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Nonequilibrium heat and mass transfer processes through liquid-vapor interfaces are studied through solutions of 
the Enskog-Vlasov (EV) equation and the corresponding system of EV26 moment equations. These models fully 
resolve liquid and vapor bulk regions and the diffuse interface connecting both. With that, evaporation and heat 
transfer processes can be studied without the need of modeled interface relations. Comparison of numerical 
results shows qualitative agreement of moment simulations with DSMC solutions of the EV equation, but 
quantitative differences. Interface resistivities for jump interface conditions are determined from the simulations, 
which show marked differences to those found from classical kinetic theory, where dimensionless resistivities 
are constants. In contrast, the EV models give temperature dependent resistivities, some negative off-diagonal 
resistivities, and indicate non-linear behavior where resistivities depend on mass and heat fluxes through the 
interface. In summary, the results point to the urgent need for systematic evaluation of resistivities over a wide 
range of conditions between weak and strong nonequilibrium, close to and far from the critical point.
1. Introduction

Evaporation and condensation processes in non-equilibrium, while 
ubiquitous in daily life and technical applications, are surprisingly lit-
tle understood on a fundamental level. While from the macroscopic 
viewpoint the phase change occurs at a sharp interface between the 
phases, detailed microscopic modeling, e.g., with molecular dynamics 
(MD) [1–9], reveals that the phase change occurs in a diffuse interface 
with the width of ∼ 10 − 20 molecular diameters.

In macroscopic models, the intricate processes in the diffuse in-
terface are subsumed into a handful of coefficients [10–12], whose 
dependence on the state of the interface (such as temperature) and pro-
cesses (such as magnitude of the evaporation mass flux) is still not well 
understood. For instance, measured values for condensation and evapo-
ration coefficients of water vary over at least three orders of magnitude 
[13,14], which points to difficulty in both, measurements and model-
ing.

C.A. Ward and co-workers, in careful macroscopic measurements on 
the evaporation of water and other substances [15–20] observed tem-
perature jumps of up to 7 ◦C between liquid and vapor directly at the 
interface, which points to interfacial resistivities being much larger than 
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commonly assumed or, correspondingly, to evaporation and condensa-
tion coefficients significantly smaller than unity. Further experimental 
investigations of interfacial temperature jumps during the evaporation 
of water can be found in Refs. [21,22].

To shed detailed light on interfacial behavior, a wide array of mi-
croscopic simulations, covering the full range of process conditions 
from close to equilibrium to strong nonequilibrium, is required. Such 
simulations, which rely only on microscopic parameters that describe 
individual molecules and their interaction, resolve the diffuse interface 
and can be used to extract the phenomenological coefficients that ap-
pear in the sharp interface models required in macroscopic transport 
simulations.

While molecular dynamics (MD) appears to be the most accurate 
way to perform such simulations, it generally demands large compu-
tational times, in particular when the system exhibits small deviations 
from equilibrium, which are difficult to detect by any particles methods 
due to unfavorable signal to stochastic noise ratios.

In this contribution we explore a kinetic model derived from the 
Enskog-Vlasov (EV) equation [23,24], which is a generalization of the 
classical Enskog theory of the dense hard sphere fluid [25] to include 
inter-molecular attraction [26], not present in the purely repulsive hard 
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spheres potential. With that, the model phenomenologically describes 
liquid and vapor phases as well as the resolved interfacial structure. 
In addition to the microscopic parameters defining the molecules and 
their interactions, the EV equation inherits from the Enskog theory the 
need to specify the pair correlation function [27,28], being based on 
the one-particle distribution function as its parent Boltzmann equation 
[29–32] which describes ideal gases.

The complexity of kinetic equations and, in particular, of the EV 
equation requires adopting numerical solution methods. Although not 
the only option at hand [33], a suitable extension [35,36] of the clas-
sical Direct Simulation Monte Carlo (DSMC) [37] provides a simple, 
convenient and easily extensible [38–40] tool to obtain approximate 
solutions of the EV equation.

Similar to MD simulations, solutions of the EV equation itself, by 
means of a particle method like DSMC, are computationally expensive, 
although not as expensive as MD simulations [35,36,41]. As for MD, 
computational costs increase considerably when flow conditions exhibit 
small deviations from equilibrium which are difficult to separate from 
the prevailing Maxwellian distribution function, due to the unfavorable 
signal to noise ratio.

An alternative is offered by a set of 26 moment equations (EV26 
equations) recently derived as an approximation to the EV equation 
[42]. Unlike traditional diffuse interface models, based on Navier-
Stokes-Fourier (NSF) constitutive laws [43], the EV26 model has the 
capability to describe the kinetic (Knudsen) layer next to the liquid-
vapor interface, whose presence cannot be ignored [4,8].

Numerical solutions of the EV26 equations give deterministic solu-
tions over a wide range of process conditions—from low to strong non-
equilibrium—at low computational cost. Hence they promise a much 
quicker access to explore the full range of interfacial behavior. Before 
this is done, however, it is necessary to evaluate the EV26 equations 
for their accuracy, by comparing their predictions with results from the 
underlying kinetic equation itself, i.e., from DSMC solutions of the EV 
equation.

In the following, we present and critically discuss selected simula-
tion results from EV-DSMC and EV-moment models. The results show 
that the EV moment models reproduce non-equilibrium features seen in 
the DSMC simulations, but overestimate the interfacial resistance. Ex-
tensions of the moment model to include elements of higher moment 
equations yield somewhat better results, and must be further explored 
in the future.

Further to this comparison, we use DSMC and moment results to 
determine resistivities, and shed new light on the interfacial behavior 
in non-equilibrium.

The remainder of the paper is structured as follows: In Sec. 2 we in-
troduce the one-dimensional process geometry used for the simulations, 
followed by a short description of sharp interface models with interfa-
cial resistivities in Sec. 3. Then, in Sec. 4, we introduce the Enskog-
Vlasov equation [23,24], and briefly outline the derivation of its mo-
ment equations [42] by means of Grad’s moment method [44,45,32,31]. 
The equations for 26 moments are shown already in reduced form for 
1D steady state processes. Far from the interface the EV26 equations 
reduce to the equations of classical hydrodynamics, but in the interfa-
cial region they exhibit a large number of additional terms that describe 
the local nonequilibrium state, including Knudsen layer effects. The EV 
equation itself, and its moment equations are solved numerically for 
heat transfer and evaporation problems, with numerical methods and 
discretization errors outlined in Sec. 5.

Subsequent sections present and discuss solutions for heat transfer 
and evaporation problems. The solutions fully resolve the nonequilib-
rium processes in the interfacial regions, where the higher moments 
obtained from EV-DSMC and EV26 solutions play an important role for 
the overall transport behavior. Comparison with between DSMC and 
moment solutions shows qualitative agreement of the EV26 equations 
for a wider range of conditions, but quantitative agreement only for con-
2

ditions closer to the critical state. Addition of regularizing terms [46]
International Journal of Heat and Mass Transfer 223 (2024) 125238

somewhat improves the agreement, and indicates that further away 
from the critical point a larger number of moments will be required.

From the numerical solutions we extract the (dimensionless) resis-
tivities for NSF, which show variation with interface temperature, being 
larger for colder interfaces. Moreover, in particular for processes involv-
ing evaporation, resistivities obtained from the moment equations vary 
with the evaporation rate, so much that the direction of temperature 
jumps can change sign. While the presented results are, of course, lim-
ited to the EV moment system, it appears likely that also other, more 
realistic, systems will behave in a similar fashion.

Our results indicate that full understanding of interfacial transport 
can only be reached by examining processes over a wide range of pro-
cesses, from close to far from the critical point, and from weak to strong 
nonequilibrium.

The results presented below extend and refine preliminary work pre-
sented in the theses of two of the present authors [47,48].

2. One-dimensional steady state evaporation and condensation

In the following, we focus on one-dimensional steady state pro-
cesses, with a plane interface separating a liquid region from a vapor 
region. Transport of mass and heat is normal to the interface, described 
by the coordinate 𝑥, and we chose a frame of reference where the inter-
face is at rest.

Fig. 1 shows simple sketches for macroscopic and microscopic view-
points with sharp and diffuse interfaces, respectively. Here, 𝐽 and 𝑄
are the total mass and energy fluxes that are constant due to conser-
vation of mass and energy. Moreover, the normal momentum flux 𝑃 is 
constant as well, which for sufficiently slow processes implies that both 
bulk phases are at the same pressure 𝑝, as indicated in the figure.

Under the prescribed restrictions, the conservation laws for mass, 
momentum and energy in the bulk liquid or vapor phases reduce to 
[10,12]

𝜌𝑣 = 𝐽 = 𝑐𝑜𝑛𝑠𝑡

𝑝 = 𝑃 = 𝑐𝑜𝑛𝑠𝑡 (1)

𝜌𝑣ℎ+ 𝑞 =𝑄 = 𝑐𝑜𝑛𝑠𝑡

where 𝜌 denotes mass density, 𝑣 is flow velocity relative to the interface, 
𝑝 (𝜌,𝑇 ) is pressure as given by the thermal equation of state, ℎ (𝜌,𝑇 )
is enthalpy as given by the caloric equation of state, and 𝑞 = −𝜅 𝑑𝑇

𝑑𝑥
is non-convective heat flux with heat conductivity 𝜅 (𝜌,𝑇 ); 𝑇 denotes 
thermodynamic temperature. Note that due to the assumed low Mach 
numbers viscosity effects do not play a role.

These equations are derived under the assumption that the bulk 
phases are in local thermodynamic equilibrium, so that the classi-
cal hydrodynamic equations—the laws of Navier-Stokes and Fourier 
(NSF)—are valid.

For sharp interface models, NSF is considered for states arbitrarily 
close to the interface, while all nonequilibrium effects associated with 
phase change are pushed into the description of the interface.

Within the interfacial region of diffuse interfaces the NSF laws are 
not valid, and more elaborate models must be used to describe the 
strong deviations from local equilibrium in a wider region around the 
interface, where the nonequilibrium effects occur. This region includes 
the molecule-sized liquid-vapor interface, with the large and steep but 
continuous change of density as well as adjacent Knudsen transition lay-
ers, which appear in nonequilibrium vapors close to interfaces and walls 
[29,30,32]. Sufficiently away from the interfacial region—at a distance 
of the order of a few mean free paths—the bulk phases obey the NSF 
equations.

In experiments such as those from Ward’s group [15–20], the mass 
flow rate is sufficiently small for the reduced Eqs. (1) to be valid. Molec-
ular scale simulations of small systems with interfaces, however, are 

often performed under conditions of strong nonequilibrium [5,7] for 
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Fig. 1. Geometry for 1D steady state evaporation and condensation processes, distinguishing different resolutions for sharp (low resolution) and diffuse (high 
resolution) interfaces. The underlaid curves give an indication of the corresponding mass density profiles in equilibrium. 𝐽 and 𝑄 are the overall mass and energy 
flows, and 𝑝 is the common pressure in the bulk phases.
which Eqs. (1) might not be valid. Differences in the bulk pressures 
of the phases offer a first indicator, for more insight one should check 
whether the higher order contributions to the conservation laws are suf-
ficiently small.

3. Sharp interface model

We briefly review the standard model for sharp interfaces in 
nonequilibrium processes [10,12,49]. To connect bulk transport equa-
tions for adjacent liquid and vapor regions jump relations are needed. 
Since the interface does neither produce nor destroy mass, momentum, 
and energy, the fluxes (𝐽,𝑃 ,𝑄) leaving one phase are equal to those en-
tering the other phase, that is, denoting states of liquid and vapor just 
at the interface with indices 𝐿, 𝑉 , we have [10,12]

𝐽𝐿 = 𝐽𝑉 = 𝐽

𝑝𝐿 = 𝑝𝑉 = 𝑝 (2)

𝐽ℎ𝐿 − 𝑞𝐿 = 𝐽ℎ𝑉 − 𝑞𝑉 =𝑄

where 𝑞𝐿 = −𝜅𝐿
𝑑𝑇

𝑑𝑥 |𝐿 and 𝑞𝑉 = −𝜅𝑉
𝑑𝑇

𝑑𝑥 |𝑉 are the normal heat fluxes in 
the two phases at the interface.

In nonequilibrium, entropy is not conserved, but must be produced, 
hence with direction pointing from liquid to vapor as in Fig. 1(a) the 
entropy balance for the interface becomes

𝐽𝑠𝑉 +
𝑞𝑉

𝑇
= 𝐽𝑠𝐿 +

𝑞𝐿

𝑇
+ 𝜎 (3)

where 𝜎𝑆 ≥ 0 is the interfacial entropy generation rate.
Eliminating 𝑞𝐿 and introducing Gibbs free energy 𝑔 (𝑇 , 𝑝) = ℎ − 𝑇 𝑠, 

the entropy generation rate can be written as (with Einstein summation 
convention)

𝜎𝑆 = 𝛼𝛼 (4)

where the entropy generation is interpreted as a sum of products of 
thermodynamic forces 𝛼 and thermodynamic fluxes 𝛼 , identified as

 =
{
𝑔𝐿

𝑇𝐿
−
𝑔𝑉

𝑇𝑉
+ ℎ𝑉

(
1
𝑇𝑉

− 1
𝑇𝐿

)
,
1
𝑇𝑉

− 1
𝑇𝐿

}
,  =

{
𝐽, 𝑞𝑉

}
(5)

In equilibrium the forces (5) vanish, and both phases have the same 
temperature 𝑇𝑉 = 𝑇𝐿 = 𝑇 , and identical Gibbs free energies 𝑔𝑉 = 𝑔𝐿. 
This is the well known equilibrium condition for coexistence of liquid 
and vapor [10,50], which states that for given temperature 𝑇 phase 
equilibrium is possible only at the saturation pressure 𝑝sat (𝑇 ) with

𝑝𝐿 = 𝑝𝑉 = 𝑝sat (𝑇 ) and 𝑔𝑉
(
𝑇 , 𝑝sat (𝑇 )

)
= 𝑔𝐿

(
𝑇 , 𝑝sat (𝑇 )

)
. (6)

We proceed based on the methods of Linear Irreversible Thermody-
namics (LIT) [51,52,10,53]. If a system is in a nonequilibrium state, i.e., 
the thermodynamic forces are non-zero, thermodynamic fluxes occur to 
drive the system toward equilibrium. That is, the fluxes are driven by 
the forces, and must vanish in equilibrium, together with the forces. If 
the degree of nonequilibrium is not too strong one expects linear rela-
tions between fluxes and forces, of the form 𝛼 = 𝑟𝛼𝛽𝛽 where 𝑟𝛼𝛽 is a 
3

matrix of interface resistivities, which is non-negative definite to ensure 
non-negative entropy generation 𝜎𝑆 . The matrix should be symmetric 
to fulfill the Onsager relations [51,10].

We prefer to work with a dimensionless resistivity matrix 𝑟̂𝛼𝛽 , which 
is introduced such that the force-flux relations read [54]

⎡⎢⎢⎢⎢⎣
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

[
𝑔𝐿
𝑅𝑇𝐿

− 𝑔𝑉

𝑅𝑇𝑉
+ ℎ𝑉

(
1

𝑅𝑇𝑉
− 1
𝑅𝑇𝐿

)]
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

𝑇𝐿

[
1
𝑇𝑉

− 1
𝑇𝐿

]
⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
𝑟̂11 𝑟̂12

𝑟̂21 𝑟̂22

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐽

𝑞𝑉

𝑅𝑇𝐿

⎤⎥⎥⎦ .
(7)

In this formulation forces and fluxes are rescaled, with all having the 
units of 𝐽 .

