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A B S T R A C T

In this contribution we provide numerical methods to implement full network models with
particular application to affine isotropic networks as they are frequently applied in theories of
rubber elasticity. Unlike the common approaches, the average of the single chains’ responses
is not obtained by spherical integration but by solving a univariate integral expressed in terms
of the squared stretch of a fibre’s or chain’s end-to-end vector. In addition to the free energy
function of these individual elements the methods are informed by the statistical moments of the
distribution of stretch in the network, which throughout the work is assumed to be determined
by affine kinematics. We exemplify the proposed procedure for two quadrature methods,
which distinguish in terms of the positions of the 𝑛 integration points and the corresponding
weights. While the first method uses constant equal weights of 1∕𝑛 and hence only requires
the computation of 𝑛 integration points, the second, Gauss-type method also requires the
determination of the corresponding weights and builds on a recent development, previously
implemented for up to 3 points (Britt & Ehret, Comput. Methods Appl. Mech. Engrg. 415,
2023). However, the structure of the solution strategy applies to a wider range of univariate
quadrature rules. Both methods exemplified here can be made exact for polynomial chain free
energy functions of arbitrary order, and are illustrated in application to the affine full network
model of rubber elasticity with non-Gaussian chains. The results indicate high accuracy of the
new methods and therefore identify them as useful and efficient alternatives to the existing
approaches for computing the full network response.

1. Introduction

In continuum mechanical theories of materials whose structure at smaller length-scales consists of a network of fibres or long
molecules, the macroscopic mechanical response is often obtained as an average of the responses elicited by these single elements.
In general, such approaches require a relation between the kinematics at the macroscale, at which the material can be assumed to
obey the physical laws of a continuous solid, and the microscale kinematics. We have recently proposed to establish this relation in
a probabilistic manner by describing the distribution of microscopic stretch within the network [1], whereas the way more common
approach uses an intermediate step, in that the stretch of an element is first related to its referential orientation, and the average is
evaluated as an integral over the orientation distribution. Since the set of possible orientations in 𝑑 dimensions can be associated
with the unit sphere 𝑑−1, the integrals are typically evaluated on 𝑑−1.
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Several important applications in continuum mechanics employ affine modelling concepts such as the affine full network of
ubber elasticity [2,3] or the structural approach in soft tissue biomechanics [4–8], i.e. fibres are assumed to transform like
ectorial line elements of a continuous body. In Britt and Ehret [9], we have elaborated the affine stretch distribution corresponding
o a referential orientation distribution and a given macroscopic state of deformation, and showed that the stretch distribution
pproach [1] also applies in the affine case, thereby generalising results in previous work [10,11]. Particularly, we highlighted that
his approach suggests several alternative methods to implement affine modelling concepts. One of the key features of the alternative
nterpretation of the average in terms of the stretch distribution concerns the dimensionality of the probability space: The alternative
orm only requires integration over the range of admissible stretches, which is the set of positive reals in the general case, and the
ounded interval between the extremal principal stretches in the affine case. Very effective numerical integration schemes exist
or such univariate integrals, and following the concept of moment-preserving integration schemes [12,13] we proposed the use
f Gauss quadrature (GI) in Britt and Ehret [14], illustrated for the important special case of structural models for anisotropic soft
issues. Strikingly, it was shown that already a 3-point scheme, for which the integration points and weights can be determined
nalytically, can compete with high-order spherical integration schemes and is even superior with regard to preserving material
ymmetry [14]. Like in most of the alternatives proposed to circumvent spherical cubature [e.g. 10,15–18], the method uses higher
rder structural tensors [19,20], to include information about the material’s anisotropy. Although the latter can be computed and
tored very efficiently [14,21], their tensorial order, increasing with the number 𝑛 of Gauss integration points as 2(2𝑛−1), may still

set limits on what one would use during the computations. Notably, this is different in the isotropic case, where the moments are
only functions of the right Cauchy–Green tensor, and the problem reduces to efficient methods for calculating integration points
and weights.

Hence, after introducing a second quadrature scheme (EWI) with a set of constant, equal weights, a practical numerical
framework is proposed in the present work, to determine the positions of the integration points for such moment-preserving
quadratures, so that they can be implemented to be exact for polynomials of arbitrary order.

This extension is of particular relevance in fields where the constitutive behaviour of the fibres is characterised by very high
non-linearity. Therefore the proposed 𝑛-point GI and EWI quadrature rules are illustrated for a second prime example of network
averaging: the affine full network model of non-Gaussian elasticity [2], whose efficient implementation has been subject of research
over several decades [e.g. 22–28]. Most expressions for the free energy of non-Gaussian chains reflect the property of limited chain
extensibility, i.e. they diverge as the chain’s end-to-end stretch approaches the fully extended length [29,30], and are hence non-
analytic in this region. For the isotropic full network model there exists already a powerful analytical method based on a Taylor series
expansion (TE) of the free energy of a single non-Gaussian polymer chain [27], which allows expressing the network free energy
as a weighted sum of terms which themselves are functions of the principal invariants. It was shown that these terms correspond
to statistical moments of the affine distribution [9], i.e. integrals of integer powers over the affine stretch distribution. Although
the here proposed methods likewise make use of these moments, they are employed differently: Requiring their preservation in
numerical integration, they serve to identify the positions of integration points of univariate quadrature schemes. For different
implementations of the non-Gaussian chain [2,31,32] we obtain very accurate results of the full network model in the typical
range of interest for both proposed quadrature methods. Their results approach the ground truth with increasing 𝑛 for both GI and
EWI. The comparison of the existing TE method with GI and EWI using the same number of statistical moments suggests that the
new methods use this information more efficiently.

The paper is organised as follows: Section 2 provides some technical preliminaries and resumes the idea of computing averages
from the distribution of stretch – square stretch to be precise. Section 3 outlines the concept of univariate moment-preserving
quadratures to integrate full network models, resumes the Gauss-type rule [14] and, as another member of this family, introduces
a quadrature with equal weights. In Section 4 we derive the numerical treatment of the Gauss and equal weights quadrature rules
for arbitrary 𝑛. Section 5 is dedicated to different implementations of the full-network model of rubber elasticity. The results are
presented and discussed in Section 6, and the paper is concluded in Section 7.

2. Preliminaries

2.1. Continuum mechanics fundamentals

The deformation of a material body is described by the mapping 𝝋 ∶ 0 → 𝑡,𝑿 ↦ 𝒙, taking a material point from its position 𝑿
n the reference configuration 0 to its current position 𝒙 in the current configuration 𝑡. The corresponding deformation gradient
s 𝐅 = 𝜕𝝋∕𝜕𝑿 with determinant 𝐽 = det𝐅 > 0, and allows to define the right Cauchy–Green tensor as 𝐂 = 𝐅T𝐅.

Let the free energy 𝛹 per unit reference volume be given by the function �̂� ∶ 𝐂 ↦ 𝛹 . For a hyperelastic unconstrained material
he second Piola–Kirchhoff stress 𝐒, the related first Piola–Kirchhoff stress 𝐏 and Cauchy stress σ as well as fourth-order tangent
ensor C are obtained as

𝐒 = 2 𝜕�̂�
𝜕𝐂

, 𝐏 = 𝐅𝐒, σ = 𝐽−1𝐅𝐒𝐅T, C = 2 𝜕𝐒
𝜕𝐂

= 4 𝜕2�̂�
𝜕𝐂𝜕𝐂

. (1)

We assume that the reference configuration 0 is associated with an energy- and stress-free state of the material, i.e. �̂� (𝐈) = 0 and
𝐒(𝐈) = 𝟎.
2



Computer Methods in Applied Mechanics and Engineering 421 (2024) 116792B.R. Britt and A.E. Ehret

T

i

T
a

2.2. Tensor algebra and analysis fundamentals

Let 𝐓 be a generally non-symmetric 2nd order tensor. The principal traces of 𝐓 read

𝐽1 = tr𝐓, 𝐽2 = tr𝐓2, 𝐽3 = tr𝐓3, … , 𝐽𝑑 = tr𝐓𝑑 , (2)

and are also referred to as main invariants of 𝐓. They are equivalently expressed in terms of its eigenvalues {𝜆𝑘} as

𝐽1 = 𝜆1 + 𝜆2 + 𝜆3 +…+ 𝜆𝑑 ,

𝐽2 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3 +…+ 𝜆2𝑑 ,

𝐽3 = 𝜆31 + 𝜆
3
2 + 𝜆

3
3 +…+ 𝜆3𝑑 ,

⋮

𝐽𝑑 = 𝜆𝑑1 + 𝜆𝑑2 + 𝜆𝑑3 +…+ 𝜆𝑑𝑑 ,

(3)

and are related to the principal invariants through Newton’s identities [see e.g. 33], such that

𝐼1 = 𝐽1,

𝐼2 =
1
2
(𝐼1𝐽1 − 𝐽2),

𝐼3 =
1
3
(𝐼2𝐽1 − 𝐼1𝐽2 + 𝐽3),

⋮

𝐼𝑑 = 1
𝑑
(𝐼𝑑−1𝐽1 − 𝐼𝑑−2𝐽2 +…+ (−1)𝑑−1𝐽𝑑 ) = det𝐓.

