature space between domains is the 
mechanism of domain adaptation [75]. The domain adaptation para-
digm has also been used to diagnose bearing faults [76] and anticipate 
tool wear in manufacturing processes like milling [77], in addition to 
image recognition and segmentation applications [78,79]. These appli-
cations inspired us to use this technique for AM. It is difficult to get a 
discrete statistical distribution in the sensor information against a built 
quality since the LPBF process map has a large parameter space. Since 
the parameter spaces in LPBF are continuous, there is a noticeable shift 
in the sensor signature as it changes. Domain adaption techniques are 
essential to handle these shifts. In this study, we propose a method in 
unsupervised domain adaptation exploiting CNNs to infer class labels 
from an unlabeled data space using statistical characteristics from a data 
space that is labelled and verified with ground truth based on metal-
lurgical characterization. 

The work of Philip et al. [80] is the motivation for the unsupervised 
domain adaptation described in this paper. The CNN training is based on 
the idea that while reducing the classification error on the known data 

space, the network must also learn statistically domain-invariant 
embedding to efficiently infer equivalent class labels from the un-
known data space, as shown in Fig. 8. This is achieved by directly 
imposing relationships between the known and unknown data in the 
latent embedding space. 

The following Eq. (1) gives the back-propagated overall loss for the 
network during training. 

L = L classification +L asscociative (1) 

With just the classification loss (L classification) we may have a neural 
network trained for classification on the known data space. However, 
the addition of association loss (L associative)during training incorporates 
knowledge about known data space on the unknown data space to model 
the shift in distribution, thus improving the effectiveness of embeddings. 
The association loss (L associative)imposes similarity in the embedding (ϕ) 
between the known (Ai = ϕ(xknown

i )) and unknown (Bj = ϕ(xunknown
j )) 

data space. Dot product (Mij = Ai.Bj) is used to compute the similarity 
between the embeddings and transition probabilities (Р

(
Bj
⃒
⃒Ai

))
from Ai 

to Bj is calculated by applying softmax on rows or columns of the 
similarity matrix. The round-trip probability (Paba

ij =

(Р
(
Bj
⃒
⃒Ai

)
Р
(
Aj
⃒
⃒Bj

))

ij)serves as the foundation for associative similarity. 
The probability of starting from a known embedding space (Ai) and 
returning to another known embedding space (Aj) via the unknown 
embedding’s (B) is denoted as similarity loss (L similarity). The associative 
loss tends to decrease on its own when only visiting unknown samples 

Fig. 7. Illustration of domain adaptation.  

Fig. 8. Illustration of the proposed methodology for unsupervised domain adaptation.  
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that are simple to associate, which leads to a poor generalization of the 
unknown space. To counteract and to ensure the visit of each unknown 
sample with an equal probability, a regularizer loss 

(
L regularizer

)
is 

added. These two loss terms combine to create association loss 
(L asscociative) that forces linkages between embeddings in similar domains 
and is given by the following Eq. (2). 

L asscociative = β1L similarity + β2L regularizer (2)  

where β1 and β2 are the weight factors. 
The goal is to perform transformations on the embedding (ϕ) be-

tween the known (Ai = ϕ(xknown
i )) and unknown (Bj = ϕ(xunknown

j )) data 
spaces and bring similar data spaces closer. Eventually, a classifier 
trained on the known space will also perform better on the unknown 
space since both the data spaces are now similar. 

4. Results 

4.1. Domain shift 

To demonstrate the complexity in generalization of the ML models 
on the distribution shift due to parameter space drift in LPBF, a CNN 
(CNN-1) is trained on AE signatures collected during the processing of 
powders above 45 µm (D1) and evaluated on AE signatures below 45 µm 
(D2) from Table 4. Fig. 9 depicts the architecture of the CNN that was 
trained on the window sizes of 12.5 ms to classify the three processing 
regimes from D1. Five convolutional layers, one fully connected layer 
(Fc-1), and a classifier layer make up the CNN-1 architecture used in this 
study. 1D convolutions were performed on each of the five convolu-
tional layers with a kernel size of size 16. 