Often one is interested in processes where deviations from equilib-
rium are small. We express the forces to leading order in the deviations 
from equilibrium

Δ𝑝 = 𝑝− 𝑝sat
(
𝑇𝐿

)
, Δ𝑇 = 𝑇𝑉 − 𝑇𝐿 . (8)

By means of Taylor expansion and thermodynamic property relations (
𝜕𝑔

𝜕𝑝

)
𝑇
= 1
𝜌
, 
(
𝜕𝑔

𝜕𝑇

)
𝑝
= −𝑠 [50], the force-flux relations reduce to

⎡⎢⎢⎢⎢⎣
𝑝sat

(
𝑇𝐿

)
𝑅𝑇𝐿

[
1
𝜌sat
𝑉

− 1
𝜌sat
𝐿

]
Δ𝑝√
2𝜋𝑅𝑇𝐿

− 𝑝sat
(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

Δ𝑇
𝑇𝐿

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
𝑟̂11 𝑟̂12

𝑟̂21 𝑟̂22

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐽

𝑞𝑉

𝑅𝑇𝐿

⎤⎥⎥⎦ . (9)

Evaporation is also widely considered in kinetic theory of ideal gases 
using sharp interface models. Macroscopic interfacial boundary mod-
els derived from kinetic theory interface models lead to the classical 
phenomenological Hertz-Knudsen and Schrage formulas, as well as to 
their extensive refinements, based on the solution of the Boltzmann 
equation for the vapor phase [55–65,12,54] or more complex fluid mod-
els [66,67].

From a kinetic theory model that relies on a constant (i.e., molecular 
energy independent) condensation coefficient 𝜓 and full thermalization 
of re-emitted molecules, Cipolla et al. [58] found the simple resistivity 
matrix

𝑟̂𝐾𝑇 1
𝛼𝛽

=
⎡⎢⎢⎣

1
𝜓
− 0.40044 0.126

0.126 0.2905

⎤⎥⎥⎦ . (10)

Application of this model to Ward’s measurements on water close to the 
triple point [15]—where the vapor certainly behaves as an ideal gas—
does not yield the observed large temperature jumps [68], implying that 
this model underestimates the resistivities. It is easily seen that better 
agreement between the measurements quoted above and kinetic theory 
predictions is obtained by considering small values of 𝜓 and allowing 

for a small accommodation coefficient of reflected molecules.
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4. Enskog-Vlasov moment model

4.1. Motivation

Modeling kinetic effects at the liquid-vapor interface by the Boltz-
mann equation [29–32] is subject to limitations. Indeed, the Boltzmann 
equation is restricted to ideal gases, where the fluid’s natural spa-
tial scale, i.e., the mean free path, is much larger than the molecular 
size. As a consequence, the Boltzmann equation cannot describe the 
liquid phase but only an adjacent ideal vapor phase and necessarily 
phenomenological boundary conditions at the interface have to be pre-
scribed [69–72,58,12,11].

The Enskog-Vlasov (EV) equation is a modification of the Boltz-
mann equation in the spirit of the Enskog kinetic theory [25] for the 
dense hard sphere fluid. At the expense of ad hoc assumptions about 
pair spatial and velocity correlations [28], the EV equation is based 
on the one-particle distribution function, just as the Boltzmann equa-
tion. Within the assumptions described below, it provides a unified 
description of the liquid and vapor phases, connected by a fully resolved 
interface [23,24]. The EV equation is not limited to ideal vapor phases, 
with the thermal equation of state in uniform equilibrium regions be-
ing of the generalized van der Waals class [27]. Moreover, no interface 
conditions have to be prescribed at the liquid-vapor interface because 
the latter is part of the flow region described by the EV equation.

On the other hand, within the framework of the classical kinetic 
theory of dilute gases, a number of mathematical methods have been 
developed to replace the complicated structure of the Boltzmann equa-
tion with simpler fluid equations, yet capable of providing an accurate 
description of kinetic regimes. A notable example of those is represented 
by the method of moments from which one can derive macroscopic 
transport equations from the Boltzmann equation, that go beyond clas-
sical hydrodynamic theory, the so-called moment equations, where clas-
sical hydrodynamics is included as the limit for small mean free path 
[44,45,31,73,32].

Solutions of moment equations are in good agreement with solu-
tions of the Boltzmann equation, and can give deeper insight into pro-
cesses, in particular Knudsen layers and other rarefaction effects [74]. 
Evaporation/condensation boundary conditions from kinetic theory can 
be incorporated [75,76]. Compared to solutions of the full Boltzmann 
equation, the numerical effort required for the solution of moment sys-
tems is significantly smaller.

Application of the moment method is not limited to the Boltzmann 
equation but extends to any kinetic description of fluids based on the 
one-particle distribution function [28]. Hence, as with the Boltzmann 
equation, one might either solve the EV equation itself, e.g., by means 
of the DSMC method [37,36,35,77], or develop, study, and solve ex-
tended moment equations. As for the ideal gas case, these moment 
equations and their solutions promise fast access to accurate solutions 
of processes, and deeper insight into processes at phase interfaces.

Recently we derived a set of 26 moment equations from the Enskog-
Vlasov equation [42]. For the limit of ideal gases, the EV26 equations 
reduce to the well-known 26 moment equations (linearized) of kinetic 
theory [32]. In the hydrodynamic limit, they agree with established re-
sults [28]. The EV26 equations retain non-linear terms that are required 
to study the influence of the interface on the variables, when linearized, 
they agree with previous work for dense gases [78]. The detailed deriva-
tion of the equations was presented in [42], below we will only give a 
rather short summary of the equations, already reduced to 1D geometry 
in steady state processes.

In principle, the EV 26 equations are well suited to study phase in-
terfaces, and to determine interfacial resistivities. As partial differential 
equations, they give deterministic results, and require far less numeri-
cal effort than DSMC or MD simulations. The 26 moment system shows 
qualitative agreement with DSMC results of the EV equation, but it will 
be seen that their quantitative agreement is somewhat limited, to states 
4

not too far from the critical point.
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4.2. Enskog-Vlasov equation

In the form presented below, the Enskog-Vlasov equation describes 
a monatomic fluid whose atoms have mass 𝑚 and interact pairwise by 
forces derived by the Sutherland radial potential [79]

𝜙 (𝑟) =
{

∞ 𝑟 < 𝑎

𝜙𝑡(𝑟) 𝑟 ≥ 𝑎 , (11)

resulting from the superposition of a purely repulsive hard sphere po-
tential and an attractive soft tail 𝜙𝑡(𝑟). In Eq. (11), 𝑎 is the hard sphere 
diameter and 𝑟 the distance between the centers of two interacting 
atoms.

The EV equation is obtained from the exact BBGKY hierarchy [28,
80] by assuming that the pair distribution function can be factorized as 
the product of two one-particle distributions, evaluated at different po-
sitions and velocities, and a pair correlation function. Then, the hard 
sphere and soft tail potentials receive a different treatment as to pair 
correlations. The former gives rise to Enskog’s dense hard sphere colli-
sion integral [25]

En = 𝑎2 ∫
2𝜋

∫
0

𝜋∕2

∫
0

⎧⎪⎨⎪⎩
𝑌

(
𝜌

(
𝑥𝑟 +

𝑎𝑘𝑟
2

))
𝑓

(
𝑥𝑠 + 𝑎𝑘𝑠, 𝑐1′𝑠

)
𝑓

(
𝑥𝑡, 𝑐

′
𝑡

)
−𝑌

(
𝜌

(
𝑥𝑟 −

𝑎𝑘𝑟
2

))
𝑓

(
𝑥𝑠 − 𝑎𝑘𝑠, 𝑐1𝑠

)
𝑓

(
𝑥𝑡, 𝑐𝑡

) ⎫⎪⎬⎪⎭
× 𝑔 cos𝜃 sin𝜃𝑑𝜃𝑑𝜀𝑑𝐜1 , (12)

which takes into account only spatial correlations through the pair 
correlation function 𝑌 (𝜌) at contact position. In Eq. (12), 𝑘𝑘 =
{cos𝜀 sin𝜃, sin𝜀 sin𝜃, cos𝜃}𝑘 is the collision (unit) vector, 𝜌 = 𝑚 ∫ 𝑓𝑑𝐜
is the mass density. In the following, the pair correlation function 𝑌 is 
assigned, following the Standard Enskog Theory (SET) [81], as a func-
tion of the density, corresponding to its value in the hard sphere gas 
in uniform equilibrium. In this framework, 𝑌 (𝜌) bears a very simple 
relationship with the hard sphere fluid pressure equation of state. The 
latter is well approximated by a simple algebraic expression proposed 
by Carnahan and Starling [86] which leads to

𝑌 (𝜌) = 1
2

2 − 𝜂
(1 − 𝜂)3

, 𝜂 = 𝜋
6
𝑎3

𝑚
𝜌 . (13)

The Enskog term accounts for the spatial variation of the distribution 
function on the scale of the molecule diameter 𝑎: the colliding molecules 
have centers at 𝑥𝑠 and 𝑥𝑠±𝑎𝑘𝑠, with different values of the distribution 
at those points. The pair correlation function 𝑌 strongly enhances the 
repulsive effect of hard sphere collisions where the reduced density 𝜂 is 
not negligible, thus forbidding molecules to occupy the same position.

Pair correlations are ignored in dealing with the contribution of the 
soft tail potential 𝜙𝑡 which takes the form of a self-consistent force field 
𝐹𝑘, determined by a linear, non-local functional of the fluid density,

𝐹𝑘(𝐱, 𝑡) = ∫‖‖𝐱1−𝐱‖‖>𝑎
𝑑𝜙𝑡

𝑑𝑟

𝑥1
𝑘
− 𝑥𝑘||𝐱1 − 𝐱||𝑛(

𝑥1
𝑟
, 𝑡

)
𝑑𝐱1 (14)

In other words, instead of considering attractive forces between indi-
vidual molecules, the Vlasov force only considers the overall effect of 
these forces on a molecule. Specifically, the Vlasov force 𝐹𝑘 is the mean 
force exerted on a molecule at 𝐱 from molecules at all other locations 
𝐱1, based on the number density 𝑛 

(
𝐱1

)
= 𝜌

(
𝐱1

)
𝑚

[26].
Taking into account Eqs. (12), (14), the EV equation reads

𝜕𝑓

𝜕𝑡
+ 𝑐𝑘

𝜕𝑓

𝜕𝑥𝑘
+ 𝐹𝑘

(
𝑥𝑙

) 𝜕𝑓
𝜕𝑐𝑘

= En (𝑓,𝑓 ) (15)

where 𝐱, 𝑡, and 𝐜 denote space, time, and microscopic velocity, 𝑓 (𝐱, 𝑡, 𝐜)
is the velocity distribution function, and external body forces such as 
gravity are ignored. In the following developments, the attractive tail 
potential has been assumed to have the form(

𝑟
)−𝛾
𝜙𝑡(𝑟) = −𝜙𝑎
𝑎

(16)
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where 𝜙𝑎 > 0 is the depth of the potential well at 𝑟 = 𝑎 and the exponent 
𝛾 > 0 has been set equal to 6 to mimic the attractive tail of the Lennard-
Jones potential.

It is also interesting to note that, in general, it is possible to express 
the Vlasov force (14) as the divergence of a tensor  𝐾 [80]:

𝐹𝑘 = −1
𝜌

𝜕 𝐾
𝑘𝑠

𝜕𝑥𝑠
(17)

Expanding the density in the integrand of Eq. (14), the familiar form of 
the Korteweg tensor is obtained,

 𝐾
𝑘𝑠

= −2𝜋
3
𝑎3

𝑚

𝛾𝜙𝑎

𝛾 − 3
𝜌2𝛿𝑘𝑠

− 2𝜋
15
𝑎5

𝑚

𝛾𝜙𝑎

𝛾 − 5

[(
𝜌
𝜕2𝜌

𝜕𝑥𝑟𝜕𝑥𝑟
+ 1

2
𝜕𝜌

𝜕𝑥𝑟

𝜕𝜌

𝜕𝑥𝑟

)
𝛿𝑘𝑠 −

𝜕𝜌

𝜕𝑥𝑠

𝜕𝜌

𝜕𝑥𝑘

]
. (18)

In the expression above, the first term describes the pressure reduction 
due to attractive forces, just as it appears in the van der Waals equation 
[50]. The second term describes capillary forces due to density gradi-
ents, including surface tension in the liquid-vapor interface, where the 
density gradient is steep [43]; this expression also appears in the square 
gradient theory [87–89].

To complete the theoretical framework of the present form of EV 
equation, it is to be noted that proofs of the H-theorem (i.e., agreement 
with the 2nd law of thermodynamics) are available for the modified or 
revised Enskog theory (RET) [82] and for the Boltzmann-Enskog equa-
tion (BE) [83,84], but not (so far) for the standard Enskog theory (SET) 
used here.

In RET, the uniform equilibrium pair correlation function 𝑌 of SET 
is replaced by a complex non-local functional of the density field which 
would make both numerical and analytical treatments much more dif-
ficult. On the other hand, BE keeps the non-local structure of the SET 
collision term but assumes 𝑌 ≡ 1, thus oversimplifying the fluid physics. 
Lack of proof does not imply lack of proper physics since numerical 
simulations of the hard sphere fluid based on SET are in excellent agree-
ment with “exact” MD simulations [34].

Moment equations are approximations of the underlying kinetic 
equation and typically only approximate the second law behavior of the 
kinetic equation. While it is not possible to find a general entropy and 
entropy balance for the moment system, one always finds a quadratic 
entropy for linearized systems, and observes proper dissipative behavior 
for nonlinear moment equations in a wide range of process parameters 
[85]. All moment solutions exhibit proper physical behavior.

Finally, it should be stressed that the EV equation (15) provides 
a simplified description of a fluid whose atoms interact through the 
potential described above. It can be viewed as a kinetic extension of Dif-
fuse Interface Models (DIM) [43] which have the capability of giving a 
unified description of two-phase flows but, unlike the EV equation, can-
not describe kinetic layers next to liquid-vapor interfaces [4]. As such, 
the EV equation cannot compete with MD as to the level of detail of 
atomic motion description. Yet, its description of two-phase flows is suf-
ficiently accurate in comparison with MD simulation [36]. Moreover, its 
fluid description, being based on the one-particle distribution function, 
allows for illuminating analytical treatments [24] which complement 
methods based on computer algorithms and are further developed in 
the next sections.