(4)

The case where 𝐓 has 𝑑 distinct eigenvalues {𝜆𝑘}, is particularly relevant to this work, and in this case [e.g. 33]

𝐓 =
𝑑
∑

𝑘=1
𝜆𝑘𝐏𝑘, (5)

where {𝐏𝑙} are the corresponding eigenprojections. In this case, one can show that the derivatives of the eigenvalues with respect
to 𝐓 are [33, Sec. 6]

𝜆𝑘,𝐓 = 𝜆𝑘𝐏𝑘T (no sum over 𝑘), (6)

and the derivatives of the eigenprojections with respect to (non-symmetric) 𝐓 are [33, Sec. 7]

𝐏𝑘,𝐓 =
𝑑
∑

𝑙=1
𝑙≠𝑘

𝐏𝑘 ⊡ 𝐏𝑙 + 𝐏𝑙 ⊡ 𝐏𝑘
𝜆𝑘 − 𝜆𝑙

(no sum over 𝑘), (7)

where the tensor product ⊡ between the 2nd order tensors 𝐀 and 𝐁 is defined such that

𝐀⊡ 𝐁 ∶ 𝐗 = 𝐀𝐗𝐁 (8)

for all 2nd order tensors 𝐗. We note that in case 𝐓 is symmetric, instead of ⊡ one may use the (partly) symmetrised product ⊠
defined such that [cp. e.g. 9]

𝐀⊠ 𝐁 ∶ 𝐗 = 𝐀(𝐗 + 𝐗T)∕2𝐁. (9)

he definitions given within this section can also be interpreted analogously for matrices 𝖳 ∈ R𝑑×𝑑 or C𝑑×𝑑 . This becomes particularly
evident if we consider the tensors to be represented with respect to a fixed orthonormal basis, so that Eqs. (2)–(9) operate on their
Cartesian components. We will exploit this circumstance in the next section.

2.3. Polynomials and companion matrices

The problem of finding the 𝑛 zeros {𝜉𝑘} of a monic polynomial (polynomial with leading coefficient 1), i.e. the solutions of

𝜉𝑛 + 𝑎𝑛−1 𝜉
𝑛−1 + 𝑎𝑛−2 𝜉

𝑛−2 +…+ 𝑎0 = 0, (10)

s equivalent to finding the eigenvalues of the 𝑛 × 𝑛 companion matrix 𝖬, defined by [cf. 34,35]

𝖬 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 … 0 −𝑎0
1 0 … 0 −𝑎1
0 1 … 0 −𝑎2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 −𝑎𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (11)

he computation of the eigenvalues {𝜉𝑘} and a set of corresponding 𝑛-dimensional eigenvectors {𝗏𝑘} of 𝖬 is a standard task
3

ccomplished by linear algebra packages in a variety of programming languages.
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Assuming the roots of the polynomial (10) and thus the eigenvalues of 𝖬 (11) are distinct, it follows that 𝖬 is diagonalisable,
.e. [cf. e.g. 34]

𝖵−1𝖬𝖵 = diag{𝜉𝑘} ⟺ 𝖬 = 𝖵 diag{𝜉𝑘}𝖵−1, (12)

here the 𝑛 columns of 𝖵 represent the 𝑛 eigenvectors 𝗏𝑘 of 𝖬, so that it is obtained by concatenating the 𝑛 vectors as

𝖵 =
[

𝗏1 𝗏2 … 𝗏𝑛
]

. (13)

nstead of using an arbitrary set of eigenvectors, we remark that another possible choice for the transformation matrix is to set 𝖵−T

qual to the Vandermonde matrix [cf. e.g. 34, Sec. 3.3.P20]

𝖵−T =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 … 1
𝜉1 𝜉2 𝜉3 … 𝜉𝑛
𝜉21 𝜉22 𝜉23 … 𝜉2𝑛
⋮ ⋮ ⋮

𝜉𝑛−11 𝜉𝑛−12 𝜉𝑛−13 … 𝜉𝑛−1𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (14)

he diagonalisation (12) implies that the 𝑛2 components of 𝖬 can be represented as

𝖬𝛼𝛽 =
𝑛
∑

𝑘=1
𝜉𝑘𝖵𝛼𝑘𝖵

−1
𝑘𝛽 =

𝑛
∑

𝑘=1
𝜉𝑘(𝖯𝑘)𝛼𝛽 , (15)

where the matrices {𝖯𝑘}, obtained by matrix multiplication of the 𝑘th column of 𝖵 with the 𝑘th row of 𝖵−1, take the role of
eigenprojections, in analogy to Eq. (5). Hence, in analogy to Eqs. (6),(7) one finds

(𝜉𝑘),𝖬𝛼𝛽
= (𝖯𝑘)𝛽𝛼 (16)

and

(𝖯𝑘)𝛼𝛽,𝖬𝛾𝛿
=

𝑑
∑

𝑙=1
𝑙≠𝑘

(𝖯𝑘)𝛼𝛾 (𝖯𝑙)𝛿𝛽 + (𝖯𝑙)𝛼𝛾 (𝖯𝑘)𝛿𝛽
𝜉𝑘 − 𝜉𝑙

. (17)

2.4. Integration of the fibre energy

We propose a method to approximate or define the macroscopic free energy 𝛹 of the fibre network from a fibre strain–energy
(density) function 𝜓 of the affine fibre square stretch 𝛬. To this end, we introduce the expectation operator E [ ⋅ ], for which E [1] = 1,
to express the macroscopic energy 𝛹 as an integral of the microscopic energy 𝜓 , i.e.

𝛹 = 𝜈 E [𝜓] − 𝐶, (18)

where 𝜈 is a constant for the energetic scale equivalence [1] and 𝐶 is a constant1 to guarantee an energy-free reference state. If we
limit our attention to the isotropic affine case, the integral E [𝜓] can be given by

E [𝜓] = 1
4𝜋 ∫

𝜓(𝐂 ∶ 𝑵 ⊗𝑵) d𝐴, (19)

where 𝐂 ∶ 𝑵 ⊗𝑵 = ‖𝐅𝑵‖

2 is the affine square stretch 𝛬 of a line element initially oriented in direction with unit normal 𝑵 and
d𝐴 is the surface element of the sphere corresponding to 𝑵 . As it is convenient to parameterise the argument of the integral, e.g.
𝑵 , by spherical angles 𝜙 and 𝜃 we note that

E [ ⋅ ] = 1
4𝜋 ∫

⋅ d𝐴 = 1
4𝜋 ∫

2𝜋

0 ∫

𝜋

0
⋅ sin(𝜃)d𝜃 d𝜙. (20)

As elaborated in Britt and Ehret [1], more generally, and particularly not requiring the existence of a relation between 𝛬 and 𝑵 ,
the averaged macroscopic energy can be expressed in terms of the stretch distribution 𝑃𝛬 for a given deformation

E [𝜓] = ∫

∞

0
𝜓(𝜉) d𝑃𝛬(𝜉), (21)

or in terms of its density 𝑝𝛬 (if this exists)