Prior to using the Rectified Linear Unit (ReLU) activation function, 
batch normalization was performed across each layer. In order to reduce 
overfitting, a dropout of 5% was also applied to all the layers. Finally, 
the output of the five convolution layers was flattened and passed to the 
fully connected layer and a classification layer. The output of the two 
fully connected layers was also used for visualization, as it can be treated 
as a lower-dimensional representation of the trained network. The CNN- 
1 had 46455 trainable nodes, and the training parameters used for the 
training are listed in Table 5. The choice of this network configuration 
was based on the previous work from the authors [47,67,70]. The whole 
network and training were performed using the PyTorch library. 

As previously mentioned, the raw AE time-series signal with a win-
dow size of 12.5 ms corresponding to three regimes acquired during the 
processing of powder with Distribution D1 was used to train the CNN-1 
model. The overall AE data set collected with known labels was sto-
chastically split into 70% for training and 30% for testing. Cross-entropy 
loss was used to penalize the network for miss classification during the 

network training. The weight during the training of CNN-1 was updated 
using back-propagation based on the magnitude of the cross-entropy 
loss. With a batch size of 500 and a learning rate of 0.001, the 
network training was performed for 100 epochs with the help of the 
Nvidia Titan RTX GPU. A cosine annealing-based learning rate scheduler 
was used to find the optimal learning rate across each epoch. The 
visualization of the training loss values for the CNN-1 model throughout 
100 training epochs is shown in Fig. 10 (a). The decrease in loss values 
with epochs indicates that the CNN-1 model has learnt the mapping 

Fig. 9. CNN architecture proposed in this work.  

Table 5 
Parameters used for the training CNN-1 with cross-entropy loss.  

Training parameters CNN-1 

Training objective Classification 
Optimizer used ’adam’ 
Rate of learning 0.001 
Total epochs 100 
Training batch size 500 
Dropout across epochs 0.05% 
Loss Cross-entropy loss 
Shuffle Every-epoch 
Training dataset 70% 
Testing dataset 30% 
Tunable parameters 46,455 weights  

Fig. 10. Training loss of the CNN network trained on AE signature acquired 
during the processing of distribution (D1). 
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embedded inside the AE signals to classify among the three LPBF 
regimes. 

Table 6 displays the confusion matrix results computed using the 
trained CNN-1 network on the test dataset. The classification accuracy is 
computed by dividing the total number of tests by the true positives. On 
the test dataset, CNN-1’s average classification accuracy was 98.1%. The 
classification accuracy results in Table 6 reveal that CNN-1 has learnt the 
differences and similarities between the LPBF regimes. However, the 
predictive performance of the trained CNN-1 was significantly lower, 
with an accuracy of 77.4% on classifying the AE signature corresponding 
to the three regimes from the D2 dataset. This indicates the importance 
of augmenting generalization capability in the ML models. Most of the 
misclassification originated between LoF pores and conduction mode, as 
they had shifted, as indicated in Figs. 5 and 6. 

To verify the trained CNN-1 model’s effectiveness and its general-
ization property, the lower-dimensional representation (batch size x 
832) computed using t-distributed stochastic neighbor embedding (t- 
SNE) on the feature maps extracted from the last fully connected layer 
(Fc-1) was visualized. Fig. 11 shows a 2D visualization of the lower- 
dimensional representation of the three LPBF regimes on the two- 
powder distribution. This diagram shows distinct clusters correspond-
ing to the three LPBF regimes on the dataset corresponding to D1. 
However, though the dataset D2 are clustered, there is a significant 
overlap across LoF pores from D2 on the conduction mode regime of D1, 
indicating the reason for the poor classification of the CNN-1 model 
towards D2 distribution. 