4.3. Grad’s method of moments

The aim of the Grad moment method is to replace the detailed ki-
netic equation through a set of moment equations that describe the 
main characteristics of the kinetic equation [45,31,32]. In general no-
tation, one chooses a set of 𝑁 moments( )
5

𝑢𝐴 = ∫ 𝜑𝐴 𝑐𝑖 𝑓𝑑𝐜, 𝐴 = 1,… ,𝑁 (19)
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where the 𝜑𝐴
(
𝑐𝑖

)
are a set of suitable polynomials. Multiplication of 

the kinetic equation (15) with 𝜑𝐴 and integration over the microscopic 
velocity generates the corresponding set of moment equations

𝜕𝑢𝐴

𝜕𝑡
+
𝜕𝑉𝐴𝑘

𝜕𝑥𝑘
= 𝐹𝑘𝑈𝐴𝑘 + 𝑃𝐴 , 𝐴 = 1,… ,𝑁 (20)

where

𝑉𝐴𝑘 = ∫ 𝜑𝐴
(
𝑐𝑖

)
𝑐𝑘𝑓𝑑𝐜 , 𝑃𝐴 = ∫ 𝜑𝐴

(
𝑐𝑖

) (𝑓 )𝑑𝐜 ,

𝑈𝐴𝑘 = ∫
𝜕𝜑𝐴

(
𝑐𝑖

)
𝜕𝑐𝑘

𝑓𝑑𝐜.
(21)

To obtain a closed set of equations, constitutive relations are required 
to link the fluxes 𝑉𝐴𝑘, the productions 𝑃𝐴, and the self-productions 𝑈𝐴𝑘
to the moments 𝑢𝐴, which are chosen as the variables of the system of 
equations.

For moment equations of the Boltzmann equation, Grad solved the 
closure problem by constructing a distribution function that depends 
explicitly on the moments [45], written as a disturbance of the equilib-
rium solution,

𝑓G ≃ 𝑓|E [
1 − 𝜆𝐴

(
𝑢𝐵

)
𝜑𝐴

(
𝑐𝑖

)]
(22)

Here, 𝑓|E = 𝜌

𝑚

√
𝑚

2𝜋𝑘𝑇

3
exp

[
− 𝑚𝐶2

2𝑘𝐵𝑇

]
denotes the local Maxwellian equi-

librium distribution, and the 𝜆𝐴 are expansion coefficients (also, Boltz-
mann constant 𝑘𝐵 , thermodynamic temperature 𝑇 , peculiar velocity 
𝐶𝑖 = 𝑐𝑖 − 𝑣𝑖, macroscopic velocity 𝑣𝑖). Insertion of the Grad distribu-
tion (22) into the moment definition (19) identifies the coefficients 𝜆𝐴
as functions of the moments 𝑢𝐴, and then its use in the expressions 
(21) gives explicit local constitutive relations of the form 𝑉𝐴𝑘

(
𝑢𝐵

)
, 

𝑈𝐴𝑘
(
𝑢𝐵

)
, 𝑃𝐴

(
𝑢𝐵

)
. Inserting these into (20) finally gives the Grad mo-

ment system for the chosen set of moments. For further discussion on, 
e.g., the number of moments, alternative closures etc., we refer the 
reader to the scientific literature [45,31,32,74].

4.4. Enskog-Vlasov 26 moment equations

The Grad closure can be used for moment equations of the EV 
equation as well. However, in the context of the EV model, the above 
program of the Grad closure is considerably harder since the non-local 
terms in the Enskog collision term stand in the way. In order to ob-
tain explicit equations, we had to use Taylor expansion of the non-local 
terms with the molecule diameter 𝑎 as smallness parameter. Moreover, 
we restricted the theory to reasonably small deviations from equilib-
rium states, which include density gradients in the equilibrium phase 
interface. Accordingly, the final equations are linear in gradient terms 
of all properties except the density. A full account of the derivation in-
cluding all assumptions, and showing the complete equations in 3D, is 
given in [42]. Below, we only present the steady state case in 1D as 
pertinent for heat and mass transfer across the interface.

4.4.1. Variables

Based on our experience of approximating the Boltzmann equation 
with moment systems [32,74] we consider a set of 26 variables, where 
the number refers to the 3D case. For continuity with previous work on 
ideal gases, we chose the variables

𝜌 =𝑚∫ 𝑓𝑑𝐜 =𝑚𝑛

𝜌𝑣𝑖 =𝑚∫ 𝑐𝑖𝑓𝑑𝐜 (23)

𝜌𝜖 = 𝑚
2 ∫ 𝐶2𝑓𝑑𝐜 = 3

2
𝜌𝑅𝑇 = 3

2
𝜌𝜃
𝜎𝑖𝑗 =𝑚∫ 𝐶⟨𝑖𝐶𝑗⟩𝑓𝑑𝐜
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𝔮𝑖 =
𝑚

2 ∫ 𝐶2𝐶𝑖𝑓𝑑𝐜

𝑚𝑖𝑗𝑘 =𝑚∫ 𝐶⟨𝑖𝐶𝑗𝐶𝑘⟩𝑓𝑑𝐜
Δ=𝑚∫ 𝐶4 (

𝑓 − 𝑓|𝐸)
𝑑𝐜

𝑅𝑖𝑗 =𝑚∫ 𝐶2𝐶⟨𝑖𝐶𝑗⟩𝑓𝑑𝐜−7𝜃𝜎𝑖𝑗
Here, 𝐶𝑖 = 𝑐𝑖 − 𝑣𝑖 is the peculiar velocity, i.e., the molecule velocity 
observed from the co-moving frame, and indices in angular brackets 
indicate symmetric and trace-free tensors. The first 5 moments, 𝜌, 𝜌𝑣𝑖
and 𝜌𝜖 are mass density, momentum density, and density of thermal 
energy, where 𝜃 = 𝑅𝑇 is the temperature in units of specific energy, 
𝑅 = 𝑘𝐵∕𝑚 is the gas constant, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is 
kinetic temperature. The other variables are nonequilibrium moments, 
which vanish in equilibrium states. Kinetic stress tensor 𝜎𝑖𝑗 and kinetic 
heat flux 𝔮𝑖 are the kinetic contributions to overall stress and energy 
flux; in the equations below there will be additional contributions from 
the Enskog and Vlasov terms. The variables 𝑚𝑖𝑗𝑘, Δ, and 𝑅𝑖𝑗 were con-
structed to be of second order in the case of Maxwell molecules [32].

For one-dimensional flows as in Fig. 1, we only need one component 
of each tensor, which gives the eight variables

𝑢𝐴 =
(
𝜌, 𝑣, 𝜃, 𝜎, 𝔮, 𝑚111, Δ, 𝑅11

)
, (24)

where 𝜎 = 𝜎11, 𝔮 = 𝔮1. Their respective transport equations are found 
from the full equations in [42] by reducing these for steady state and 
1D, as listed below. Due to the expansions required to find the moments 
of the Enskog collision term, the equations contain a large number of 
terms of various orders. Due to the use of dimensionless equations, the 
order of the various terms is not as easily recognized, for full insight the 
interested reader is referred to [42].

4.4.2. Dimensions

The only parameters that determine the EV model are molecule di-
ameter 𝑎, molecule mass 𝑚, strength of potential 𝜙𝑎, and potential 
exponent 𝛾 . We present the equations, and their solutions, in dimen-
sionless units, which are chosen such that

𝑎 =𝑚 = 𝜙𝑎 = 1 (25)

With this, length 𝑥 is measured in multiples of 𝑎, density 𝜌 in multiples 
of 𝑚

𝑎3
, temperature 𝜃 = 𝑅𝑇 in multiples of 𝜙𝑎, and time 𝑡 in multiples 

of 𝑎∕
√
𝜙𝑎. Moreover, data and figures shown below are for power po-

tentials with 𝛾 = 6, such that

𝜒1 =
𝛾

𝛾 − 3
= 2 , 𝜒3 =

𝛾

𝛾 − 5
= 6 . (26)

4.4.3. Mass balance

The mass balance states that for 1D steady state processes the mass 
flux 𝐽 is constant,

𝑑𝜌𝑣

𝑑𝑥
= 0 ⟹ 𝐽 = 𝜌𝑣 = 𝑐𝑜𝑛𝑠𝑡. (27)

4.4.4. Momentum balance

The momentum balance states that the total momentum flux 𝑃 is a 
constant with several contributions that are described below,

𝑑𝑃

𝑑𝑥
= 0 ⟹ 𝑃 = 𝜌𝑣2 + 𝑝+ 𝑃𝜎 + 𝑃Vlasov + 𝑃Enskog = 𝑐𝑜𝑛𝑠𝑡. (28)

The first term, 𝜌𝑣2, describes convective momentum transfer. The equi-
librium pressure

𝑝 = 𝜌𝜃
(
1 + 2𝜋

3
𝜌𝑌

)
− 2𝜋

3
𝜒1𝜌

2 (29)

is a non-monotonous function of density, with the same principal fea-
6

tures as the van der Waals equation of state, and hence allows for phase 
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separation. Evaluation in equilibrium by means of Maxwell’s equal area 
rule [50] yields critical point temperature, pressure and mass density as 
𝜃crit = 0.7546, 𝑝crit = 0.06748, 𝜌crit = 0.249 [42].

Viscous stresses are found as

𝑃𝜎 =
(
1 + 2

5
2𝜋
3
𝜌𝑌

)
𝜎 − 4

5
√
𝜋
𝜌2𝑌√
𝜃

⎛⎜⎜⎝𝜃 𝑑𝑣𝑑𝑥 + 1
10

𝑑
𝔮
𝜌

𝑑𝑥
+ 1

42

𝑑
𝑚111
𝜌

𝑑𝑥

⎞⎟⎟⎠ (30)

where the contributions with kinetic stress 𝜎 and the velocity gradient 
are present also on the NSF level, while the terms with 𝔮 and 𝑚111
describe thermal stresses and other higher order effects.

Phase separation with diffuse interface becomes possible, since the 
non-monotonous pressure is balanced by capillary stresses, which create 
the required surface tension. The main contribution comes from the 
Vlasov force with the Korteweg stress (18),

𝑃Vlasov = −2𝜋
15
𝜒3

(
𝜌
𝑑2𝜌

𝑑𝑥2
− 1

2
𝑑𝜌

𝑑𝑥

𝑑𝜌

𝑑𝑥

)
(31)

The Enskog collision term gives a smaller contribution of the form

𝑃Enskog =
𝜋

60

(
𝑑2𝑌 𝜌2𝜃

𝑑𝑥2
+ 3𝑌 𝑑

2𝜌2𝜃

𝑑𝑥2
− 12𝑌 𝑑𝜌

𝑑𝑥

𝑑𝜌𝜃

𝑑𝑥

− 1
2
𝜃𝜌2

𝑑2𝑌

𝑑𝜌2
𝑑𝜌

𝑑𝑥

𝑑𝜌

𝑑𝑥

)
, (32)

where the underlined term is an ad-hoc addition that ensures validity of 
the equal area rule in the numerical solutions of the EV26 equation [90,
42]; without the correction there is a small deviation of the saturation 
pressure of less than 1% relative to that from the equal area rule.

4.4.5. Balance of thermal energy

Within the Enskog-Vlasov model, one has to account for thermal, 
kinetic and Vlasov energies, where balances of kinetic and Vlasov ener-
gies are found from the balances of momentum and mass, respectively 
[91–93,42]. The balance of thermal energy reads in compact form

𝑑

𝑑𝑥

[3
2
𝜌𝜃𝑣+ 𝑞

]
= −𝜌𝜃

(
1 + 2𝜋

3
𝜌𝑌

)
𝑑𝑣

𝑑𝑥
−

(
𝑃𝜎 + 𝑃Enskog

) 𝑑𝑣
𝑑𝑥

(33)

where 3
2𝜌𝜃𝑣 is the convective flux of thermal energy, 𝑞 is the non-

convective heat flux, the first expression on the right hand side is the 
work for volume change, and the second expression is frictional heat-
ing, which was ignored in [42] due to linearization.

The non-convective heat flux has several contributions,

𝑞 =
(
1 + 3

5
2𝜋
3
𝜌𝑌

)
𝔮− 2

3
√
𝜋
√
𝜃𝜌2𝑌

𝑑𝜃

𝑑𝑥

−
√
𝜋
𝜌2𝑌√
𝜃

[
4
15
𝜃
𝑑

𝑑𝑥

(
𝜎

𝜌

)
+ 1

90
𝑑

𝑑𝑥

(
Δ
𝜌

)
+ 2

105
𝑑

𝑑𝑥

(
𝑅11
𝜌

)]
, (34)

where the first two terms are present also on the NSF level, while the 
terms with 𝜎, Δ, and 𝑅11 describe higher order effects.

4.4.6. Kinetic stress and heat flux balances

Due to the many contributions from the Enskog term, the balance 
laws for kinetic stress and kinetic heat flux assume rather rich forms, 
with an abundance of higher order contributions that we do not discuss 
in detail. For 1D steady state processes, the equations for 𝜎 and 𝔮 read[
𝜌𝜃

(
1 + 2

5
2𝜋
3
𝜌𝑌

)] 4
3
𝑑𝑣

𝑑𝑥
+ 8

15
𝑑

𝑑𝑥

[(
1 + 3

5
2𝜋
3
𝜌𝑌

)
𝔮
]

+ 𝑑

𝑑𝑥

[(
1 + 6

35
2𝜋
3
𝜌𝑌

)
𝑚111

]
+ 2𝜋

3

[ 4
25

𝔮+ 8
35
𝑚111

] 1
𝜌

𝑑𝜌2𝑌

𝑑𝑥

−
√
𝜋
√
𝜃

[
16
45
𝜌2
𝑑

𝑑𝑥

(
𝑌
𝑑𝜃

𝑑𝑥

)
+ 32

45
𝜌𝑌
𝑑𝜌

𝑑𝑥

𝑑𝜃

𝑑𝑥

]
−

√
𝜋

[
4
𝜌
𝑑

(
𝑌
𝑑Δ)

− 4 Δ 𝑑
(
𝑌
𝑑𝜌

)]
√
𝜃 675 𝑑𝑥 𝑑𝑥 675 𝑑𝑥 𝑑𝑥



H. Struchtrup, H. Jahandideh, A. Couteau et al.

−
√
𝜋
√
𝜃

[
88
315

𝜌
𝑑

𝑑𝑥

(
𝑌
𝑑𝜎

𝑑𝑥

)
− 304

315
𝜎
𝑑

𝑑𝑥

(
𝑌
𝑑𝜌

𝑑𝑥

)
− 6

35
𝜌𝜎
𝑑2𝑌

𝑑𝑥2

]
−

√
𝜋√
𝜃

[
44
2205

𝜌
𝑑

𝑑𝑥

(
𝑌
𝑑𝑅11
𝑑𝑥

)
− 2

45
𝑅11

𝑑

𝑑𝑥

(
𝑌
𝑑𝜌

𝑑𝑥

)
− 3

490
𝜌𝑅11

𝑑2𝑌

𝑑𝑥2

]
= −16

5
𝜌
√
𝜋𝜃𝑌

(
𝜎 + 1

28
𝑅11
𝜃

)
. (35)