E [𝜓] = ∫

∞

0
𝜓(𝜉) 𝑝𝛬(𝜉) d𝜉. (22)

For later use let us further introduce the raw {𝜇𝑘} and central moments {�̄�𝑘} of the affine square stretch 𝛬 [9]

𝜇𝑘 = E
[

𝛬𝑘
]

, �̄�𝑘 = E
[

(𝛬 − 𝜇1)𝑘
]

. (23)

1 Particularly for entropic elasticity of polymer chains it is common to associate 𝐶 with the free energy of the network in the reference state. Due to the
4

potential character of 𝛹 this constant does not affect the calculation of stress.
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2.5. Moments of the isotropic affine stretch distribution and their derivatives

In the isotropic affine case, one has

𝜇1 =
1
3
𝐼1 (24)

and the first 30 central moments {�̄�𝑘} computed using the algorithm provided in [9] are given in Appendix A (Table A.1) as
polynomials of two dedicated invariants [cf. 9,27]

𝐴 = 𝐼21 − 3𝐼2 =
3
2
tr(𝐂 − 𝜇1𝐈)2, 𝐵 = 𝐼31 − 9

2
𝐼1𝐼2 +

27
2
𝐼3 =

27
2
det(𝐂 − 𝜇1𝐈). (25)

For the differentiation of the moment-dependent expressions, that will be useful later, we further note [cf. 9]

𝐴,𝐂 = 3 (𝐂 − 𝜇1𝐈), 𝐴,𝐂𝐂 = 3 𝐈⊠ 𝐈 − 𝐈⊗ 𝐈 (26)

and

𝐵,𝐂 = 27
2
𝐚𝐝𝐣(𝐂 − 𝜇1𝐈) +

3
2
𝐴 𝐈 = 27

2
(𝐂 − 𝜇1𝐈)2 − 3𝐴𝐈,

𝐵,𝐂𝐂 = 27
2

(

(𝐂 − 𝜇1𝐈)⊠ 𝐈 + 𝐈⊠ (𝐂 − 𝜇1𝐈)
)

− 3(𝐴,𝐂 ⊗ 𝐈 + 𝐈⊗𝐴,𝐂),
(27)

where the adjugate 𝐚𝐝𝐣𝐀 of the 2nd order tensor 𝐀, satisfying

𝐚𝐝𝐣𝐀𝐀 = det𝐀 𝐈, (28)

is used.

3. Univariate quadrature rules

The integral (21) can be computed by univariate quadrature rules as

E [𝜓] = ∫

∞

0
𝜓(𝜉) d𝑃𝛬(𝜉) ≈ NQ[𝜓] =

𝑛
∑

𝑘=1
𝜓(𝜉𝑘)𝜔𝑘, (29)

where NQ stands for any suitable numerical quadrature procedure, able to exactly integrate polynomial functions of a desired degree.
The quadrature is characterised by 𝑛 integration points 𝜉𝑘 at which the integrand is evaluated, and corresponding weights 𝜔𝑘.

To determine the positions of integration points and weights, we define a root-finding problem of the form (10) with coefficients
𝑎𝑘 = �̂�𝑘(�̄�2, �̄�3,… , �̄�𝑛), 𝑘 = 1, 2,… , 𝑛. This procedure is intrinsic to the moment-based Gauss quadrature discussed in [14], where the
integration points are the roots of orthogonal polynomials, as shown in Section 3.1. However, other strategies for integration can
be brought to a suitable form, as exemplified for a quadrature rule with equal weights in Section 3.2.

3.1. Univariate Gauss quadrature

We have recently applied the Gauss quadrature rule to integrate the fibre strain–energy of an affinely deforming material with
a continuous, generally non-uniform fibre orientation distribution. The univariate Gauss quadrature approximates [14]

E [𝜓] = ∫

∞

0
𝜓(𝑥) d𝑃𝛬(𝑥) ≈ GI [𝜓] =

𝑛
∑

𝑘=1
𝜓(𝑥𝑘)𝑤𝑘. (30)

The integration points 𝜉𝑘, referred to as 𝑥𝑘 for GI,

𝑥𝑘 = �̄�𝑘 + 𝜇1 (31)

result from the roots �̄�𝑘 of the 𝑛th orthogonal polynomial 𝑄𝑛, and the corresponding weights {𝑤𝑘} compute as [see e.g. 36]

𝑤𝑘 = E

[

∏

𝑙≠𝑘

�̄� − �̄�𝑙
�̄�𝑘 − �̄�𝑙

]

, 𝑘 = 1, 2,… , 𝑛. (32)

The Gauss quadrature has the following properties [see e.g. 36]: (i) The integration points are real, mutually distinct and lie
within the stretch range, i.e. 𝑥𝑘 ∈ [𝛬min, 𝛬max] (Supplementary Information, Sec. 1). (ii) The weights are positive, and (iii) the rule
integrates polynomials up to degree 2𝑛 − 1 exactly.

The 𝑛th orthogonal polynomial 𝑄𝑛 is expressed by the determinant formula [37]

𝑄𝑛 =

|

|

|

|

|

|

|

|

|

|

|

|

|

1 0 �̄�2 �̄�3 … �̄�𝑛
0 �̄�2 �̄�3 �̄�4 … �̄�𝑛+1
�̄�2 �̄�3 �̄�4 �̄�5 … �̄�𝑛+2
⋮ ⋮

�̄�𝑛−1 �̄�𝑛 �̄�𝑛+1 �̄�𝑛+2 … �̄�2𝑛−1
2 3 𝑛

|

|

|

|

|

|

|

|

|

|

|

|

|

(33)
5

|

1 �̄� �̄� �̄� … �̄�
|
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to be understood as a cofactor expansion of the (𝑛 + 1) × (𝑛 + 1) matrix along the last row, so that

𝑄𝑛 =

|

|

|

|

|

|

|

|

|

1 0 … �̄�𝑛−1
0 �̄�2 … �̄�𝑛
⋮ ⋮ ⋱ ⋮

�̄�𝑛−1 �̄�𝑛 … �̄�2𝑛−2

|

|

|

|

|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑛=det𝖠𝑛

�̄�𝑛 + (−1)

|

|

|

|

|

|

|

|

|

1 … �̄�𝑛−2 �̄�𝑛
0 … �̄�𝑛−1 �̄�𝑛−1
⋮ ⋱ ⋮ ⋮

�̄�𝑛−1 … �̄�2𝑛−3 �̄�2𝑛−1

|

|

|

|

|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑛−1=det𝖠𝑛−1

�̄�𝑛−1 +⋯

+ (−1)𝑛−1

|

|

|

|

|

|

|

|

|

1 �̄�2 … �̄�𝑛
0 �̄�3 … �̄�𝑛−1
⋮ ⋮ ⋱ ⋮

�̄�𝑛−1 �̄�𝑛+1 … �̄�2𝑛−1

|

|

|

|

|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐1=det𝖠1

�̄� + (−1)𝑛

|

|

|

|

|

|

|

|

|

0 … �̄�𝑛−1 �̄�𝑛
�̄�2 … �̄�𝑛 �̄�𝑛−1
⋮ ⋱ ⋮ ⋮
�̄�𝑛 … �̄�2𝑛−2 �̄�2𝑛−1

|

|

|

|

|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐0=det𝖠0

�̄�0 =
𝑛
∑

𝑘=0
𝑐𝑘 �̄�

𝑘 =
𝑛
∑

𝑘=0
�̄�𝑘 det𝖠𝑘 .