4.2. Unsupervised domain adaptation 

The task for correctly inferring class labels on LPBF regimes for an 
unlabeled AE data distribution (D2) based on the statistical properties of 
a labelled data distribution (D1) is proposed using associative domain 
adaptation. This training methodology helps to establish generalization 
in the ML model on the two distributions with shifts inside the LPBF 
process maps. The network architecture discussed in the previous sec-
tion was trained with two significant changes to achieve domain adap-
tation. The first change was that the data corresponding to the D2 
distribution was also introduced as a part of the training but without 
labels. In other words, for training the CNN with domain adaptation 
(CNN-2), the dataset consisted of the AE signature corresponding to 
three regimes from D1 along with the ground truth labels and only the 
AE signature corresponding to three regimes from D2. The second 
change was with respect to the loss. Instead of using only the cross- 
entropy loss, an associative loss was also appended to the loss function 
to find the association between the labelled and unlabeled distributions 
in the embedding space. The parameters used for the CNN-2 training are 
listed in Table 7. 

During network training, the overall loss, which combines cross- 
entropy loss and associative loss, was employed to penalize the 
network for inaccurate classification. Based on the magnitude of the 
overall loss, CNN-2’s weights were updated using back-propagation. 
However, it should be emphasized that the cross-entropy loss term 

was initially utilized to stabilize the network for classification on the 
labelled dataset. The associative loss term was augmented to the loss 
term after 15 epochs. The associative loss term had two weights β1 and 
β2 that could also be tuned for stabilizing the network. After an 
exhaustive search, they were set to 0.5 and 0.3 for this work. With a 
batch size of 500 and a learning rate of 0.001, the network training was 
performed for 100 epochs with the help of the Nvidia Titan RTX GPU. 
The visualization of the training curves for the CNN-2 model throughout 
100 training epochs for the two distributions is shown in Fig. 12(a), (b) 
and (c). The decrease in loss and increase in prediction accuracies with 
epochs indicates that the CNN-2 model has learnt the mapping 
embedded inside the AE signals to classify among the three LPBF re-
gimes in D1. The same trend on the D2 distribution confirms that 
generalization in the ML model on the two distributions with a shift 
inside the LPBF process maps is achieved. 

Table 8 displays the confusion matrix results computed using the 
domain-adapted CNN-2 network on the test dataset from the distribu-
tions D1 and D2. On both the test datasets D1 and D2, CNN-2’s average 
classification accuracy was 98.3% and 94.8%. The classification accu-
racy results in Table 8 reveal that CNN-2 has learnt the differences and 
similarities between the LPBF regimes in both distributions. Unlike the 
CNN-1 results discussed, the performance of the domain-adapted CNN-2 
was significantly higher on the three regimes from the D2 distribution, 
confirming the generalization capability of the ML models from a known 
to unknown space inside the LPBF process map. 

5. Discussion 

The dimensionality reduction computation performed using t-SNE on 
the feature maps extracted from the last fully connected layer of the 
CNN-2 on the datasets corresponding to D1 and D2 are shown in Fig. 13. 
The 2D visualization shows distinct clusters corresponding to the three 
LPBF regimes on both datasets. Unlike traditional CNN results discussed 
in the previous section, there is significant overlap across the same 
regime between the two distributions, indicating the reason for the 
higher classification of the CNN-2 model towards the D2 distribution. 

The accuracy of the proposed unsupervised domain adaptation 
approach gives the confidence to tackle shifts in data distribution owing 
to changes in process parameters within the process map. Furthermore, 
the time and cost associated with labelling signatures corresponding to 
new data spaces could be significantly minimized with this methodol-
ogy. This work used two powder fractions from the same batch with 
different size distributions. The proposed approach to handle shifts on 
powders from different batches or suppliers would significantly increase 
its applicability. Additionally, offsets in sensor placement across LPBF 
machines of the same type could be handled much more efficiently using 
a similar domain adaptation strategy. Apart from identifying ground 
truths for downstream tasks, such as in-situ monitoring based on the 
classification of new parameter spaces, the proposed methodology could 
also be used to identify boundaries between regimes, significantly 
reducing the time and effort for parameter optimization. 