5
2
𝜌𝜃

(
1 + 3

5
2𝜋
3
𝜌𝑌

)
𝑑𝜃

𝑑𝑥
+ 𝜃 𝑑

𝑑𝑥

[(
1 + 3

5
2𝜋
3
𝜌𝑌

)
𝜎

]
− 𝜎
𝜌
𝜃
𝑑

𝑑𝑥

[(
1 + 9

10
2𝜋
3
𝜌𝑌

)
𝜌

]
+ 1

2
𝑑

𝑑𝑥

[(
1 + 12

35
2𝜋
3
𝜌𝑌

)
𝑅11

]
+ 1

6
𝑑

𝑑𝑥

[(
1 + 3

5
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3
𝜌𝑌

)
Δ

]
+ 2𝜋

3

[
1
30

Δ
𝜌
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140
𝑅11
𝜌

]
𝑑𝜌2𝑌

𝑑𝑥

+ 19
5

√
𝜋
√
𝜃𝜃
𝑑

𝑑𝑥

(
𝜌2𝑌

𝑑𝑣

𝑑𝑥

)
−

√
𝜋
√
𝜃

[
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𝜌
𝑑

𝑑𝑥

(
𝑌
𝑑𝔮
𝑑𝑥

)
−37
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𝔮 𝑑
𝑑𝑥

(
𝑌
𝑑𝜌

𝑑𝑥

)
− 8
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𝜌𝔮𝑑

2𝑌

𝑑𝑥2

]
−

√
𝜋
√
𝜃

[
9
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𝑑
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𝑌
𝑑𝑚111
𝑑𝑥
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6
𝑚111
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𝑑𝑥
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𝑌
𝑑𝜌

𝑑𝑥
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𝜌𝑚111

𝑑2𝑌

𝑑𝑥2

]
= −2

3
16
5
𝜌
√
𝜋𝜃𝑌 𝔮 . (36)

4.4.7. Higher order moments 𝑚𝑖𝑗𝑘, Δ, 𝑅𝑖𝑗
Finally, the equations for the higher moments couple these to the 

previous and among themselves,

9
5
𝜃
𝑑

𝑑𝑥

[(
1 + 6

35
2𝜋
3
𝜌𝑌

)
𝜎

]
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𝜌

𝑑

𝑑𝑥

[(
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5
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3
𝜌𝑌
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𝜌

]
+ 9

35
𝑑

𝑑𝑥
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3
𝜌𝑌

)
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]
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2450
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𝜌
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𝑑𝑥

−
√
𝜋
√
𝜃

8
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𝜃
𝑑

𝑑𝑥
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+

√
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√
𝜃
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. (39)

 Hydrodynamics (NSF)

The above EV26 equations account for higher orders on the scale of 
molecule diameter, as is necessary for the resolution of the interface. 
he bulk phases sufficiently away from the interface, the capillary 
es vanish, 𝑃Vlasov = 𝑃Enskog = 0, and the flow is described by the 
 Navier-Stokes-Fourier (NSF) equations, which are obtained from 
pman-Enskog expansion. First order expansion of the equations for 
-conserved moments yields (in 1D)

SF) = −205
202

√
𝜃

(
1 + 2

5
2𝜋
3 𝜌𝑌

)
16
5

√
𝜋𝑌

4
3
𝑑𝑣

𝑑𝑥
,

SF) = −15
4

√
𝜃

(
1 + 3

5
2𝜋
3 𝜌𝑌

)
16
5

√
𝜋𝑌

𝑑𝜃

𝑑𝑥
, (40)

SF) = − 84
205

𝜃𝜎(NSF) ,

SF) =𝑚(NSF)
111 = 0 .

nserting these into the conservation laws we identify viscous stresses 
 thermal energy flux as the 1D Navier-Stokes-Fourier expressions

SF) = −
⎡⎢⎢⎢⎣
205
202

√
𝜃

(
1 + 2

5
2𝜋
3 𝜌𝑌

)2

16
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√
𝜋𝑌

4
3
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5
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𝜋𝜌2𝑌

√
𝜃

⎤⎥⎥⎥⎦
𝑑𝑣

𝑑𝑥
, (41)

SF) = −
⎡⎢⎢⎢⎣
15
4
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𝜃

(
1 + 3
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3 𝜌𝑌

)2
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√
𝜋𝑌

+ 2
3

√
𝜋
√
𝜃𝜌2𝑌

⎤⎥⎥⎥⎦
𝑑𝜃

𝑑𝑥
. (42)

 factors in the brackets are the overall viscosity and heat conduc-
y for the Enskog gas. These expressions agree with [28], where, 
ever, the factor 205202 is replaced by unity; this small difference is due 
he influence of the higher order moment equation for 𝑅11 which 
 not considered in the reference.
Inserting stress and heat flux into the conservation laws yields, after 
e algebra, the steady state form of the NSF equations in the bulk 
ses,

𝜌𝑣 = 𝐽 = 𝑐𝑜𝑛𝑠𝑡. ,

𝜌𝑣2 + 𝑝+ 𝑃 (NSF)
𝜎

= 𝑃 = 𝑐𝑜𝑛𝑠𝑡 , (43)

+ 𝑣
2

2

)
𝐽 + 𝑞(NSF) + 𝑃 (NSF)

𝜎
𝑣 = = 𝑐𝑜𝑛𝑠𝑡. .

e the bulk enthalpy for the model was identified as(5
2
+ 2𝜋

3
𝜌𝑌

)
𝜃 − 4𝜋

3
𝜒1𝜌 . (44)

 this, internal energy 𝑢 appears as the sum of thermal and Vlasov 
rgies

𝑝 3 2𝜋

𝑢 = ℎ−

𝜌
=

2
𝜃 −

3
𝜒1𝜌 , (45)
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and bulk entropy is found by means of the Gibbs equation 𝑇𝑑𝑠 = 𝑑𝑢 −
𝑝

𝜌2
𝑑𝜌 as

𝑠 = 3
2
ln𝜃 − ln𝜌−

3 − 𝜋

3 𝜌(
1 − 𝜋

6 𝜌
)2 . (46)

These property relations are required to find resistivities from (7).
The simulations yield kinetic heat flux 𝔮, which in the NSF realm 

is related to actual heat flux 𝑞 through a factor that depends only on 
density,

𝑞(NSF) =
⎡⎢⎢⎣1 + 3

5
2𝜋
3
𝜌𝑌 + 128𝜋

225
𝜌2𝑌 2

1 + 3
5
2𝜋
3 𝜌𝑌

⎤⎥⎥⎦𝔮(NSF) (47)

EV-NSF solutions for two phase systems rely on the conservation 
laws for mass, momentum and energy (27), (28), (33) with the above 
constitutive relations and the Vlasov and Enskog stresses (31), (32), cor-
responding to the Diffuse Interface Model derived by the EV equation.

4.6. EV13 equations for 13 moments

In order to obtain better insight into the capabilities of EV-moment 
equations, we also consider a simpler system with 13 moments, just 
as in the well-known Grad13 equations [44,45,32]. These are obtained 
from the larger EV26 set by setting the higher moments 𝑚𝑖𝑗𝑘, Δ, 𝑅𝑖𝑗
to zero, and ignoring their equations. In 1D, the model has the five 
variables 𝜌, 𝑣, 𝜃, 𝜎, 𝔮, which follow from (27), (28), (33), (35), (36) with 
𝑚111 = Δ =𝑅11 = 0.

4.7. EV26R: ad-hoc regularization for 𝑚𝑖𝑗𝑘, Δ, 𝑅𝑖𝑗

As will be seen, the numerical results for EV26 indicate overly strong 
heat and mass transfer resistance of the interface for conditions further 
away from the critical point. By comparison with DSMC results and 
analysis of the transport equations, we could identify overly large val-
ues for the higher moments 𝑚111, Δ, 𝑅11 as the cause for the extra 
resistance.

Within the philosophy of the moment method, lack of agreement 
with solutions of the underlying kinetic equation points to an insuffi-
cient number of moments used. While the non-trivial derivation of an 
extended moment system is planned for the future, below we consider 
an ad-hoc correction based on the R26 moment system, which is the 
regularization of the Grad 26 moment system in classical kinetic theory 
[46]. For this, we added the leading regularization terms for the mo-
ments 𝑚111, Δ, 𝑅11 as determined by Gu & Emerson [46] to the left 
hand side of the respective moment equations, which read (the ellipses 
stand for the full lhs of Eqs. (37), (38), (39))

⋯− 1.09 𝑑
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[
𝜇
𝑑

𝑑𝑥

(
𝑚111
𝜌

)]
= −3
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(
Δ
𝜌

)]
− 4

[
𝜇
𝑑

𝑑𝑥

(
𝑅11
𝜌

)]
= −2

3
16
5
𝜌
√
𝜋𝜃𝑌Δ (48)

⋯− 1.363 𝑑
𝑑𝑥

[
𝜇
𝑑

𝑑𝑥

(
𝑅11
𝜌

)]
= −16

5
𝜌
√
𝜋𝜃𝑌

[1
2
𝜃𝜎 + 205

168
𝑅11

]
Here, 𝜇 is the viscosity coefficient of the gas, for which we use the 
Enskog-Vlasov expression

𝜇 =
√
𝜃

(
1 + 2

5
2𝜋
3 𝜌𝑌

)2

16
5

√
𝜋𝑌

. (49)

These additional terms have a significant influence on the results, 
in particular they lead to improved results for heat transfer processes, 
as will be seen below. We emphasize that this is an ad-hoc correction 
which in the future must be replaced by a proper account of the influ-
8

ence of higher moments as predicted by the moment equations of the 
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Fig. 2. Test problem geometry.

EV equation for increased number of variables, e.g., by an extension of 
the order of magnitude method outlined in Ref. [94].

5. Numerical solutions of the EV and EV moment equations

5.1. DSMC solutions of the EV equation

The accuracy of the moment approximations described above has 
been assessed by solving Eq. (15) numerically by the extension to dense 
gases [35,36] of the well known Direct Simulation Monte Carlo (DSMC) 
particle scheme, first proposed by G. A. Bird in 1963 [37], for dilute 
gases governed by the Boltzmann equation [29].

Two distinct but complementary problems have been considered. 
The first one consists in describing energy transport in the two-phase 
system depicted in Fig. 2.

An infinite liquid slab of nominal thickness 𝐿𝑠 occupies the central 
region of the gap separating two identical parallel solid walls. The two 
symmetrically disposed regions between each liquid interface and its 
nearest wall have nominal width 𝐿𝑣 and are occupied by the vapor 
phase. A central strip of the liquid slab is thermostatted at temperature 
𝑇𝐿 by a Berendsen thermostat [95], whereas the solid walls are both 
assigned the identical temperature 𝑇𝑤 ≥ 𝑇𝐿.

The temperature 𝑇𝐿 is assumed to be lower than the Enskog-Vlasov 
fluid critical temperature and, for any given system geometry, 𝑇𝑤 is 
limited by the condition that a stable liquid slab is formed in the steady 
state.

In the assumption that fluid properties gradients, generated by the 
temperature difference 𝑇𝑤 − 𝑇𝐿, are normal to the walls and liquid slab 
interfaces, the steady, spatially one-dimensional version of Eq. (15)
is solved. The spatial coordinate 𝑥 spans the gap between the walls, 
respectively located at 𝑥±

𝑤
= ± 

(
𝐿𝑣 +

𝐿𝑠

2

)
. At the wall location, the 

boundary conditions for the distribution function 𝑓 (𝑥, 𝐜, 𝑡) are assigned 
as

𝑓 (𝑥−
𝑤
, 𝐜, 𝑡) =

𝑛−
𝑤
(𝑡)(

2𝜋𝑅𝑇𝑤
)3∕2 exp(

− 𝐜2
2𝑅𝑇𝑤

)
, 𝑐1 > 0

𝑓 (𝑥+
𝑤
, 𝐜, 𝑡) =

𝑛+
𝑤
(𝑡)(

2𝜋𝑅𝑇𝑤
)3∕2 exp(

− 𝐜2
2𝑅𝑇𝑤

)
, 𝑐1 < 0 (50)

being 𝑛±
𝑤
(𝑡) wall densities to be computed from the flux of impinging 

molecules on each wall, as:

𝑛±
𝑤

√
𝑅𝑇𝑤

2𝜋
= ∫
𝐜⋅𝐱̂±>0

(
𝐜 ⋅ 𝐱̂±

)
𝑓 (𝑥±

𝑤
, 𝐜, 𝑡)𝑑𝐜, 𝐱̂± = ∓𝐱̂ (51)

being 𝐱̂ the unit vector associated with the coordinate 𝑥.
The boundary conditions (50) specify that molecules hitting a solid 

wall are instantaneously reflected in the domain and thermalized to 𝑇𝑤. 

Condition (51) states that mass fluxes are zero at walls at any time and 
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guarantee that the mass flux 𝐽 in the whole domain is uniformly equal 
to zero in steady flow conditions.

The zero mass flux condition and the conservation of momentum 
along the 𝑥 direction lead to the uniformity of the normal stress in the 
domain.

In absence of net mass flux, the temperature jump Δ𝑇 at the liquid-
vapor interface and the pressure difference Δ𝑝 (see Eq. (8)) are only 
determined by the heat flux, according to Eq. (9). Hence the analysis of 
the obtained numerical solution for this test problem allows obtaining 
resistivities 𝑟̂12 and 𝑟̂22.

The second test problem consists in the classical steady evapora-
tion of an infinite, planar liquid surface into a half-space [64,65,11], 
in which the downstream subsonic vapor flow is in isothermal equilib-
rium uniquely determined by the mass flux 𝐽 . In this case, the heat 
flux contribution in Eq. (9) is zero hence Δ𝑇 and Δ𝑝 are determined 
by 𝐽 . Accordingly, numerical solutions of the EV equation for this test 
problem provide estimates of resistivities 𝑟̂11 and 𝑟̂21.

DSMC simulations for the second problem can be performed in the 
same geometry described by Fig. 2. A net mass flux is obtained by 
making walls permeable. An identical absorption probability 𝑃𝑎𝑏𝑠 is as-
signed to the walls, respectively located at 𝑥±

𝑤
. Whenever a particle hits 

a wall it is either absorbed with probability 𝑃𝑎𝑏𝑠 or re-emitted into the 
vapor phase according to the distribution function (50), with probabil-
ity 

(
1 − 𝑃𝑎𝑏𝑠

)
. In order to keep the interface steady, absorbed particles 

are re-inserted at random in the thermostatted region of the liquid slab 
at each time step, their new velocities being sampled from a Maxwellian 
with zero bulk velocity and temperature 𝑇𝐿. Wall temperature, 𝑇𝑤, is 
tuned to obtain a uniform temperature profile in the equilibrium vapor 
regions sufficiently far from the Knudsen layers adjacent to the interface 
and walls, respectively.

It should be observed that steady, one-dimensional solutions of the 
EV equation, with the geometry and boundary conditions specified 
above, are symmetric with respect to the plane 𝑥 = 0. Doubling the do-
main size (and particle number) of DSMC simulations, although unnec-
essary at first glance, avoids adopting complicated numerical boundary 
conditions at the symmetry plane. Moreover, doubling the domain size 
and the flow symmetry can be exploited to double the particle sample 
size while estimating macroscopic fields.

The results of each DSMC simulation, shown in Sections 6 and 7 for 
the heat transfer and evaporation problems, respectively, have been ob-
tained by a combination of time and phase averaging. The latter has 
been obtained by superposing the time averaged results of 20 statis-
tically independent simulations of the (macroscopically) same system. 
Each individual simulation has been started by a condition in which the 
liquid slab is in equilibrium with the vapor at temperature 𝑇𝐿. Particle 
motion is then computed till the onset of steady flow conditions. Af-
ter the transient is over, the sampling of particle microscopic quantities 
is performed, along with the motion calculation, to obtain macroscopic 
quantities. The number of particles per simulation ranged from 6 × 105
to 8 × 105, hence the total number of particles involved in the phase 
averaging ranged from 1.2 × 107 to 1.6 × 107.