(34)

ivision by 𝑐𝑛 yields the root finding problem of a monic polynomial of the form (10) as

�̄�𝑛 +
𝑐𝑛−1
𝑐𝑛

�̄�𝑛−1 +⋯ +
𝑐1
𝑐𝑛
�̄� +

𝑐0
𝑐𝑛

= 0. (35)

The calculation of stress and elasticity tensors according to Eq. (1) from the network strain–energy (18) requires derivatives with
respect to 𝐂, and when approximated by the Gauss rule (30) the first and second ones read

GI [𝜓],𝐂 =
𝑛
∑

𝑘=1

[

𝜓 ′(𝑥𝑘)𝑤𝑘𝑥𝑘,𝐂 + 𝜓(𝑥𝑘)𝑤𝑘,𝐂
]

, (36)

and

GI [𝜓],𝐂𝐂 =
𝑛
∑

𝑘=1

[

𝜓 ′′(𝑥𝑘)𝑤𝑘 𝑥𝑘,𝐂 ⊗ 𝑥𝑘,𝐂 + 𝜓(𝑥𝑘)𝑤𝑘,𝐂𝐂 + 𝜓 ′(𝑥𝑘)
(

𝑥𝑘,𝐂 ⊗𝑤𝑘,𝐂 +𝑤𝑘,𝐂 ⊗ 𝑥𝑘,𝐂
)

+ 𝜓 ′(𝑥𝑘)𝑤𝑘 𝑥𝑘,𝐂𝐂
]

, (37)

where ⊗ denotes the ‘usual’ tensor product between two second order tensors 𝐀,𝐁 such that 𝐀⊗ 𝐁 ∶ 𝐗 = 𝐀(𝐁 ∶ 𝐗).
In Britt and Ehret [14] we have provided analytic expressions for 𝑥𝑘,𝐂, 𝑤𝑘,𝐂 as well as 𝑥𝑘,𝐂𝐂, 𝑤𝑘,𝐂𝐂 for the cases 𝑛 ≤ 3, for which

the (up to) three roots 𝑥1, 𝑥2, 𝑥3 can be determined analytically; an implementation can be found in [38].

3.2. Univariate equal weights quadrature

As an alternative to the Gauss quadrature (30) we propose to approximate the integral (21) by an 𝑛-point quadrature rule with
equal weights 𝜔𝑘 = 1∕𝑛 of the form

E [𝜓] ≈ EWI [𝜓] = 1
𝑛

𝑛
∑

𝑘=1
𝜓(𝑧𝑘), (38)

where {𝑧𝑘} are the specific integration points {𝜉𝑘} for the EWI. As common in many integration schemes we determine {𝑧𝑘} such
that the approximation (38) is exact for a polynomial 𝜓 of degree 𝑛. An exact Taylor series representation of such a polynomial 𝜓
reads

𝜓 =
𝑛
∑

𝑙=0

1
𝑙!
𝜕𝑙𝜓
𝜕𝛬𝑙

|

|

|

|𝛬=𝛬0

(𝛬 − 𝛬0)𝑙 . (39)

Inserting (39) into (38), one finds
𝑛
∑

𝑙=0

1
𝑙!
𝜕𝑙𝜓
𝜕𝛬𝑙

|

|

|

|𝛬=𝛬0

E
[

(𝛬 − 𝛬0)𝑙
]

≈ 1
𝑛

𝑛
∑

𝑘=1

𝑛
∑

𝑙=0

1
𝑙!
𝜕𝑙𝜓
𝜕𝛬𝑙

|

|

|

|𝛬=𝛬0

(𝑧𝑘 − 𝛬0)𝑙 , (40)

and as in this case full equivalence is required, by comparison of the coefficients it can be concluded that

E
[

(𝛬 − 𝛬0)𝑙
]

= 1
𝑛

𝑛
∑

𝑘=1
(𝑧𝑘 − 𝛬0)𝑙 , 𝑙 = 0, 1,… , 𝑛, (41)

where for 𝑙 = 0 the normalisation condition E [1] = 1 is automatically satisfied as each weight is 1∕𝑛. The choice of 𝛬0 does not
affect the result and therefore can be considered arbitrary, as long as it is real and positive. In Britt and Ehret [9] we have studied
the distribution of the square stretch 𝛬 in the affine model and identified the expressions E

[

(𝛬 − 𝛬0)𝑙
]

as the 𝑙th moment of 𝛬 with
espect to 𝛬 . If one chooses 𝛬 as the expectation or first (raw) moment 𝜇 one finds the central moments {�̄� }.
6
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With this choice (𝛬0 = 𝜇1) Eq. (41) leads to the fundamental requirement on the 𝑛-point rule

�̄�1 + �̄�2 + �̄�3 +…+ �̄�𝑛 = 0

�̄�21 + �̄�
2
2 + �̄�

2
3 +…+ �̄�2𝑛 = 𝑛 �̄�2

�̄�31 + �̄�
3
2 + �̄�

3
3 +…+ �̄�3𝑛 = 𝑛 �̄�3

⋮

�̄�𝑛1 + �̄�
𝑛
2 + �̄�

𝑛
3 +…+ �̄�𝑛𝑛 = 𝑛 �̄�𝑛,

(42)

where for the sake of brevity we have set

�̄�𝑘 = 𝑧𝑘 − 𝜇1. (43)

For the isotropic case the moments 𝜇1 and {�̄�𝑙} are discussed in Section 2.5.
The formal comparison of Eq. (42) with Eq. (3) reveals that determining the positions {�̄�𝑘} in (42) is identical to the task of

finding the 𝑛 eigenvalues corresponding to the 𝑛 ‘main invariants’ {𝑛 �̄�𝑙} and thus equivalent to solving for the 𝑛 solutions of the
equation

�̄�𝑛 − 1�̄�𝑛−1 + 2�̄�𝑛−2 −…+ (−1)𝑛𝑛 = 0, (44)

where the principal invariants {𝑙} follow from inserting the values for the main invariants {𝑛 �̄�𝑙} into (4), replacing 𝐽𝑙 by {𝑛 �̄�𝑙}
and 𝐼𝑘 by 𝑘. Eq. (44) represents the monic polynomial (10) whose roots provide the integration points.

Application of the chain rule of differentiation to Eq. (38) yields

EWI [𝜓],𝐂 = 1
𝑛

𝑛
∑

𝑘=1
𝜓 ′(𝑧𝑘) 𝑧𝑘,𝐂 , (45)

and

EWI [𝜓],𝐂𝐂 = 1
𝑛

𝑛
∑

𝑘=1

[

𝜓 ′′(𝑧𝑘) 𝑧𝑘,𝐂 ⊗ 𝑧𝑘,𝐂 + 𝜓 ′(𝑧𝑘) 𝑧𝑘,𝐂𝐂
]

, (46)

and delivers the terms that specify stress and stiffness according to Eq. (1). As closed form solutions for roots of general polynomial
functions of degree 5 do not exist, it seems that at least the cases 𝑛 ≥ 5 would necessitate a numeric approach. The straightforward
solutions for linear, quadratic and cubic equations are discussed in Appendix B.

Remark 1 (Complex Integration Points). Since all central moments { �̄�𝑙} and thus all the principal invariants {𝑙} are real valued, it
follows from the fundamental theorem of algebra that Eq. (44) has 𝑛 complex roots and that any non-real root occurs in a complex
conjugate pair (see also Supplementary Fig. 1). Notably, this property implies that the power series (40) remains real, which is a
direct consequence of the following fundamental properties of complex analysis: Let 𝑧 = 𝑎+ 𝑖𝑏 and �̂� = 𝑎− 𝑖𝑏 its conjugate, where 𝑎
and 𝑏 denote the real (Re) and imaginary (Im) part of 𝑧, then

Re �̂�𝑘 = Re 𝑧𝑘, Im �̂�𝑘 = −Im 𝑧𝑘, (47)

which can be easily proven by calculation. Hence, for a complex analytic function 𝜓(𝑧) =
∑∞
𝑘=0 𝐶𝑘𝑧

𝑘, one finds

𝜓(�̂�) = �̂�(𝑧) ⇒ 𝜓(𝑧) + 𝜓(�̂�) = 2Re𝜓(𝑧), (48)

showing that the sum of 𝜓 evaluated at 𝑧 and its conjugate �̂� is real and equals twice 𝜓(𝑧).