While it’s unusual to utilize suboptimal parameters for AM in prac-
tical applications, the ML model needs to have exposure to these 
anomaly regimes to learn from them. Furthermore, incorporating in-
formation from these regimes can enhance our understanding of tran-
sition zones. In cases where LPBF parameters are in transition regimes, 
it’s crucial to acknowledge that straightforward classification into 
classes LoF, conduction mode, and keyhole may not be effective. Instead, a 
more suitable approach could employ a distance metric from clusters 
calculated using the lower-dimensional representation from the final 
fully connected layer. This distance from individual clusters can indicate 
the effectiveness of the techniques in transition zones. The use of binary 
classifiers or distance scores from the proximity of conduction clusters is 
recommended to address specific scenarios like splatter and short vec-
tors during the conduction mode. Shifts in distances from clusters related 
to conduction, which may occur due to factors like splatter or short 

Table 6 
Classification scores of the trained CNN-1 model on the AE signatures from the 
distributions D1 and D2.  

True class LoF Conduction Keyhole 
Predicted class [%] 

LoF  98.3 
56.9  

1.7 
43.1  

0.0 
0.0 

Conduction  2.2 
16.5  

97.1 
76.8  

0.7 
6.7 

Keyhole  0.2 
0.8  

0.7 
0.5  

99.1 
98.7 

Each cell’s classification outcomes are arranged in the descending order listed 
below: D1 (Bold) and D2 (Italics). All values are in %. 
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vectors, can be employed as anomaly detectors in these situations. 
The main objective of this study was to establish a scenario where 

changes in the data distribution of the AE signal could be identified and 
to implement domain adaptation. This experimental approach included 
introducing offsets in the D1 and D2 distributions and adjusting pro-
cessing parameters, as previously detailed. This experimental design 
allowed us to explore the implications of domain adaptation. It’s crucial 
to emphasize that the disparities between two data distributions can be 
quite distinct in specific cases, making domain adaptation unsuitable. 
This underscores the significance of employing methods like transfer 
learning [81,82], especially in a supervised context. It’s worth 
mentioning that additional datasets were created by intentionally 
altering the process parameters. However, the CNN model trained using 
cross-entropy loss on the known dataset still exhibited the ability to 

classify other datasets with high confidence. Therefore, the decision to 
apply domain adaptation should depend on assessing whether the CNN 
model, initially trained on the known dataset, displayed significant 
misclassification when applied to the unseen dataset. While we had 
comprehensive datasets, the data under study (D1 and D2) was the only 
one that exhibited significant domain shifts. However, in real-world 
scenarios where prior knowledge of domain shifts may not be avail-
able, a practical solution is to use the model’s accuracy prediction as a 
trigger to introduce the associative loss, as depicted in Fig. 14. As pre-
viously described in Section 4.2, during network training, the initial 
phase exclusively employed the cross-entropy loss term to establish 
network stability for classification on the labelled dataset. After assess-
ing the model’s performance on the unknown dataset, the associative 
loss term for domain adaptation could be incorporated into the loss 
function after a few epochs. However, if the CNN model confidently 

Fig. 11. Lower-dimensional representations computed from the CNN-1 model on distribution (D1) and distribution (D2).  

Table 7 
Parameters used for the training CNN-2 with domain adaptation.  

Training parameters CNN-2 

Training objective Classification 
Optimizer used ’adam’ 
Rate of learning 0.001 
Total epochs 100 
Training batch size 500 
Dropout across epochs 0.05% 
Loss Cross-entropy and Associative loss 
Shuffle Every-epoch 
Training dataset 70% 
Testing dataset 30% 
Tunable parameters 46,455 weights  

Fig. 12. Learning curves of the CNN model. a) Cross-entropy loss, b) Associative loss c) Network prediction accuracy.  

Table 8 
Classification scores of the CNN-2 model trained with domain adaptation on the 
AE signatures from the two distributions, D1 and D2.  

True class LoF Conduction Keyhole 
Predicted class [%] 

LoF  99.3 
93.9  

0.7 
6.1  

0.0 
0.0 

Conduction  2.0 
2.9  

97.9 
91.5  

0.1 
5.6 

Keyhole  0.3 
0.4  

0.5 
0.3  

99.3 
99.2 

Each cell’s classification outcomes are arranged in the descending order listed 
below: D1 (Bold) and D2 (Italics). All values are in %. 
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predicts the other dataset, introducing the associative loss for network 
training might not be required. 