The typical overall computing time amounted to about 40 hours, on 
a 20-core XeonTM machine, to complete a cycle of 1.2 × 106 time steps, 
which included both the transient and the sampling time intervals. The 
considerable amount of computational resources provided an accept-
able estimation of the higher order moments appearing in the EV26 
formulation which exhibit both small amplitudes and high variance. In 
each simulation, the nominal extent of the vapor regions, 𝐿𝑣, has been 
chosen wide enough to obtain a well defined hydrodynamic vapor re-
gion, separating the two kinetic layers next to the vapor liquid interface 
and its facing wall.

A few observations about DSMC solutions accuracy are in order, 
before describing and discussing simulations results. The first one is 
about computed mass flux profiles, shown in Fig. 3a, in the case of 
evaporation simulations. Fig. 3a compares two 𝐽 profiles computed for 
9

the same physical setup, using two different values of the time step 
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Δ𝑡. Both profiles differ from a constant in two regions. The first one 
coincides with the thermostatted liquid strip, where the mass flux is not 
constant because of the addition of particles that were absorbed at the 
outer boundaries.

The second one consists of a narrow peak confined in the liquid-
vapor interface region. The peak, whose amplitude is proportional to 
Δ𝑡, is an artifact of the DSMC first-order time scheme which advances 
the particle positions and velocities by a pure advection step, followed 
by a collision step. In the particular problems considered here, the mean 
field 𝐹𝑥 compresses the slab during the advection step, whereas the slab 
expands during the collision step. Since particle velocities are sampled 
at the end of the collision step, the peak reflects the intense, nonlocal, 
collisional momentum transfer in the interface region, with its high den-
sity gradient. As Fig. 3a shows, the peak superposes to a constant mass 
flux profile which is left unchanged by the time step reduction which 
only affects the peak amplitude.

The second important quantity appearing in the estimation of re-
sistivities is the normal stress 𝑃 , defined by Eq. (28). The latter is 
computed as the sum of its kinetic, collisional (hard sphere) and attrac-
tive tail contributions. The last two contributions, respectively denoted 
as 𝑃𝐸𝑛𝑠𝑘𝑜𝑔 and 𝑃𝑉 𝑙𝑎𝑠𝑜𝑣 in Eq. (28), result from nonlocal interactions and 
have complicated expressions, in general [80]. In the case of the present 
problem geometry, they can be computed as

𝑃𝑉 𝑙𝑎𝑠𝑜𝑣(𝑥) = −

𝑥

∫
𝑥−𝑤

𝑛(𝑦)𝐹1(𝑦)𝑑𝑦 (52)

𝑃𝐸𝑛𝑠𝑘𝑜𝑔(𝑥) = −

𝑥

∫
𝑥−𝑤

𝑄̇1(𝑦)𝑑𝑦 (53)

𝑄̇1 =𝑚∫ 𝑐1𝐸𝑛 𝑑𝐜 (54)

being 𝑛 the number density and 𝑄̇1 the collisional rate of change of 
momentum along 𝑥1. The latter quantity is easily evaluated by ac-
cumulating molecular velocities changes, due to binary hard sphere 
collisions, in each cell, during the sampling time interval. The evalu-
ation of 𝑃𝑡 involves the mean field component 𝐹1 which is assumed 
constant in each spatial DSMC cell, being computed by the following 
one-dimensional version of Eq. (14):

𝐹1(𝑥1|𝑡) = 2𝜋𝜙𝑎

⎡⎢⎢⎢⎣𝑎
𝛾 ∫|𝑥1−𝑥′1|>𝑎

(𝑥′1 − 𝑥1)𝑛(𝑥
′
1|𝑡)|𝑥1 − 𝑥′1|𝛾 𝑑𝑥

′
1

+ ∫|𝑥1−𝑥′1|≤𝑎
(𝑥′1 − 𝑥1)𝑛(𝑥

′
1|𝑡)𝑑𝑥′1

⎤⎥⎥⎥⎦ (55)

At each position 𝑥1, 𝐹1(𝑥1|𝑡) is obtained as a linear functional of 𝑛. The 
kernel in the integral has an infinite range and is truncated at a pre-
scribed value of |𝑥1 − 𝑥′1| in the numerical implementation of Eq. (55). 
As in the case of MD simulations [95], potential range truncation affects 
fluid properties in general and the pressure equation of state in par-
ticular. Fig. 3b shows 𝑃 profiles obtained by liquid-vapor equilibrium 
simulations at 𝑇 = 0.50 for three different values of the kernel cutoff 
distance. The computed 𝑃 profiles are fairly constant through the liq-
uid, interface and vapor regions and not much affected by the cutoff 
distance. However, as expected, 𝑃 deviates from the exact equilibrium 
pressure, as given by Eq. (29) for the smaller values of the cutoff dis-
tance. Actually, the numerical equation of state does not coincide with 
the exact one, because of the truncation and, to a lesser extent, because 
of the integral discretization. The deviation is more evident in the liq-
uid bulk because the tiny liquid density variations, caused by changing 

the cutoff distance, correspond to relatively large pressure variations.
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Fig. 3. (a) Effect of Δ𝑡 on mass flux 𝐽 : 𝑇𝐿 = 0.60, 𝑇𝑤 = 0.5564, 𝑃𝑎𝑏𝑠 = 0.1. (b) Equilibrium density profiles: 𝑇 ∕𝑇𝑐 = 0.596 (◦), 𝑇 ∕𝑇𝑐 = 0.663 (□), 𝑇 ∕𝑇𝑐 = 0.729 (⋄), 
𝑇 ∕𝑇 = 0.795 (△), 𝑇 ∕𝑇 = 0.862 (▿). Algebraic potential tail with 𝛾 = 6.
𝑐 𝑐

In spite of the deviations from the exact equation of state, compu-
tations with the smallest cutoff distance, 5𝑎, are consistent and com-
putationally less expensive. Moreover, the computed liquid-vapor co-
existence curve is very close to the one used in the moment method 
calculation, based on the exact equation of state and the equal area 
rule. Hence, as a rule, the cutoff distance has been set equal to five hard 
sphere diameters. The grid size has been set to 𝑎∕10 and the time stepto 
5 × 10−3𝑎

√
𝑚

𝜙𝑎
. Further refinements of space and time discretization 

did not produce changes which affect the comparison with the moment 
method predictions of nonequilibrium flows described below.

A second cause of deviation of DSMC computed pressure from the 
exact equation of state is the overestimation of the collision rate affect-
ing high density flow regions. The observed deviation, which can be as 
high as 0.5% of the exact collision rate, is caused by the strong non-
linearity of the factor 𝑌 that enhances the hard sphere collision rate 
in high density regions. In presence of the DSMC density fluctuations, 
positive density deviations from the average contribute to the collision 
rate more than negative ones. The effect on the pressure is a small but 
evident overestimation of the hard sphere contribution.

The pressure will still exhibit a constant profile, since the particles 
dynamics will find a steady state where kinetic, collisional and mean 
field contributions equilibrate each other. Being caused by density fluc-
tuations, the effect can be mitigated by increasing the particle number 
or by smoothing the density field.

In this work, in general, a high number of simulation particles has 
been used for high order moment estimations. Hence, no correction of 
the hard sphere collision rate has been necessary.

5.2. Numerical solutions of EV moment equations

5.2.1. Geometry and boundary conditions

Unlike in the DSMC setup that uses a specularly duplicated spatial 
domain, moment equations have been solved for 1D steady problems in-
volving a single interface, subjected to mass and/or heat transfer, such 
as sketched in Fig. 1. Specifically we study systems of overall length 
𝐿, with the interface centered at location 𝐿0, separating the liquid on 
the left from the vapor on the right. Domain length 𝐿 and location 𝐿0
of the interface are chosen such that all interface details, e.g., the dif-
fuse liquid-vapor interface and the adjacent Knudsen layer, are located 
within the domain, with enough space to fully develop hydrodynamic 
regions on both sides of the liquid-vapor interface. The solid bound-
aries, present in DSMC simulations, are not necessary and they have 
not been considered.

Then, towards the boundaries of the system, at 𝑥 = 0 and 𝑥 =𝐿, the 
bulk phases obey the NSF equations (40) which are taken as boundary 
conditions for the higher moments at both sides. Further, we control 
the constant mass flux 𝐽 and the boundary temperature 𝜃𝑏𝐿 of the liq-
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uid at 𝑥 = 0. On the vapor side, at 𝑥 =𝐿, we either prescribe the vapor 
temperature 𝜃𝑏𝑉 or, for an adiabatic boundary, set the temperature gra-
dient, and hence 𝔮𝑉 , to zero. The given boundary conditions suffice to 
solve the problem. We note that one can either control the system pres-
sure or the mass flux, but not both independently. Prescription of the 
mass flux is the easier choice.

5.2.2. Solution method

To solve the EV26 (as well as EV-NSF, EV13, EV26R) with the above 
boundary conditions, all equations are discretized taking fourth order 
finite differences on a uniform grid with 𝑛 grid points at locations 𝑥𝑘
(𝑘 = 1, … 𝑛).

Considering that we had to understand the behavior of the EV mo-
ment equations first, we chose a non-optimized method of solution, 
using the fsolve(eqs,y𝟶) routine of matlab, which finds the solu-
tion y to a set of equations eqs(y)=0, starting at an initial guess y𝟶
[47,48].

A good initial guess is crucial for finding reliable results and we used 
a multi-step approach to determine useful guesses. As the first step, we 
used the equal area rule to find saturation mass densities 𝜌𝐿,sat

(
𝜃0

)
, 

𝜌𝑉 ,sat
(
𝜃0

)
and pressure 𝑝sat

(
𝜃0

)
for a problem-relevant temperature 

𝜃0. From the mass densities, we constructed an approximation to the 
equilibrium density curve as

𝜌0
(
𝑥𝑘

)
= 𝜌𝑉 ,sat +

1
2

(
𝜌𝐿,sat − 𝜌𝑉 ,sat

) [
1 + tanh

(
𝑥𝑘 −𝐿0

)]
(56)

which creates a discrete density profile with the diffuse interface located 
at 𝐿0. This profile serves as the initial guess to find the true equilibrium 
rest state at 𝜃0 with densities 𝜌(𝑘)0 . This equilibrium state is used as 
initial guess to solve the NSF equations with the prescribed boundary 
conditions. Next, the numerical NSF result is used as initial guess for 
the solution of the EV moment equations.

As soon as one has solutions of the full EV moment equations, these 
can be used as initial guesses at different parameter settings as well. 
This is in particular convenient when searching for solutions at stronger 
nonequilibrium, where one can increase the mass flow (say) step by 
step, and use the result of a previous simulation as initial guess. Fi-
nal results were checked for consistency by determining flows of mass, 
momentum and energy, which must be verified as constants.

For the EV26 case, the variables of the problem are the discretiza-
tions of the respective moments, plus the total momentum flux 𝑃 ,

𝜌(𝑘), 𝑃 , 𝑣(𝑘), 𝜃(𝑘), 𝜎(𝑘), 𝔮(𝑘), 𝑚(𝑘)
111, Δ

(𝑘), 𝑅(𝑘)
11 , 𝑘 = 1,… , 𝑛

Their solution follows from the eight discretized equations (27), (28), 
(33), (35) – (37) plus the requirement of constant mass in the system, 
which is fixed by the initial guess,

𝑛∑
(𝑘)

𝑛∑ (𝑘)
𝑘=1
𝜌 =

𝑘=1
𝜌0 =0 . (57)
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The mass flux 𝐽 appears as a parameter in the system of equations, the 
boundary conditions for temperature, e.g. 𝜃(1) = 𝜃𝑏𝐿, replace the en-
ergy balances at the boundary points, and NSF relations (40) for higher 
moments are inserted in the boundary points of (35) – (37).

The equations are complex, and this method of solution is rather 
time consuming. Nevertheless is served well to test the equations, iden-
tify and correct errors in the equations, and to produce first results 
as presented below. For future work a more elaborate–and faster–
implementation will be developed.

5.2.3. Discretization errors

The accuracy of results depends on the grid spacing, where finer grid 
size reduces the errors discussed below. For results shown in the next 
sections, the grid spacing is chosen as Δ𝑥 =𝐿∕𝑛 = 0.1.

The unavoidable numerical error can be recognized in comparing 
numerical equilibrium solutions to exact equilibria found from the 
equal area rule [50,42]. Here, the numerically found saturation pres-
sures differ by 0.002% for 𝜃 = 0.52, and 0.0002% for 𝜃 = 0.6. Moreover, 
the Gibbs free energies of the phases, which should be equal, are slightly 
different.

While these errors are small, they affect the determination of re-
sistivities, which rely on the differences of reduced Gibbs free ener-
gies Δ 𝑔

𝑇
(7), or the deviation of pressure from saturation pressure, 

Δ𝑝 = 𝑝 − 𝑝sat
(
𝑇𝐿

)
(9). As can be seen from the equations, larger fluxes (

𝐽, 𝑞𝑉
)

increase the thermodynamic forces, hence for these the errors 
in equilibrium values will not affect the results considerably. For small 
fluxes, however, the respective errors can be substantial.

As an example, we consider some data for 𝜃𝐿 = 0.52, 𝑞𝑉 = 0 at 
various mass flows. For the equilibrium case 𝐽 = 0 the difference in 
Gibbs free energies–which should be zero–is obtained as 

[
Δ 𝑔

𝑇

]
err

=

2.25 × 10−5, which we must consider as the error in numerical deter-
mination of Δ 𝑔

𝑇
for the chosen grid spacing. For 𝐽 = 10−6, the nonequi-

librium difference is found as Δ 𝑔

𝑇
= 2.28 × 10−4, which therefore is 

burdened by a relative error of about 10%. For larger mass flows, the 
error becomes smaller, e.g., 1% at 𝐽 = 10−5.

For weak nonequilibrium, where fluxes and forces are small, we can 
use the close to equilibrium expansion (9), which needs accurate data 
of Δ𝑝 = 𝑝 − 𝑝sat

(
𝑇𝐿

)
. When the saturation pressure from the equal area 

rule is used, the relative error in Δ𝑝 is of about the same size as the 
error in Δ 𝑔

𝑇
(e.g., 1.2% for 𝐽 = 10−5). This error was reduced by using 

saturation pressures found from the numerical solution in equilibrium 
instead of saturation pressures from the equal area rule.

The errors in equilibrium data depend on the grid spacing, with 
the above values found for Δ𝑥 = 0.1. Decrease, or increase, of the grid 
spacing reduces, or enlarges, the unavoidable numerical errors, which 
affect the accuracy of results for processes close to equilibrium. For all 
results shown, the deviation from equilibrium is sufficient to keep the 
numerical error well below 1%.