4. Numerical determination of integration points and weights

We have shown previously in [14] that the Gauss 3-point rule already achieves remarkably high accuracy. Nevertheless, it might
be desirable to increase the accuracy, particularly for highly non-linear fibre strain–energy density functions 𝜓 . To this end, we
here provide a numerical procedure to determine the 𝑛 integration points for the 𝑛-point Gaussian and equal weights quadratures,
respectively, as well as the corresponding weights for the former. To this end, we make use of the analogy between computing the
zeros of the polynomials (35), (44), and solving the eigenvalue problem for the corresponding companion matrices as resumed in
Section 2.3.

4.1. Equal weights rule

The monic polynomial (44) has the companion matrix (11) 𝖬 ∈ R𝑛×𝑛

𝖬 =

⎡

⎢

⎢

⎢

⎢

⎢

0 0 … 0 (−1)𝑛−1𝑛−0
1 0 … 0 (−1)𝑛−2𝑛−1
0 1 … 0 (−1)𝑛−3𝑛−2
⋮ ⋮ ⋱ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

. (49)
7
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Solving the eigenvalue problem for 𝖬 provides the eigenvalues {�̄�𝑘} and eigenvectors {𝗏𝑘}, from which 𝖵 is assembled according
o (13).

The derivatives of {�̄�𝑘} with respect to 𝐂, required to compute stress and tangent tensors (1), can be computed by use of the
epresentation (15)

𝖬𝛼𝛽 =
𝑛
∑

𝑘=1
�̄�𝑘(𝖯𝑘)𝛼𝛽 , (50)

n terms of ‘eigenprojections’ 𝖯𝑘, where for the sake of clarity we use index notation and the Einstein summation convention, employ
atin letters running from 1 to 3 to indicate the components of tensors with respect to an orthogonal basis, and Greek letters for
he components of matrices, running from 1 to 𝑛. By virtue of the chain rule of differentiation one finds

�̄�𝑘,𝐶𝑖𝑗 = �̄�𝑘,𝖬𝛼𝛽
𝖬𝛼𝛽,𝐶𝑖𝑗 = (𝖯𝑘)𝛽𝛼𝖬𝛼𝛽,𝐶𝑖𝑗 , (51)

here we used the relation (16), and

�̄�𝑘,𝐶𝑖𝑗𝐶𝑘𝑙 = (𝖯𝑘)𝛽𝛼,𝖬𝛾𝛿
𝖬𝛼𝛽,𝐶𝑖𝑗𝖬𝛾𝛿,𝐶𝑘𝑙 + (𝖯𝑘)𝛽𝛼𝖬𝛼𝛽,𝐶𝑖𝑗𝐶𝑘𝑙 , (52)

here according to Eq. (17)

(𝖯𝑘)𝛽𝛼,𝖬𝛾𝛿
=

𝑛
∑

𝑗=1
𝑗≠𝑘

(𝖯𝑘)𝛽𝛾 (𝖯𝑗 )𝛿𝛼 + (𝖯𝑗 )𝛽𝛾 (𝖯𝑘)𝛿𝛼
�̄�𝑘 − �̄�𝑗

. (53)

ere 𝖬 and 𝖯𝑘 are not symmetric and hence the expressions (51) and (53) differ from their symmetric counterparts, cf. e.g.
qs. 124,125 in Ref. [9]. Noteworthy, because only the last row of 𝖬 is dependent on 𝐂 for the numeric implementation of Eqs. (51),
52) and (53) the indices 𝛽 and 𝛿 may be fixed to 𝑛. Moreover, the derivatives of 𝖬 can be calculated by means of the chain rule,
oting that the last row of 𝖬 (49) depends on 𝑘, 𝑘 = 1, 2,… , 𝑛 (42), which are functions of �̄�𝑗 , 𝑗 = 2, 3,… , 𝑛, and hence of the
nvariants 𝐴 and 𝐵 of 𝐂 (25), cf. Table A.1.

By definition (43), the numerical procedure to compute energy (18), stress and tangent tensors (1) is completed by insertion of
he relations

𝑧𝑘 = �̄�𝑘 + 𝜇1 , 𝑧𝑘,𝐂 = �̄�𝑘,𝐂 + 𝜇1,𝐂 , 𝑧𝑘,𝐂𝐂 = �̄�𝑘,𝐂𝐂 , (54)

nto the EWI Eqs. (38), (45) and (46).

.2. Gauss rule

Brought into the representation (35) one identifies the companion matrix (11) 𝖬 ∈ R𝑛×𝑛 of the orthogonal polynomial 𝑄𝑛∕𝑐𝑛 as

𝖬 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 … 0 −𝑐0∕𝑐𝑛
1 0 … 0 −𝑐1∕𝑐𝑛
0 1 … 0 −𝑐2∕𝑐𝑛
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 −𝑐𝑛−1∕𝑐𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (55)

The task of identifying the integration points 𝑥𝑘 as well as their derivatives 𝑥𝑘,𝐂 and 𝑥𝑘,𝐂𝐂 is analogous to the procedure in Section 4.1
for 𝑧𝑘 and its derivatives, i.e. Eqs. (50)–(53). However, since all Gauss integration points 𝑥𝑘 are real-valued, only operations with
real numbers are involved. Analogous to Eq. (54) one obtains in view of (31)

𝑥𝑘 = �̄�𝑘 + 𝜇1 , 𝑥𝑘,𝐂 = �̄�𝑘,𝐂 + 𝜇1,𝐂 , 𝑥𝑘,𝐂𝐂 = �̄�𝑘,𝐂𝐂 , (56)

which need to be inserted in the GI equations (30), (36) and (37). Again, the derivatives of 𝖬 in Eqs. (51) and (52) required
to compute 𝑥𝑘,𝐂 and 𝑥𝑘,𝐂𝐂 follow from the chain rule, since the last row of 𝖬 (55) depends on 𝑐𝑘, 𝑘 = 0, 1,… , 𝑛 (34), which are
functions of �̄�𝑗 , 𝑗 = 2, 3,… , 𝑛, and hence of the invariants 𝐴 and 𝐵 of 𝐂 (25), cf. Table A.1.

In addition to integration points, the GI rule requires the determination of the integration weights 𝑤𝑘 and their derivatives
𝑤𝑘,𝐂, 𝑤𝑘,𝐂𝐂 with respect to 𝐂. To this end, we use the following property

⎡

⎢

⎢

⎢

⎢

⎣

�̄�01 �̄�02 … �̄�0𝑛
�̄�1 �̄�2 … �̄�𝑛
⋮ ⋮ ⋱ ⋮

�̄�𝑛−11 �̄�𝑛−12 … �̄�𝑛−1𝑛

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖶

⎡

⎢

⎢

⎢

⎢

⎣

�̄�1
�̄�2
⋮
�̄�𝑛

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝗐

=

⎡

⎢

⎢

⎢

⎢

⎣

�̄�1
�̄�2
⋮
�̄�𝑛

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
�̄�

, (57)

which allows computing the weights 𝗐 as solution to this linear system of equations, i.e.
−1 ̄
8
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For the first derivatives 𝑤𝑘,𝐂 = 𝑤𝑘,𝐶𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 , from Eq. (57) one derives

𝗐,𝐶𝑖𝑗 = 𝖶−1
(

�̄�,𝐶𝑖𝑗 −𝖶,𝐶𝑖𝑗𝗐
)

, (59)

where

𝖶,𝐶𝑖𝑗𝗐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
1

2
⋱

𝑛 − 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖣

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 … 0
�̄�01 �̄�02 … �̄�0𝑛
�̄�11 �̄�12 … �̄�1𝑛
⋮ ⋮ ⋱ ⋮

�̄�𝑛−21 �̄�𝑛−22 … �̄�𝑛−2𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1�̄�1,𝐶𝑖𝑗
𝑤2�̄�2,𝐶𝑖𝑗
𝑤3�̄�3,𝐶𝑖𝑗

⋮
𝑤𝑛�̄�𝑛,𝐶𝑖𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (60)

and the rows of 𝖶 can be found again in 𝖷. For the second derivatives 𝑤𝑘,𝐂𝐂 = 𝑤𝑘,𝐶𝑖𝑗𝐶𝑘𝑙𝒆𝑖 ⊗ 𝒆𝑗 ⊗ 𝒆𝑘 ⊗ 𝒆𝑘, we further derive