Drawing attention to the inference time of the CNN-1 and CNN-2 
models on the test dataset is crucial for achieving our nearly real-time 
system. While a 12.5 ms window length was used for each window, 
the decision-making process with the current hardware configuration 
and data pipeline actually averaged around 22 ms. This time difference 
highlights the presence of latency, which may necessitate hardware 
upgrades to accommodate higher acquisition rates. Addressing this la-
tency is particularly important when considering the utilization of the 
CNN-1 and CNN-2 decision-making outputs for process controls. 
Furthermore, it’s essential to recognize that non-uniform scan vector 
lengths may occur in scenarios involving the fabrication of intricate 
shapes, as observed in the authors’ previous work [67]. Achieving this 
would necessitate substantial modifications to CNN’s architectural 
design and rigorous testing of its robustness and predictability. Addi-
tionally, hardware improvements would be essential for effectively 
managing such situations. In addition to the domain adaptation 
perspective discussed in this work, it’s crucial to highlight another sig-
nificant point regarding acoustic monitoring in LPBF machines equipped 
with multiple lasers. Relying on a single AE detector for LPBF is 
impractical due to the complexities of processing with multiple lasers 

parallelly. These lasers create distinct sources of acoustic signals, and the 
potential for noise interference from various process zones makes it 
highly challenging to implement effective acoustic monitoring with just 
one AE detector. Moreover, including multiple AE sensors can further 
complicate the monitoring strategy, as it requires intricate source sep-
aration, which becomes increasingly challenging when multiple lasers 
operate simultaneously. 

6. Conclusions 

In this contribution, we have proposed a methodology using an un-
supervised domain adaptation technique for inferring LPBF regimes 
such as LoF pores, conduction mode and keyhole pores from unknown 
process spaces using AE signatures from known process spaces. The two 
process spaces were deliberately induced by having two 316 L stainless 
steel powder distributions (> 45 µm and < 45 µm) and then processing 
them with two sets of laser parameters. For the experiments in this 
paper, a Sisma MYSINT 100 commercial LPBF printer was used, as well 
as an airborne AE sensor system with a flat frequency response ranging 
from 0–150 kHz. The ground truths for the three laser regimes across 
two process spaces were confirmed using cross-sectional images. How-
ever, ground truth corresponding to only one process space was used for 

Fig. 13. Lower-dimensional representation of the domain adapted CNN network on distribution (D1) and distribution (D2).  

Fig. 14. Proposed training schema to address domain shift based on CNN model accuracy.  
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model training on AE waveform data, and the prediction was performed 
on the data from the second process space. The following generalized 
conclusions are drawn from the experimental results:  

• Comparing AE energy captured in the frequency bands (0-150 kHz) 
using two process spaces across the three regimes inside the LPBF 
process map confirms the shifting or presence of offset in the AE 
signatures between them.  

• The prediction results of the CNN-1 trained using cross-entropy loss 
on the labelled data space over the unlabelled data space reveal that 
the model lacks generalization. The CNN-1 had a prediction accuracy 
of 98.1% on D1 and a much lower prediction accuracy of 77.4% on 
D2.  

• The proposed associative domain adaptation-based training on CNN- 
2 was able to correctly infer class labels on LPBF regimes for the 
unlabeled AE data distribution (D2) based on the knowledge of a 
labelled data distribution (D1). It is also to be noted that with an 
addition of computational overhead based on associative loss, the 
same CNN-1 architecture that failed to generalize was improvised to 
CNN-2, which could tackle domain shifts in the LPBF process. As a 
result, the prediction accuracy of CNN-2 on both D1 and D2 was high 
at 98.3% and 94.8%. 

With parameter identification in LPBF based on trial and error, the 
suggested methodology can be used to investigate novel parameter 
spaces that substantially reduce the time and effort and is one of the 
upcoming research focuses. More research must be done to determine 
the methodology’s viability in a more complex scenario with very soft 
and hard boundaries throughout LPBF regimes. As a last note, future 
work will also focus on improving and fine-tuning network weights in 
the CNN architecture and finding appropriate weights for the parame-
ters in the loss function to optimize training further. The following re-
positories include the data and code used in this work: (https://c4sci 
ence.ch/diffusion/12676/). 
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