6. Heat transfer (𝑱 = 𝟎)

6.1. Process curves

The simplest process involving a phase interface is pure heat trans-
fer through a two-phase system with interface, driven by a temper-
ature gradient, while no evaporation or condensation occurs, that is 
𝐽 = 0. Since DSMC solutions are computationally expensive, we first 
performed these, for appropriate system length 𝐿, interface location 𝐿0, 
and boundary temperatures 𝜃𝑏𝐿, 𝜃𝑏𝑉 . Then, in order to have a mean-
ingful comparison between DSMC solutions and moment models, for 
the latter we chose the same liquid boundary temperature 𝜃𝑏𝐿 and in-
terface location 𝐿0, and adjusted the vapor boundary temperature such 
that the moment models agree in the kinetic heat flux 𝔮𝑉 in the vapor 
with the DSMC result. This approach allowed us to use different system 
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size 𝐿, 𝐿0 between moment and DSMC solutions.
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DSMC solutions exhibit Knudsen layer effects at the outer bound-
aries, in particular on the vapor side, which are not of concern for our 
considerations, and do not affect the comparison, since the overall heat 
flux is constant through the Knudsen layer. These boundary layers are 
not shown in the figures, which only show the interesting area around 
the interface.

In the three case presented below, the temperature at left boundary, 
𝜃𝑏𝐿, takes the values 0.52, 0.60, 0.65, respectively. For these tempera-
tures, 𝜆𝑣, the equilibrium value of the mean free path in the vapor 
phase, normalized to the hard sphere diameter 𝑎, amounts respectively 
to 13.7, 5.33, 3.143. In the heat transfer examples, the interface tem-
perature is slightly higher than 𝜃𝑏𝐿, therefore 𝜆𝑣 is smaller than the 
corresponding equilibrium value. In the evaporation flows, the inter-
face temperature is lower than 𝜃𝑏𝐿 and 𝜆𝑣 is accordingly higher than 
the corresponding equilibrium value.

All moment curves are shifted such that the location of the steepest 
descent of the density curve agrees with the corresponding point of the 
DSMC results. This point is considered as effective location of the inter-
face, denoted as 𝑥𝜌, and will be used as such in the determination of 
resistivities. In the figures below the location 𝑥𝜌 is highlighted through 
the green dot.

Fig. 4 shows results for a DSMC simulation for a relatively dense sys-
tem, not too far below the critical point (𝜃crit = 0.754), with 𝐿 = 200, 
𝐿0 = 40, 𝜃𝑏𝐿 = 0.65, 𝜃𝑏𝑉 = 0.7, 𝐽 = 0. Regions further away from the 
interface, where NSF is valid, are not shown, the figures concentrate on 
the interesting interface features in the smaller interval shown. Specif-
ically, the figures compare results for DSMC (purple), EV13 (green), 
EV26 (orange), the regularization EV26R (red), and NSF (brown, only 
the temperature curve is shown).

We briefly comment on the figures in the panel:
The curves for density (upper left) agree well for all models, but 

the slope from the moment models is slightly smaller than from DSMC. 
Indeed, it is well-known that the Korteweg approximation (31) for the 
stress yields less steep density profiles than the full Vlasov expression 
[36]. Due to the large difference between liquid and vapor densities we 
also show the specific volume 1∕𝜌 (upper middle) which emphasizes 
differences in the vapor region, also here all models agree well.

The temperature curves (upper right) for all models exhibit a steeper 
increase of temperature at the interface, which only commences on the 
vapor side, for 𝑥 > 𝑥𝜌. This increase corresponds to the temperature 
jump in a sharp interface model, and is due to irreversible processes in 
the interfacial zone, as expressed through resistivities. The size of the 
T-jump differs between models: Compared to DSMC, the jump is too 
small for NSF and EV13, but too large for EV26. The ad-hoc regular-
ization EV26R provides a surprisingly good agreement with DSMC. The 
benchmark DSMC result shows weak fluctuations, which do not affect 
the comparison.

The pressure (middle left) is constant in the bulk regions, and shows 
the characteristic wiggle through the interface where it is balanced by 
capillary stresses (i.e., surface tension). The moment models give the 
same pressure for bulk liquid and vapor, and all three models agree well 
on pressure. Since the DSMC simulation, as explained in Section 5.1, 
exhibits a deviation with respect of the exact liquid pressure, we do 
not show the pressure 𝑝 (𝜌, 𝜃) from the equation of state, but instead the 
normal stress 𝑃 as defined in (28), which is effectively constant through 
the domain in good agreement with the bulk pressure of the moment 
models.

The DSMC solutions for higher moments show more pronounced 
fluctuations, but nevertheless give clear indication of the spatial varia-
tion of the moments. For 1D heat transfer, the kinetic stress 𝜎 vanishes 
in the NSF approximation (40), hence non-zero values of 𝜎 indicate 
states of local non-equilibrium. The center figure compares 𝜎 for the 
various models, where 𝜎 differs relatively little between the moment 
models, with values within the DSMC results.

Kinetic heat flux 𝔮 (middle right) agrees due to the data matching, 

and for all models has rather different values in the liquid and vapor 
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Fig. 4. Heat transfer without evaporation with (for DSMC) 𝐿 = 200, 𝐿0 = 40, 𝜃𝑏𝐿 = 0.65, 𝜃𝑏𝑉 = 0.7, 𝐽 = 0. The curves show the values of the EV26 variables and 
pressure for the interesting interval for various moment sets: EV26 - orange, EV13 - green, EV26R - red, NSF (𝑇 only) - brown, compared to EV-DSMC - purple. 
Green dots indicate the location 𝑥𝜌 of the steepest density descent. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
bulk phases due to the much higher conductivity of the liquid phase. 
The total heat flux 𝑞 (not shown) is constant, its values in the bulk are 
obtained from the NSF relation (47) as 𝑞 = −1.64 × 10−4 for all models.

Just as the kinetic stress 𝜎, the higher moments 𝑚111, 𝑅11, and Δ
(lower row) describe higher order effects that vanish in the hydrody-
namic (NSF) region further away from the interface. The domain in 
which these variables are non-zero must be interpreted as the combined 
interface and Knudsen layer, which here has a thickness of ∼ 20, quite 
a bit wider as the thickness of the interface as identified from the den-
sity curve (∼ 5). Comparison between DSMC and moment models shows 
that EV26 and EV26R both match the DSMC behavior, but EV26 clearly 
overpredicts the size of the higher moments, while the regularization 
EV26R leads to a rather good match.

Figs. 5 (for 𝐿0 = 40, 𝜃𝑏𝐿 = 0.60, 𝑞𝑉 = −1.99 ×10−4, 𝐽 = 0) and 6 (for 
𝐿0 = 40, 𝜃𝑏𝐿 = 0.52, 𝑞𝑉 = −1.54 × 10−4, 𝐽 = 0) show similar figures for 
heat transfer at lower temperatures and similar overall heat fluxes for 
conditions further below the critical point.

The behavior is similar to that discussed above, with more marked 
differences between moment models and DSMC as the overall state of 
the system is at temperatures further below the critical point, where the 
interface is sharper, and the Knudsen layers are wider due to reduced 
pressure, and increased mean free path.

In particular we note the increasing deviation of temperature, where 
for lower temperature EV 26 (orange) significantly overpredicts the 
temperature jump, accompanied by overprediction of the moments 
𝑚111, 𝑅11, Δ in the Knudsen layer zone. The regularized EV26R equa-
tions (red) fare significantly better, with good results for the case with 
𝜃𝑏𝐿 = 0.6, but discrepancies, in particular too small temperature jump, 
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for the case with 𝜃𝑏𝐿 = 0.52.
The discrepancies between DSMC and moment methods with 13 and 
26 moments, and the improvement of the agreement when the regular-
izing terms, which approximate the influence of higher moments, are 
added give a clear indication that the number of moments considered 
here appears to be too low to obtain an authoritative moment model.

6.2. Deviation from local equilibrium

Since the DSMC method can not easily provide explicit information 
on the particle distribution function in the considered near equilibrium 
flow conditions, we combine moments from the DSMC calculations with 
the form of the distribution function used in the moment method to 
discuss the behavior of the distribution. The Enskog-Vlasov moment 
theory relies on closure based on the Grad approximation of the local 
distribution function (22),

𝑓G = 𝑓|E (1 +Φ) (58)

where 𝑓|E denotes the local Maxwellian, and Φ describes the nonequi-
librium contributions through the moments; for 1D geometry [42],

ΦEV26 =
𝜎11
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Fig. 5. Heat transfer without evaporation with (for DSMC) 𝐿 = 120, 𝐿0 = 40, 𝜃𝑏𝐿 = 0.60, 𝜃𝑏𝑉 = 0.64, 𝐽 = 0. The curves show the values of the EV26 variables and 
pressure for the interesting interval for various moment sets: EV26 - orange, EV13 - green, EV26R - red, NSF (𝑇 only) - brown, compared to EV-DSMC - purple. 
Green dots indicate the location 𝑥𝜌 of the steepest density descent.
In the hydrodynamic (NSF) regime, the nonequilibrium contribution is 
only due to heat transfer, with 𝔮 given by (40),

ΦNSF =
2
5

𝔮
𝜌𝜃2

𝐶1

(
𝐶2
1 +𝐶

2
2 +𝐶

2
3

2𝜃
− 5

2

)
(60)

While ΦNSF determines the difference from the NSF distribution to the 
local Maxwellian (where Φ = 0), the difference ΦEV26 −ΦNSF is a mea-
sure for the deviation of the actual distribution from the hydrodynamic 
one. Since the Maxwellian suppresses contributions with large veloci-
ties, we study the dimensionless expressions

Δ𝑓NSF = 𝑓|E × (
ΦNSF

)
, Δ𝑓NE = 𝑓|E × (

ΦEV26 −ΦNSF
)

(61)

where 𝑓|E = exp
[
−
𝐶2
1+𝐶

2
2+𝐶

2
3

2𝜃

]
is a normalized Maxwellian with

𝑓|E (𝐶 = 0) = 1. We evaluate these functions for the case of heat transfer 
with 𝜃𝑏𝐿 = 0.6 (as in Fig. 5) at several locations in the domain, plotted 

as function of the velocities 
(
𝐶1,𝐶𝑟 =

√
𝐶2
2 +𝐶

2
3

)
. We used the DSMC 

results for evaluation, moment solutions yield corresponding behavior. 
In this case, the point of steepest density decrease is at 𝑥𝜌 = 40.15.

Fig. 7 shows the measure Δ𝑓NSF for the deviation from the local 
Maxwellian in the hydrodynamic case at locations in the bulk liquid 
(maximum value ∼ 0.0001 at 𝑥 = 30.05) and the bulk vapor (∼ 0.002 at 
𝑥 = 100.05). Through the interface the function assumes values between 
those of the bulk regions (not shown).

The nonequilibrium contribution Δ𝑓NE must be compared in size 
13

to Δ𝑓NSF. Fig. 8 shows this function at six locations from bulk liquid 
through the interface to bulk vapor. Note that, just as in Fig. 7, the sub-

figures in Fig. 8 use different axis range in order to render meaningful 
functions.

Following through the plots from small to larger 𝑥, we observe the 
following, relative to the location 𝑥𝜌: in the bulk liquid Δ𝑓NE is signif-

icantly smaller than the NSF deviation (maximum value ∼ 0.00003 at 
𝑥 = 30.05). Towards the interface, the value increases by more than one 
order of magnitude, but is still rather small at the location of steepest 
descent (∼ 0.0006 at 𝑥 = 𝑥𝜌 = 40.15). These values confirm that the liq-

uid is well described by NSF, with the liquid region ending about the 
location 𝑥𝜌.

The most significant deviation from equilibrium is in the Knudsen 
layer, where the higher order moments in Fig. 5 have their peak val-

ues: the maximum value of ∼ 0.003 at 𝑥 = 42.25 (about two atomic 
diameters from 𝑥𝜌 towards the vapor) is larger than the hydrodynamic 
contribution Δ𝑓NSF anywhere in the domain. Here, the interfacial re-

gion is in a distinct non-hydrodynamic state.

Further into the vapor region, the nonequilibrium deviation de-

creases (∼ 0.0008 at 𝑥 = 50.05) until it becomes negligibly small in the 
bulk vapor region (∼ 0.00005 at 𝑥 = 100.05), which again is well de-

scribed by NSF.

We note that for all cases the deviation from the normalized lo-

cal Maxwellian 𝑓|E is small, with peak values well below 1%. When 
sampling the distribution directly from DSMC or MD simulations, the 
deviation from the Maxwellian will be lost in the fluctuations. Sam-

pling of higher moments provides an accessible approach to study the 

deviations from equilibrium.
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Fig. 6. Heat transfer without evaporation with (for DSMC) 𝐿 = 220, 𝐿0 = 40, 𝜃𝑏𝐿 = 0.52, 𝜃𝑏𝑉 = 0.60, 𝐽 = 0. The curves show the values of the EV26 variables and 
pressure for the interesting interval for various moment sets: EV26 - orange, EV13 - green, EV26R - red, NSF (𝑇 only) - brown, compared to EV-DSMC - purple. 
Green dots indicate the location 𝑥𝜌 of the steepest density descent.

Fig. 7. Hydrodynamic deviation Δ𝑓NSF = 𝑓MΦNSF from the local equilibrium distribution for the heat transfer process with 𝜃𝑏𝐿 = 0.6, evaluated with DSMC results 
in the bulk liquid and vapor regions.
6.3. Heat transfer resistivities

Heat transfer simulations suffice to determine two of the four resis-
tivities 𝑟̂𝛼𝛽 , where (7) with 𝐽 = 0 gives

𝑟̂12 =
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

[
𝑔𝐿

𝑅𝑇𝐿
−
𝑔𝑉

𝑅𝑇𝑉
+ ℎ𝑉

(
1
𝑅𝑇𝑉

− 1
𝑅𝑇𝐿

)]
𝑅𝑇𝐿

𝑞𝑉

≃ −
(

1 − 1
)
𝑝sat

(
𝑇𝐿

)
Δ𝑝

(62)
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𝜌𝑉 𝜌𝐿
√
2𝜋𝑅𝑇𝐿 𝑞𝑉
𝑟̂22 =
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

𝑇𝐿

[
1
𝑇𝑉

− 1
𝑇𝐿

]
𝑅𝑇𝐿

𝑞𝑉
≃ −

𝑝sat
(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

Δ(𝑅𝑇 )
𝑞𝑉

. (63)

These interface conditions are formulated for a sharp interface, where 
the properties indicated with indices 𝐿, 𝑉 refer to hydrodynamic data 
of the liquid and vapor phase directly at the interface. The connection 
between the microscopic simulations with diffuse interface and their 
smooth curves for all properties and the sharp interface model is usually 
done by extrapolation of bulk curves towards a suitable location within 
the interface, known as the dividing surface [96]. Typical choices for 

the location of the dividing surface are the equimolar location [53], or 



International Journal of Heat and Mass Transfer 223 (2024) 125238H. Struchtrup, H. Jahandideh, A. Couteau et al.

Fig. 8. Deviation Δ𝑓NE = 𝑓M
(
ΦEV26 −ΦNSF

)
from the hydrodynamic distribution for the heat transfer process with 𝜃𝑏𝐿 = 0.6, evaluated with DSMC results at several 

locations in the domain, from liquid, through interface and Knudsen layer to the hydrodynamic region.
the location of the steepest slope in density [38], 𝑥𝜌, which we continue 
to use.