𝗐,𝐶𝑖𝑗𝐶𝑘𝑙 = 𝖶−1
(

�̄�,𝐶𝑖𝑗𝐶𝑘𝑙 −𝖶,𝐶𝑖𝑗𝐶𝑘𝑙𝗐 −𝖶,𝐶𝑖𝑗𝗐,𝐶𝑘𝑙 −𝖶,𝐶𝑘𝑙𝗐,𝐶𝑖𝑗

)

, (61)

where the last two terms, in analogy to Eq. (60), can be computed from

𝖶,𝐶𝑖𝑗𝗐,𝐶𝑘𝑙 = 𝖣𝖷

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1,𝐶𝑘𝑙 �̄�1,𝐶𝑖𝑗
𝑤2,𝐶𝑘𝑙 �̄�2,𝐶𝑖𝑗

⋮
𝑤𝑛,𝐶𝑘𝑙 �̄�𝑛,𝐶𝑖𝑗

⎤

⎥

⎥

⎥

⎥

⎦

, (62)

and

𝖶,𝐶𝑖𝑗𝐶𝑘𝑙𝗐 = 𝖣𝖷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1�̄�1,𝐶𝑖𝑗𝐶𝑘𝑙
𝑤2�̄�2,𝐶𝑖𝑗𝐶𝑘𝑙
𝑤3�̄�3,𝐶𝑖𝑗𝐶𝑘𝑙

⋮
𝑤𝑛�̄�𝑛,𝐶𝑖𝑗𝐶𝑘𝑙

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ 𝖣

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
�̄�01 �̄�02 … �̄�0𝑛
⋮ ⋮ ⋱ ⋮

�̄�𝑛−21 �̄�𝑛−22 … �̄�𝑛−2𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝖸

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1�̄�1,𝐶𝑖𝑗 �̄�1,𝐶𝑘𝑙
𝑤2�̄�2,𝐶𝑖𝑗 �̄�2,𝐶𝑘𝑙
𝑤3�̄�3,𝐶𝑖𝑗 �̄�3,𝐶𝑘𝑙

⋮
𝑤𝑛�̄�𝑛,𝐶𝑖𝑗 �̄�𝑛,𝐶𝑘𝑙

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (63)

and the rows of 𝖷 (and thus 𝖶) can be found again in 𝖸.

5. Application to the full-network model of rubber-elasticity

The here elaborated numerical procedures to apply the 𝑛-point GI and EWI method, as well as the EWI method with 3 points
(Appendix B) are illustrated in application to the non-Gaussian affine full network model for rubber elasticity. To this end, a ‘fibre’
is associated with the end-to-end vector 𝒓 of a long-chain molecule, that changes its squared length from 𝑟20 in the reference state
of the chain network to 𝑟2 = 𝛬𝑟20 in the current configuration. As usual, 𝑟20 is set to the mean squared end-to-end distance of an
unconstrained chain, so that it can be expressed in terms the number 𝑁 and length 𝑙 of the links of the chain as 𝑟20 = 𝑁𝑙2 [see e.g.
29]. Different variants of the non-Gaussian chain model will be considered and the free energy of the entropy-elastic single chains
𝜓(𝛬) is expressed in terms of the affine square stretch 𝛬, respectively. Accordingly the network free energy (18) is given by

𝛹 = 𝜈 (E [𝜓(𝛬)] − E [𝜓(1)]) = 𝛹𝑟 − 𝛹𝑟0 , (64)

where 𝛹𝑟0 = 𝜈E [𝜓(1)] = 𝐶 is constant.

5.1. Summary of EWI, GI and benchmarks

The new concepts are compared to two existing approaches as benchmarks: Spherical cubature with a very large number of
integration points is used to establish a numerical ground truth, and analytical integration on the sphere based on a Taylor expansion
of the integrand is employed as a potential alternative. All methods are briefly resumed in what follows. They were implemented
in Python 3.8, using the NumPy module v1.19.2.

5.1.1. 𝑛-Point equal weights quadrature
The general concept of the equal weights integration rule and its differentiation has been introduced in Section 3.2 of the present

work. In Section 4.1 we elaborated in detail how to determine the integration points and their derivatives in case of 𝑛-point rule.
Algorithm 1 summarises the computational steps.

5.1.2. 𝑛-Point Gauss quadrature
The Gauss type quadrature rule recently introduced for anisotropic fibrous materials [14], has been summarised in Section 3.1.

While the previous work had focused on the 3-point rule, we have elaborated the 𝑛-point version in Section 4.2 of this work. The
9

computational steps are summarised in Algorithm 2.
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function EWI ( 𝑛, 𝐅, 𝜓 , 𝜓 ′, 𝜓 ′′ )
compute 𝜇1 and �̄�2 (Section 2.5)
if �̄�2 < 𝐭𝐨𝐥 then

𝛹 = 𝜓(𝜇1)
𝛹,𝐂 = 𝜓 ′(𝜇1) 𝐈
𝛹,𝐂𝐂 = 𝜓 ′′(𝜇1)H2 , H2 = (𝐈⊗ 𝐈 + 2 𝐈⊠ 𝐈)∕15

else
compute {𝐼𝑘} (44), {𝐼𝑘,𝐂} and {𝐼𝑘,𝐂𝐂}
compute 𝖬 (49), 𝖬𝛼𝛽,𝐶𝑖𝑗 , 𝖬𝛼𝛽,𝐶𝑖𝑗𝐶𝑘𝑙
diagonalise 𝖬 and obtain 𝖵, 𝖵−1 and {�̄�𝑘} (12)
compute {𝖯𝑘} (15) and {(𝖯𝑘)𝛽𝛼,𝑀𝛾𝛿

} (17), (53)
compute {𝑧𝑘,𝐂} and {𝑧𝑘,𝐂𝐂} (51), (52), (54)
𝛹 = EWI [𝜓]
𝛹,𝐂 = EWI [𝜓],𝐂 (45)
𝛹,𝐂𝐂 = EWI [𝜓],𝐂𝐂 (46)

end
𝐒 = 2𝛹,𝐂
𝜎𝑖𝑗 = 2𝐽−1𝐹𝑖𝐼𝐹𝑗𝐽 (𝛹,𝐂)𝐼𝐽
C = 4𝛹,𝐂𝐂

return 𝛹 , 𝜎𝑖𝑗 , C
Algorithm 1: EWI: Pseudo-code for 𝑛-point rule. For the sake of simplicity in writing we set 𝛹 = E [𝜓] in this example, i.e.
neglect 𝜈 and 𝛹𝑟0 in Eq. (64).

unction GI ( 𝑛, 𝐅, 𝜓 , 𝜓 ′, 𝜓 ′′ )
compute 𝜇1 and �̄�2 (Section 2.5)
if �̄�2 < 𝐭𝐨𝐥 then

𝛹 = 𝜓(𝜇1)
𝛹,𝐂 = 𝜓 ′(𝜇1) 𝐈
𝛹,𝐂𝐂 = 𝜓 ′′(𝜇1)H2 , H2 = (𝐈⊗ 𝐈 + 2 𝐈⊠ 𝐈)∕15

else
compute {𝑐𝑘} (34), {𝑐𝑘,𝐂} and {𝑐𝑘,𝐂𝐂}
compute 𝖬 (55), 𝖬𝛼𝛽,𝐶𝑖𝑗 , 𝖬𝛼𝛽,𝐶𝑖𝑗𝐶𝑘𝑙
diagonalise 𝖬 and obtain 𝖵, 𝖵−1 and {�̄�𝑘} (12)
compute {𝖯𝑘} (15) and {(𝖯𝑘)𝛽𝛼,𝑀𝛾𝛿