As seen above, sufficiently away from the interface the microscopic 
solution obeys hydrodynamics (NSF), where higher moments vanish. 
The extrapolation is performed from the hydrodynamic region towards 
the location 𝑥𝜌 of the interface. Density 𝜌 and temperature 𝜃 are ob-
tained directly from the simulation, and based on these, pressure 𝑝, 
enthalpy ℎ, and Gibbs free energy 𝑔 = ℎ − 𝑇 𝑠 are determined from the 
hydrodynamic relations of Sec. 4.5. For the data in our simulations, 
linear extrapolation suffices for density, temperature, enthalpy, and re-
duced Gibbs free energy 𝑔

𝑅𝑇
.

Fig. 9 shows the extrapolation of DSMC data to 𝑥𝜌 relative to the 
property data from simulation for the case with 𝜃𝑏𝐿 = 0.6, in the vicinity 
of the interface, which gives 𝜃𝐿 ≃ 𝜃

(
𝑥𝜌

)
= 0.603. For other data, and 

for moment models, the extrapolation curves are similar.
The DSMC simulations have a small mismatch in the liquid density 

that leads to the observed pressure differences between bulk liquid and 
vapor. This mismatch is mildly reflected in values for the Gibbs free 
energy of the liquid, where, just as for pressure, the values are affected 
by mass density. With that, determination of the chemical force (Δ 𝑔

𝑇
+

⋯) might be affected by inaccuracies that in turn lead to errors in the 
resistivity 𝑟̂12.

As an alternative one might use the approximation that expresses the 
force by the pressure deviation Δ𝑝 = 𝑝𝑉 − 𝑝sat

(
𝑇𝐿

)
, which is obtained 

from first order expansion, hence valid only close to equilibrium. Just as 
for the moment equations, the saturation pressure obtained from DSMC 
simulation in equilibrium differs from that obtained from Maxwell’s 
equal area rule due to approximation errors. Hence, for values of the 
resistivity 𝑟̂12 from DSMC based on Δ𝑝 we used saturation pressures 
𝑝sat

(
𝑇𝐿

)
interpolated from DSMC equilibrium simulations.

Tables 1, 2 show the resulting resistivities 𝑟̂22 and 𝑟̂12 for the three 
cases (indicated by extrapolated liquid interface temperature 𝜃𝐿), as 
obtained from DSMC and the three sets of moment equations consid-
15

ered. Not surprisingly, the different methods yield significantly different 
Table 1

Resistivity 𝑟̂22 from extrapolation of microscopic heat transfer solutions for 
DSMC (bold) and EV26R, EV26, EV13 moment equations.

𝑟̂22 𝜃𝐿 = 0.522 𝜃𝐿 = 0.603 𝜃𝐿 = 0.653

EV-DSMC 0.217 0.177 0.123

EV26R 0.149 0.188 0.142
EV26 1.027 0.436 0.223
EV13 0.0316 0.0532 0.0391

values of the resistivities, that reflect the visible differences in their pre-
dictions for moments.

We first look at values for 𝑟̂22 given in Table 1. According to (10), 
for the classical ideal gas case the dimensionless temperature resistivity 
𝑟̂22 has a value of 0.294. The DSMC result for 𝜃𝐿 = 0.522 differs from 
this value by ∼ 25%. As interface temperature increases, the resistivity
𝑟̂22 decreases, in agreement with the expectation that resistivities van-
ish at the critical point. While EV26R resistivity is of the order of that 
of DSMC, the temperature dependence is non-monotone. From EV26 
we find significantly larger resistivities that reflect the overemphasized 
temperature jumps, with resistivities decreasing with increasing tem-
perature. EV13 predicts significantly smaller resistivities with a non-
monotone temperature dependence.

For the classical ideal gas with full accommodation, the resistivity 
𝑟̂12 is found at a positive value of 0.126, see Eq. (10). Table 2 shows the 
off-diagonal resistivity 𝑟̂12, where we give results from the two forms of 
(62) where either difference in Gibbs free energy (Δ 𝑔

𝑅𝑇
) or the devia-

tion of actual pressure from saturation (Δ𝑝) is used. The gradients are 
strong, hence the difference between the Δ 

(
𝑔

𝑅𝑇

)
-form and the Δ𝑝-form 

of the equation might be due to linearization, but will also be affected 
by density inaccuracy in the liquid.

From the full expression with Δ 
(
𝑔

𝑅𝑇

)
, DSMC predicts somewhat 

larger resistivity than classical kinetic theory, while for the reduced Δ𝑝

form, the resistivity is smaller, and even becomes negative for larger 
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Fig. 9. DSMC solutions (blue) and extrapolation of hydrodynamic bulk curves to the location 𝑥𝜌 , for density 𝜌, temperature 𝑇 , and reduced Gibbs free energy 𝑔 .
Table 2

Resistivities 𝑟̂12 from extrapolation of microscopic heat transfer solutions for 
DSMC (bold) and EV26R, EV26, EV13 moment equations. Left: Determined 
from Δ 𝑔

𝑅𝑇
. Right: Determined from Δ𝑝.

𝑟̂12 (Δ 𝑔

𝑅𝑇
) 𝜃𝐿 = 0.522 𝜃𝐿 = 0.603 𝜃𝐿 = 0.653

EV-DSMC 0.370 0.259 0.285

EV26R 0.144 0.100 0.122
EV26 -0.101 0.00647 0.0910
EV13 0.0318 0.0575 0.113

𝑟̂12 (Δ𝑝) 𝜃𝐿 = 0.522 𝜃𝐿 = 0.603 𝜃𝐿 = 0.653

EV-DSMC 0.103 0.0482 -0.0585

EV26R 0.128 -0.0475 -0.194
EV26 -0.219 -0.133 -0.220
EV13 0.00733 -0.112 -0.228

temperature. The moment systems predict smaller absolute values of 
this coefficient, with different signs depending on the equation used 
(Δ 

(
𝑔

𝑅𝑇

)
or Δ𝑝), where the difference is due to the linearization to 

obtain the Δ𝑝-form, which thus does not appear to be appropriate for 
the strong gradients used. EV26R gives values close to the ideal gas 
case, while EV26 and EV13 predict relatively small values.

7. Forced evaporation (𝒒𝑽 = 𝟎)

Next, we give a brief account of 1D simulations with forced evapo-
ration, where we again compare moment results to DSMC.

7.1. Process curves

Mass flux through the interface and the corresponding evaporation 
or condensation processes have strong influence on the profiles of tem-
perature and moments. For a clear separation of heat transfer and evap-
oration effects, we consider a process where the heat flux in the vapor 
vanishes. As in the classical evaporation into a half space [64,30], the 
downstream flow is characterized by a Maxwellian distribution function 
whose density 𝜌∞, temperature 𝑇∞ and velocity 𝑣∞ are determined by 
the mass flux 𝐽 . In our solution procedure for moment equations, the 
process results from controlling boundary data, in particular setting the 
temperature gradient at the vapor boundary to zero, and controlling 
the mass flow by pumping vapor out of the system. All heat required 
for evaporation or condensation is transferred through the liquid phase.

Specifically, Fig. 10 shows results for a case with mass flux 𝐽 =
0.000745, 𝑞𝑉 = 0. For DSMC, the domain size is 𝐿 = 120, 𝐿0 = 40, with 
boundary temperatures 𝑇𝑏𝐿 = 0.6, 𝑇𝑏𝑉 = 0.5564, where the latter was 
adjusted to reach the adiabatic vapor state for the chosen mass flux. For 
the moment sets, the DSMC mass flux was prescribed, and the domain 
width was 𝐿 = 200, with 𝐿0 = 60 and stepsize Δ𝑥 = 0.1; the tempera-
ture 𝑇𝑏𝐿 of the liquid boundary was adjusted such that the temperature 
at the point 𝑥𝜌 of steepest density descent matches the DSMC data, and 
all curves were shifted in space to coincide in density at 𝑥𝜌. Again, bulk 
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regions towards the boundaries are not shown, the figure concentrates 
𝑇

on the interesting region around the interface; green dots highlight the 
location 𝑥𝜌 of the steepest descent of density.

We briefly comment on the figures in the panel:
Also for this process the curves for density (upper left) agree well for 

all models, with the slope of the moment models slightly smaller than 
for DSMC. The data was chosen to have agreement in the evaporation 
mass flux 𝐽 (upper middle), hence all models agree, with DSMC results 
showing the artificial peak at the interface as discussed above.

The figure in the upper right shows kinetic temperature 𝑇 = 𝜃. The 
models agree on the temperature in the liquid, which results from the 
convective and conductive transport of the heat of vaporization through 
the liquid, and the boundary temperature. The results differ consider-
ably from the location 𝑥𝜌 onwards into the vapor. DSMC exhibits a steep 
decay in temperature towards the flat profile in the vapor (the temper-
ature jumps down), while the moment models produce distinct features 
as follows: EV26 temperature shows a strong and distinct valley in the 
Knudsen layer region that leads to a temperature that is slightly above 
the temperature at 𝑥𝜌, that is a temperature jump upwards (correspond-
ing to negative value for 𝑟̂21). In contrast, EV13 shows a temperature 
overshoot in the interfacial area, with an even larger resulting tem-
perature jump upwards. Also the regularized EV26R equations show 
the overshoot, but give a temperature jump downwards, which is visi-
bly smaller than that of DSMC. The NSF solution, which assumes local 
equilibrium through the interface, shows a relatively weak decrease of 
temperature.

The pressure curve (middle left) agrees between the moment mod-
els, with bulk pressures in liquid and vapor at the same value, and in 
good agreement with the normal stress 𝑃 for DSMC, which is shown 
instead of pressure determined from the equation of state. For all mod-
els, the kinetic stress (center) exhibits a valley, which is smallest for the 
DSMC case, and largest for EV13. The kinetic heat flux (middle right) 
has an overshoot in the interfacial region, which is somewhat less pro-
nounced for DSMC.

Of particular interest to understand the non-equilibrium state of the 
interfacial region are the higher moments which are shown in the last 
row. The moments 𝑚111, 𝑅11 and Δ vanish in the bulk regions, where 
the flow is described by NSF. The figures show that the EV26 and EV26R 
equations match the DSMC curves qualitatively, but not quantitatively, 
with EV26 again strongly overpredicting the deviation from equilib-
rium. The moment profiles extend through the Knudsen layer, which 
thus can be recognized as being significantly wider than the interfacial 
region defined through the density profile.

It is somewhat disappointing that the regularization EV26R, which 
in the heat transfer case gives a marked improvement over EV26, does 
not lead to a similar improvement in the evaporation case.

Fig. 11 shows the same set of curves for a case at lower interfacial 
temperature 𝑇

(
𝑥𝜌

)
with mass flux 𝐽 = 0.00035 and adiabatic vapor. 

The general behavior is rather similar to that shown in Fig. 10, with 
a somewhat wider Knudsen layer. The only significant change is the 
temperature behavior of EV26, which now shows a temperature jump 
downward (𝑇𝑉 < 𝑇𝐿), see the next section for the discussion of this 

behavior.
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Fig. 10. Forced evaporation with adiabatic vapor, for 𝑇
(
𝑥𝜌

)
= 0.568, 𝐽 = 0.000745, 𝑞𝑉 = 0. The curves show the values of the EV26 variables and pressure for the 

interesting interval for various moment sets: EV26 - orange, EV13 - green, EV26R -
the location 𝑥𝜌 of the steepest density descent. The curves show the values of the EV
the location 𝑥𝜌 of the steepest density descent, red dots the location of the temperat
7.2. Evaporation resistivities

For the evaporation case with 𝑞 = 0, we can determine the two re-
sistivities

𝑟̂11 =
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

[
𝑔𝐿

𝑅𝑇𝐿
−
𝑔𝑉

𝑅𝑇𝑉
+ ℎ𝑉

(
1
𝑅𝑇𝑉

− 1
𝑅𝑇𝐿

)]
1
𝐽

≃ −
(

1
𝜌𝑉

− 1
𝜌𝐿

)
𝑝sat

(
𝑇𝐿

)
𝑅𝑇𝐿

Δ𝑝√
2𝜋𝑅𝑇𝐿

1
𝐽

(64)

𝑟̂21 =
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

𝑇𝐿

[
1
𝑇𝑉

− 1
𝑇𝐿

]
1
𝐽

= −
𝑝sat

(
𝑇𝐿

)√
2𝜋𝑅𝑇𝐿

Δ𝑇
𝑇𝐿

1
𝐽

(65)

which again requires extrapolation of bulk curves to the location 𝑥𝜌.
In classical kinetic theory (10), the resistivity 𝑟̂11 is linked to the 

evaporation coefficient, which can thus be estimated as 𝜓 = 1
𝑟̂11+0.40044

. 
The DSMC data presented in Table 3 suggests values of the evaporation 
coefficient close to unity, in line with previous investigations [36,77]. 
For the two temperatures used, 𝑟̂11 and thus 𝜓 , do not vary significantly, 
while the moment systems predict smaller values for the resistivity at 
larger temperature. As before, the differences between the values from 
the Δ 

(
𝑔

𝑅𝑇

)
-form and the Δ𝑝-form suggest that for the conditions used 

linearization around equilibrium might not be allowed.
For the classical ideal gas with full accommodation, the resistivity 

𝑟̂21 is found at a positive value of 0.126 (10). The DSMC data in Ta-
ble 4 give values that are of the same order, while the various moment 
systems predict lower, or even negative values, reflecting the visible 
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differences in the curves.
red, compared to EV-DSMC - purple, NSF (𝑇 only) - brown. Green dots indicate 
26 variables (24) and pressure for the interesting interval. Green dots indicate 

ure minimum.

Table 3

Resistivity 𝑟̂11 from extrapolation of microscopic evaporation 
solutions for DSMC (bold) and EV26R, EV26, EV13 moment 
equations. Top: Determined from Δ 𝑔

𝑅𝑇
. Bottom: Determined 

from Δ𝑝.
𝑟̂11 (Δ 𝑔

𝑇
) 𝜃𝐿 = 0.506 𝜃𝐿 = 0.569

EV-DSMC 0.258 0.289

EV26R 0.524 0.350
EV26 0.911 0.549
EV13 0.691 0.340

𝑟̂11 (Δ𝑝) 𝜃𝐿 = 0.506 𝜃𝐿 = 0.569

EV-DSMC 0.506 0.359

EV26R 0.497 0.209
EV26 0.846 0.394
EV13 0.649 0.197

Table 4

Resistivity 𝑟̂21 from extrapolation of microscopic evaporation 
solutions for DSMC (bold) and EV26R, EV26, EV13 moment 
equations.

𝑟̂21 𝜃𝐿 = 0.506 𝜃𝑏𝐿 = 0.568

EV-DSMC 0.132 0.100

EV26R 0.102 0.0573
EV26 0.0615 -0.0221
EV13 -0.0347 -0.0367
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Fig. 11. Forced evaporation with adiabatic vapor, for 𝑇
(
𝑥𝜌

)
= 0.506, 𝐽 = 0.00035, 𝑞𝑉 = 0. The curves show the values of the EV26 variables and pressure for the 

interesting interval for various moment sets: EV26 - orange, EV13 - green, EV26R - red, compared to EV-DSMC - purple, NSF (𝑇 only) - brown. Green dots indicate 
the location 𝑥𝜌 of the steepest density descent.
7.3. Discussion of Onsager symmetry

Comparing the data for 𝑟̂21 in Table 4 to data for 𝑟̂12 in Table 2, 
we notice that with these values the resistivity matrix 𝑟̂𝛼𝛽 is not sym-
metric, but positive definite. With that, the DSMC results appear to not 
be in full accordance to thermodynamics, which demands a symmetric 
and positive definite matrix. A possible explanation for this discrep-
ancy is the non-linear behavior of the resistivity matrix. The simulations 
show nonequilibrium behavior in the interfacial region, with higher mo-
ments induced, and Knudsen layers. The related “deformation” of the 
interface relative to the equilibrium state increases with the degree of 
non-equilibrium, that is larger mass and heat fluxes could affect the in-
terface behavior, and thus the resistivities.

Referring to Ref. [97] for a deeper analysis, these thoughts suggest 
that for the 1D processes under consideration, resistivities obey a sym-
metric relation of the form

𝑟̂𝛼𝛽 = 𝑟̂𝛽𝛼 = 𝑟̂𝛼𝛽
(
𝑇𝑠, 𝐽 , 𝑞𝑉

)
, (66)

where 𝑇𝑠 is a measure for the interface temperature, most often one will 
use the temperature 𝑇𝐿.

Assuming (66) to be valid, the resistivities determined from pure 
heat transfer and evaporation with adiabatic vapor are, respectively,

𝑟̂12
(
𝑇𝑠,0, 𝑞𝑉

)
, 𝑟̂22

(
𝑇𝑠,0, 𝑞𝑉

)
; 𝑟̂21

(
𝑇𝑠, 𝐽 ,0

)
, 𝑟̂11

(
𝑇𝑠, 𝐽 ,0

)
(67)

These resistivities are determined at different conditions, and symmetric 
behavior cannot be expected, 𝑟̂12

(
𝑇𝑠,0, 𝑞𝑉

) ≠ 𝑟̂21 (
𝑇𝑠, 𝐽 ,0

)
.

With DSMC limited to stronger deviation from equilibrium, at 
present we do not have a sufficient amount of reliable DSMC data to 
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fully explore the suggested non-linear behavior that should lead to the 
relation (66). Further work is necessary, as well as a deeper discussion 
of the proper thermodynamic development—both are planned for the 
future. The next section will present non-linear behavior of moment 
systems.

8. EV26/EV26R resistivities

8.1. Non-linear behavior in EV26

The deterministic nature of moment equations makes it possible to 
produce smooth solutions for a wide range of processes, including those 
close to equilibrium, which are not accessible to DSMC simulations. 
Since results from the moment systems deviate from those of the full 
EV equation as found from DSMC we do not present a full evaluation 
over a wide range of processes, but only show some results to support 
the above thoughts on non-linear behavior.

As an example, we consider evaporation with adiabatic vapor, 
with fixed interface temperature 𝑇

(
𝑥𝜌

)
= 0.52 for mass flows 𝐽 =

{0.00001,0.0001,0.0005,0.001}. Increasing the mass flux 𝐽 , that is for 
larger evaporation rate, while keeping the interface temperature 𝑇

(
𝑥𝜌

)
constant, leads not only to deeper, but also distinctly wider temperature 
valleys. This can be seen in Fig. 12, which shows kinetic temperature 
𝑇 = 𝜃 in blue and directional kinetic temperatures 𝑇𝑥 = 𝜃 +

𝜎

𝜌
, 𝑇𝑦 =

𝜃 − 1
2
𝜎

𝜌
, which begin to differ from the location 𝑥𝜌 onwards into the 

vapor.
The observed temperature jump must be evaluated over the valley, 

that is over a much wider region than the jump for pure heat transfer, 
which is dominated by the steep temperature change around the inter-

face itself as seen, e.g., in Fig. 6. Moreover, the temperature difference 
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Fig. 12. EV26 temperature curves 𝑇 (blue), 𝑇 (red) and 𝑇 (orange) for 𝑇
(
𝑥

)
= 0.52, 𝑞 = 0 for mass flows 𝐽 = 0.00001, 0.0001, 0.0005, 0.001.
𝑥 𝑦

Table 5

Top: Evaporation resistivities 𝑟̂11 and 𝑟̂21 from extrapolation of EV26 solutions, 
for interface temperature 𝜃 = 0.52 at various mass fluxes. Bottom: heat trans-
fer resistivities 𝑟̂12 and 𝑟̂22 from extrapolation of EV26 solutions, for interface 
temperature 𝜃 = 0.52 at various heat fluxes.

evap: EV26
𝜃𝐿 = 0.52

𝑟̂11 (Δ 𝑔

𝑇
) 𝑟̂11 (Δ𝑝) 𝑟̂21

𝐽 = 1 × 10−5 0.884 0.884 -0.109
𝐽 = 1 × 10−4 0.881 0.884 -0.0760
𝐽 = 5 × 10−4 0.769 0.801 0.0597
𝐽 = 1 × 10−3 0.688 0.738 0.155
𝐽 = 2 × 10−3 0.583 0.674 0.240

HT: EV26
𝜃𝐿 = 0.52

𝑟̂12 (Δ 𝑔

𝑇
) 𝑟̂12 (Δ𝑝) 𝑟̂22

𝑞𝑉 = −1.03 × 10−5 -0.162 -0.179 1.13
𝑞𝑉 = −2.05 × 10−5 -0.161 -0.186 1.13
𝑞𝑉 = −6.16 × 10−5 -0.146 -0.208 1.09
𝑞𝑉 = −1.03 × 10−4 -0.127 -0.225 1.06
𝑞𝑉 = −1.99 × 10−4 -0.0799 -0.260 0.978

between 𝑇
(
𝑥𝜌

)
and the bulk vapor temperature (which is constant due 

to 𝑞𝑉 = 0) changes its sign: in the figure we observe 𝑇𝑉 > 𝑇
(
𝑥𝜌

)
for 

small mass flows, and 𝑇𝑉 < 𝑇
(
𝑥𝜌

)
for larger mass flows. This corre-

sponds to a change in sign in the off-diagonal resistivity 𝑟̂21.
Table 5 (top) shows the corresponding resistivities 𝑟̂11 and 𝑟̂12. As 

before, we compare the values of the resistivities 𝑟̂11 found from the 
two expressions in (64), which give identical results for small mass flux 
(up to 𝐽 = 10−4), but different results at larger mass fluxes, where the 
first order approximation (Δ𝑝) loses validity.

In accordance with Fig. 12, the off-diagonal resistivity 𝑟̂21 is negative 
for small mass fluxes, and increases with mass flux towards positive 
values.

Table 5 (bottom) shows resistivities for heat transfer with 𝐽 = 0, for 
increasing total heat flux 𝑞𝑉 . Also here, the two expressions for the off-
diagonal resistivity 𝑟̂12 in (62) give similar results for small deviation 
from equilibrium, and quite different results at larger heat flux, where 
the expansion into Δ𝑝 loses validity. All values are negative, in agree-
ment with the values for 𝑟̂21 found from evaporation with low mass 
19

flux.
𝜌 𝑉

Fig. 13. Resitivities over temperature for small deviation from equilibrium (𝐽 =
10−6, 𝜃𝑏𝑉 − 𝜃𝑏𝐿 = 10−5) for a system of length 𝐿 = 250, 𝐿0 = 40, adapted from 
[48].

The variation of the EV26 resistivities with mass and heat fluxes 
indicates that resistivities do not only depend on the interface tempera-
ture, but also on the degree of nonequilibrium, as stated in Eq. (66).

8.2. Temperature behavior in EV26 (linearized)

While the resistivities according to EV26 are not particularly mean-
ingful due to their marked difference from EV-DSMC results, we also 
show temperature dependence of the four resistivities for close to equi-
librium processes in Fig. 13, as adapted from [48]. Under these con-
ditions, all EV26 resistivities change with temperature, with diagonal 
values 𝑟̂11 and 𝑟̂22 decreasing towards the critical point. Off-diagonal 
resistivities 𝑟̂12 and 𝑟̂21 are negative for low temperatures, and then 
slowly increase with temperature until they change sign towards rather 
small positive values. While Onsager symmetry is not fully confirmed, 
both off-diagonal resistivities behave rather similarly, with not too dif-
ferent values.

8.3. Non-linear behavior in EV26R

We complement the discussion with Table 6 showing the EV26R 

counterpart to the EV26 data of Table 5. Here, resistivity 𝑟̂11 decreases 
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Table 6

Top: Evaporation resistivities 𝑟̂11 and 𝑟̂21 from extrapolation of EV26R solu-
tions, for interface temperature 𝜃 = 0.52 at various mass fluxes. Bottom: heat 
transfer resistivities 𝑟̂12 and 𝑟̂22 from extrapolation of EV26R solutions, for in-
terface temperature 𝜃 = 0.52 at various heat fluxes.

evap: EV26R
𝜃𝐿 = 0.52

𝑟̂11 (Δ 𝑔

𝑇
) 𝑟̂11 (Δ𝑝) 𝑟̂21

𝐽 = 1 × 10−5 0.481 0.453 0.105
𝐽 = 1 × 10−4 0.490 0.451 0.103
𝐽 = 5 × 10−4 0.494 0.461 0.104
𝐽 = 1 × 10−3 0.510 0.496 0.0920
𝐽 = 2 × 10−3 0.522 0.564 0.00743

HT: EV26R
𝜃𝐿 = 0.52

𝑟̂12 (Δ 𝑔

𝑇
) 𝑟̂12 (Δ𝑝) 𝑟̂22

𝑞𝑉 = −1.82 × 10−5 0.182 0.175 0.162
𝑞𝑉 = −3.66 × 10−5 0.178 0.170 0.162
𝑞𝑉 = −1.11 × 10−4 0.165 0.150 0.163
𝑞𝑉 = −1.86 × 10−4 0.155 0.137 0.162
𝑞𝑉 = −3.70 × 10−4 0.132 0.107 0.162

Fig. 14. Resistivities 𝑟̂12 and 𝑟̂22 in dependence of the chosen location 𝑥0 of the 
dividing surface (jump location). The vertical line indicates the location 𝑥𝜌 of 
the steepest density descent. Data for the case with 𝜃𝑏𝐿 = 0.65.

slightly with stronger mass flux while 𝑟̂22 is unaffected by the increase 
in heat flux. Off-diagonal resistivities 𝑟̂12 and 𝑟̂21 are both positive, with 
values that depend on the strength of the process.

8.4. Location ambiguity of resistivities

A second look at Fig. 9 points to an ambiguity in the extrapolation 
process: Due to the large gradients of temperature and reduced Gibbs 
free energy on the molecular scale, the size of their jumps Δ𝑇 , Δ 𝑔

𝑇
de-

pends visibly on the chosen location 𝑥0 of the discontinuity (for the heat 
transfer problem the bulk densities are almost constant, but in evapo-
ration processes liquid density might vary significantly). With this, the 
values for the resistivities depend noticeably on the location 𝑥𝜌 of the 
dividing surface, as shown in Fig. 14. Indeed, a shift of just one molecu-
lar diameter (recall that 𝑎 = 1 in our scaling!) changes the value for 𝑟̂22
by about 15% and 𝑟̂12 by about 5%. Since the bulk gradients and the 
temperature increase in the interfacial region are proportional to the 
overall heat flux, the figure remains effectively unaltered for smaller or 
larger fluxes, that is this is a general problem.

The location of steepest density decent 𝑥𝜌 appears as a natural 
choice, in particular since the temperature deviation from the bulk liq-
uid is small until this point, with the steep increase towards the vapor 
commencing here.

While here is not the place for a deeper analysis, we note that 
the same issue–dependence of resistivities on location of the dividing 
surface–occurs in the evaluation of experiments, where bulk data is 
measured, and extrapolation to the chosen interface location must be 
20

used.
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9. Discussion and outlook

In this contribution, we have studied numerical solutions of 
the Enskog-Vlasov equation and its EV26 moment system for one-
dimensional heat transfer and evaporation processes across diffuse 
phase interfaces in strong and weak nonequilibrium. Interface resis-
tivities for heat and mass transfer were determined from these results, 
and compared to classical kinetic theory.

The overall goal of this research is to obtain a better understanding 
of the interfacial nonequilibrium behavior, which is surprisingly little 
understood, and generally difficult to ascertain from physical experi-
ments. The simulations resolve the interface, that is the resolution is 
on the molecular scale. Such a detailed resolution is not practical for 
simulations of larger systems, hence the interest in finding resistivities 
for jump interface conditions that are valid on less resolved macro-
scopic scales. DSMC simulations provide rich insight into the processes 
studied, but are numerically costly. Just as Molecular Dynamics (MD) 
simulations, DSMC is somewhat limited to processes in strong nonequi-
librium where the results are not affected too much by stochastic noise 
or transient waves on the small scale.

The EV26 and other moment methods allow for fast deterministic so-
lutions for all processes from weak to strong nonequilibrium. With that, 
they present themselves as an effective tool to systematically explore 
interface behavior over a wide range of process conditions. Unfortu-
nately, our results show that the agreement between EV26 and DSMC 
is somewhat weak, in particular for processes further below the criti-
cal point. While the principal behavior of EV26 solutions qualitatively 
agrees with DSMC, there are significant quantitative differences.

Tests with an ad-hoc regularization (EV26R) show better agreement. 
Since the regularization results from truncation of a larger moment set, 
we expect that extended moment systems, with more than 26 moments, 
will yield better agreement. Deeper consideration of this question is 
planned for the future.

Higher moments found from DSMC or EV26 have marked contri-
butions in the interfacial area and Knudsen layer. Our results prove 
that sampling of these higher moments—which vanish in classical 
hydrodynamics—provides an accessible and meaningful approach to 
study the non-equilibrium state of the interface.

Interface resistivities are extremely difficult to measure in macro-
scopic experiments, which are dominated by bulk processes. In contrast, 
microscopic simulations—with MD, DSMC, or moment systems—center 
on the interface itself, with only small regions of bulk phases on ei-
ther side. Resistivities can be found from suitable evaluation based on 
thermodynamic relations.

While classical kinetic theory models predict constant values for 
the dimensionless resistivities 𝑟̂𝛼𝛽 , our results with DSMC and EV26 
show a richer behavior. Specifically, we observed variation of resistiv-
ities with temperature and found negative off-diagonal resistivities for 
some cases. Moreover, the moment results indicate that resistivities de-
pend not only on the interfacial temperature, but also on strength of 
the nonequilibrium. So far, the latter finding could not be verified from 
DSMC solutions, which are limited to strong nonequilibrium processes, 
with sufficiently large heat or mass fluxes.

While the deterministic EV26 moment results, with their smooth 
curves for all variables, are best suited for the unambigous determi-
nation of resistivities, the deviation from DSMC becomes manifest in 
overly large resistivities, that is too large interface resistance. Tests with 
other moment systems indicate worse predictions with lower moment 
number (EV13, EV-NSF), but some improvement from the regulariza-
tion EV26R.

While inconclusive, our results indicate the need for systematic eval-
uation of resistivities over a wide range of conditions between weak and 
strong nonequilibrium, close to and far from critical point. We believe 
that microscopic simulations with MD, DSMC or moment models are 
best suited to for this task. Moment equations, with their deterministic 

solutions for all process conditions, offer an interesting model to exam-
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ine and learn about phase interfaces and their resistivities, but higher 
moment numbers are required.
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