} (17)
compute {𝑥𝑘,𝐂} and {𝑥𝑘,𝐂𝐂} (56)
compute �̄�, �̄�,𝐶𝑖𝑗 , �̄�,𝐶𝑖𝑗𝐶𝑘𝑙 , 𝖶, 𝖶−1 (57), (58)
assemble 𝖷 (59) and 𝖸 (61) from 𝖶
determine {𝑤𝑘} from 𝗐 (57)
compute 𝖶,𝐶𝑖𝑗𝗐 (60)
determine {𝑤𝑘,𝐶𝑖𝑗 } from 𝗐,𝐶𝑖𝑗 (59)
compute 𝖶,𝐶𝑖𝑗𝗐,𝐶𝑘𝑙 , 𝖶,𝐶𝑘𝑙𝗐,𝐶𝑖𝑗 (62) and 𝖶,𝐶𝑖𝑗𝐶𝑘𝑙𝗐 (63)
determine {𝑤𝑘,𝐶𝑖𝑗𝐶𝑘𝑙} from 𝗐,𝐶𝑖𝑗𝐶𝑘𝑙 (61)
𝛹 = GI [𝜓]
𝛹,𝐂 = GI [𝜓],𝐂 (36)
𝛹,𝐂𝐂 = GI [𝜓],𝐂𝐂 (37)

end
𝐒 = 2𝛹,𝐂
𝜎𝑖𝑗 = 2𝐽−1𝐹𝑖𝐼𝐹𝑗𝐽 (𝛹,𝐂)𝐼𝐽
C = 4𝛹,𝐂𝐂

eturn 𝛹 , 𝜎𝑖𝑗 , C
lgorithm 2: GI: Pseudo-code for 𝑛-point rule. For the sake of simplicity in writing we set 𝛹 = E [𝜓] in this example, i.e. neglect
and 𝛹𝑟0 in Eq. (64).
10
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5.1.3. Spherical cubature
Using spherical cubature (19) to approximate the averaged chain free energy, the related network free energy 𝛹𝑟 (18) can be

efined as [cf. e.g. 23,39,40]

𝛹𝑟 = 𝜈 E [𝜓] ≈ 𝜈 SC [𝜓] = 𝜈
𝑛
∑

𝑘=1
𝜓(𝐂 ∶ 𝑵𝑘 ⊗𝑵𝑘)𝑤𝑘 (65)

ith pairs of integration points and weights {𝑵𝑘, 𝑤𝑘}.
As a consequence the stress and elasticity tensors for an unconstrained material (1) follow as

𝐒 ≈ 2𝜈 SC [𝜓],𝐂 = 2𝜈
𝑛
∑

𝑘=1
𝜓 ′(𝐂 ∶ 𝑵𝑘 ⊗𝑵𝑘)𝑵𝑘 ⊗𝑵𝑘𝑤𝑘 (66)

and

C ≈ 4𝜈 SC [𝜓],𝐂𝐂 = 4𝜈
𝑛
∑

𝑘=1
𝜓 ′′(𝐂 ∶ 𝑵𝑘 ⊗𝑵𝑘)𝑵𝑘 ⊗𝑵𝑘 ⊗𝑵𝑘 ⊗𝑵𝑘𝑤𝑘. (67)

In this paper, spherical cubature will be used to define a numerical ground truth for the macroscopic energy 𝛹 and the associated
stress measures (1). Therefore we selected a highly accurate Lebedev scheme, i.e. SC 5810-131, which with 𝑛 = 5810 points exactly
integrates spherical polynomials (in 𝑥, 𝑦, 𝑧) up to order 131 [41,42].

5.1.4. Taylor expansion of the integrand
Itskov et al. [27] proposed to expand the chain free energy into a (truncated) Taylor series, which leads to a moment series, viz.

𝛹 = 𝜈 E [𝜓] ≈ 𝜈 TE [𝜓] = 𝜈 E

[ 𝑛
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓
𝜕𝛬𝑘

(𝛬∗)(𝛬 − 𝛬∗)𝑘
]

= 𝜈
𝑛
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓
𝜕𝛬𝑘

(𝛬∗)𝜇∗𝑘 , (68)

where 𝜇∗𝑘 = E
[

(𝛬 − 𝛬∗)𝑘
]

are the moments of the square stretch distribution with respect to 𝛬∗. In particular for 𝛬∗ = 𝜇1 these
oments become the central moments, i.e. 𝜇∗𝑘 = �̄�𝑘 = E [𝛬], for which we provided the first 30 in Appendix A (Table A.1), and a

losed form derivation to obtain terms up to arbitrary 𝑛 can be found in [9]. For other choices of 𝛬∗ the moments can be related
o the central moments with help of the binomial formula as [cf. e.g. 27]

𝜇∗𝑘 = E
[

(𝛬 − 𝜇1 + 𝜇1 − 𝛬∗)𝑘
]

= E

[

∑

𝑖+𝑗=𝑘

(

𝑘
𝑖, 𝑗

)

(𝛬 − 𝜇1)𝑖(𝜇1 − 𝛬∗)𝑗
]

=
∑

𝑖+𝑗=𝑘

(

𝑘
𝑖, 𝑗

)

�̄�𝑖 (𝜇1 − 𝛬∗)𝑗 . (69)

he stress and tangent tensors for an unconstrained material (1) can be deduced as

𝐒 ≈ 2𝜈 TE [𝜓],𝐂 = 2𝜈
𝑛
∑

𝑘=0

[

𝜓 ′(𝛬∗)𝜇∗𝑘 𝛬
∗
,𝐂 + 𝜓(𝛬∗)𝜇∗𝑘,𝐂

]

(70)

nd

C ≈ 4𝜈 TE [𝜓],𝐂𝐂 = 4𝜈
𝑛
∑

𝑘=0

[

𝜓 ′′(𝛬∗)𝜇∗𝑘 𝛬
∗
,𝐂 ⊗𝛬∗

,𝐂 + 𝜓 ′(𝛬∗)𝛬∗
,𝐂⊗

s𝜇∗𝑘,𝐂 + 𝜓 ′(𝛬∗)𝜇∗𝑘 𝛬
∗
,𝐂𝐂 + 𝜓(𝛬∗)𝜇∗𝑘,𝐂𝐂

]

, (71)

here the abbreviation 𝐀⊗s 𝐁 = 𝐀⊗ 𝐁 + 𝐁⊗ 𝐀 was used. For the special case 𝛬∗ = 𝜇1 one has 𝛬∗
,𝐂 = 𝐈∕3 and 𝛬∗

,𝐂𝐂 = O as well
s 𝜇∗𝑘,𝐂 = �̄�𝑘,𝐂 and 𝜇∗𝑘,𝐂𝐂 = �̄�𝑘,𝐂𝐂. Other choices of 𝛬∗ require an individual approach to determine 𝛬∗

,𝐂 and 𝛬∗
,𝐂𝐂. For example,

ollowing Itskov et al. [27], we will also use 𝛬∗ = 𝛬1∕2, i.e. half the squared first principal stretch, in the present work. In this case

𝛬∗
,𝐂 =

𝐏1
2
, 𝛬∗

,𝐂𝐂 =
𝐏1,𝐂
2
. (72)

In any case, once 𝛬∗
,𝐂 and 𝛬∗

,𝐂𝐂 are defined, the derivatives of the corresponding moments 𝜇∗ can be obtained from Eq. (69) as

𝜇∗𝑘,𝐂 =
∑

𝑖+𝑗=𝑘

(

𝑘
𝑖, 𝑗

)

[

(𝜇1 − 𝛬∗)𝑗 �̄�𝑖,𝐂 + �̄�𝑖 𝑗(𝜇1 − 𝛬∗)𝑗−1
( 𝐈
3
− 𝛬∗

,𝐂

)]

(73)

nd

𝜇∗𝑘,𝐂𝐂 =
∑

𝑖+𝑗=𝑘

(

𝑘
𝑖, 𝑗

) [

𝑗(𝜇1 − 𝛬∗)𝑗−1 �̄�𝑖,𝐂⊗s
( 𝐈
3
− 𝛬∗

,𝐂

)

+ (𝜇1 − 𝛬∗)𝑗 �̄�𝑖,𝐂𝐂

+ �̄�𝑖 𝑗(𝑗 − 1)(𝜇1 − 𝛬∗)𝑗−2
( 𝐈
3
− 𝛬∗

,𝐂

)⊗2
− �̄�𝑖 𝑗(𝜇1 − 𝛬∗)𝑗−1 𝛬∗

,𝐂𝐂

]

.

(74)

.2. Entropy elastic models of non-Gaussian chains

The integration methods are compared for four different variants of the entropy-elastic model that provides the relation between
he end-to-end stretch 𝜆 of a non-Gaussian long chain molecule and the force 𝑓 at its ends.
11
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Fig. 1. Rounded Padé [31] and Taylor-series approximations of the inverse Langevin model: Chain free energy (a) and its derivative (b) with respect to 𝛬, based
on Eqs. (78) and (80). The ‘exact’ result in (b) was computed based on Eq. (75), using 𝑓 (𝜆) = 𝜓 ′(𝜆2) 2𝜆, i.e. 𝜓 ′(𝜆(𝑓 )2) = 1∕(2 𝜆(𝑓 ))𝑓 , and subsequently plotting
ts integral 𝜓 = ∫ 𝜓 ′𝑑𝜆 as a function of 𝑓 and 𝜆(𝑓 ) in (a).

.2.1. Rounded Padé-approximation of inverse Langevin function
The most common model to represent the relation between the end-to-end stretch 𝜆 of a non-Gaussian long chain molecule and

orce 𝑓 at its ends is due to Kuhn and Grün [43] and can be expressed as [cp. 29, Eq. 6.10]

𝑓 (𝜆) =
𝑘B𝛩
𝑙

L −1

(

𝜆
√

𝑁

)

, (75)

where 𝛩 stands for the absolute temperature, 𝑘B is Boltzmann’s constant, and L −1(⋅) denotes the inverse of the Langevin function

L (𝑥) = coth(𝑥) + 1
𝑥
. (76)

Since there is no exact closed form expression for the inverse L −1(𝑥) of L (𝑥), different approximations of this inverse have been
used.

As a first example we will use the rounded Padé-approximation by Cohen [31]

L −1(𝑥) ≈ 𝑥3 − 𝑥
2

1 − 𝑥2
. (77)

Inserting this approximation into Eq. (75), the free energy 𝜓(𝛬) (per initial end-to-end length) of the chain follows by the integration
[cf. 27, Eq. 25]

𝜓(𝛬) ∶= ∫

√

𝛬

0
𝑓Pade(𝜆) d𝜆 =

𝑘B𝛩
𝑙

√

𝑁
( 1
2
𝛬
𝑁

− ln
(

1 − 𝛬
𝑁

))

, (78)

where 𝛬 = 𝜆2 is the square stretch. The total free energy of the chain is obtained by multiplication with the initial end-to-end length
0 =

√

𝑁 𝑙. The model is illustrated in Fig. 1.

5.2.2. Taylor approximation of inverse Langevin function
Another classical method to approximate the non-Gaussian chain behaviour is a Taylor series expansion [cf. 29]. We here compare

with the Taylor series expression for the inverse Langevin function of order 59 [44]

L −1(𝑥) ≈
59
∑

𝑘=0
𝐶𝑘𝑥

𝑘 =
29
∑

𝑘=0
𝐶2𝑘+1𝑥

2𝑘+1, (79)

and we refer to Tab. 2 in Itskov et al. [44] for the non-zero Taylor coefficients 𝐶2𝑘+1. Inserting this approximation into Eq. (75),
the corresponding (end-to-end length specific) free energy follows as [cp. 27, Eq. 18]

𝜓(𝛬) ∶= ∫

√

𝛬

0
𝑓Taylor (𝜆) d𝜆 =

𝑘B𝛩
𝑙

√

𝑁
29
∑

𝑘=0
𝐶2𝑘+1

1
2𝑘 + 2

( 𝛬
𝑁

)𝑘+1
, (80)
12

illustrated in Fig. 1, and we note that this expression is analytic on C.
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Fig. 2. Closed-form solution and Taylor-series approximation of Ilg model [32]: Chain free energy (a) and its derivative (b) with respect to 𝛬, based on Eqs. (82)
and (83).

5.2.3. Closed form representation of model by Ilg et al. [32]
Another model for the non-Gaussian theory of rubber elasticity was proposed by Ilg et al. [32] and has been used in [45,46]. In

this model the force 𝑓 in a polymer chain is related to its end-to-end stretch 𝜆 as [32]

𝑓 (𝜆) = 9
𝜋2

𝑘B𝛩
𝑙

(
√

𝑁
𝜆

− 𝜋 cot

(

𝜋 𝜆
√

𝑁

))

, (81)

which is associated to the chain free energy [cf. 45–47]

𝜓(𝛬) = ∫

√

𝛬

0
𝑓 (𝜆) d𝜆 = 9

𝜋2
𝑘B𝛩
𝑙

√

𝑁 ln

⎛

⎜

⎜

⎜

⎜

⎝

𝜋
√

𝛬
𝑁

sin
(

𝜋
√

𝛬
𝑁

)

⎞

⎟

⎟

⎟

⎟

⎠

, (82)

and 𝛬 = 𝜆2 is the squared stretch.

.2.4. Taylor approximation of model by Ilg et al. [32]
Since EWI for 𝑛 > 3 requires 𝜓 to be complex analytic, a truncated Taylor series of the model (81) was considered in addition

to the closed form expression (82). Given the expansion ln(𝑥∕ sin(𝑥)) =
∑∞
𝑘=1 𝐶𝑘𝑥

2𝑘, the substitution 𝑥2 = 𝜋2𝛬∕𝑁 and consideration
f terms up to 𝑘 = 34 leads to

𝜓(𝛬) = 9
𝜋2

𝑘B𝛩
𝑙

√

𝑁
34
∑

𝑘=1
𝐶𝑘𝜋

2𝑘
( 𝛬
𝑁

)𝑘
(83)

ith coefficients 𝐶𝑘 provided in Appendix C (Table C.2). Both the exact model (82) and its approximation (83) are illustrated in
ig. 2.

.3. Material properties

With 𝜈 (dimension per area) reflecting the chain ‘density’ (total chain end-to-end initial length per referential network volume),
q. (18) provides the network strain–energy density 𝛹 . In order to compare the results with those obtained for the Taylor-series
ased model in Itskov et al. [27], we choose the material parameters corresponding to an example therein, and set 𝑛 = 25 and
𝑘B𝛩∕(𝑙

√

𝑁) =∶ 𝐶𝑅 = 0.3MPa. In addition, we assumed that the resulting rubber-like material was hyperelastic, isotropic and
incompressible. Due to the latter property, the stress and elasticity tensors contain additional contributions related to the kinematic
constraint [see e.g. 48]. For the 2nd Piola–Kirchhoff stress in particular, we modify Eq. (1), so that

𝐒 = 2 𝜕�̂�
𝜕𝐂

− 𝑝𝐂−1, (84)

where 𝑝 is the hydrostatic pressure determined from the stress boundary conditions.
13
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5.4. Load cases

The load cases of uniaxial tension and equibiaxial tension were studied and the non-Gaussian chain free energy 𝜓 for each of
the entropic chain models provided in Section 5.2 was integrated by means of the methods presented in Section 5.1, respectively.
Due to the isotropy of the material, we note that the corresponding kinematic states are characterised by uniaxial and equibiaxial
extension with corresponding contraction in the unconstrained directions, respectively. These states are of particular interest to
test the quadrature rules. When introducing a normalised representation of square stretch (Supplementary Information, Sec. 1) such
that the mid-eigenvalue of 𝐂, 𝛬2, is normalised to 𝛬n

2 = (𝛬2 −𝛬3)∕(𝛬1 −𝛬3), it is observed that these states represent the limit cases
of 𝛬n

2 = 0 and 𝛬n
2 = 1 (cf. Supp. Figs. 1 and 2). Specifically, due to the assumed isotropy and incompressibility, the deformation

gradient corresponding to uniaxial tension is described by

𝐅UA = 𝜆𝑥𝒆1 ⊗ 𝒆1 + 𝜆
−1∕2
𝑥 𝒆2 ⊗ 𝒆2 + 𝜆

−1∕2
𝑥 𝒆3 ⊗ 𝒆3 (85)

varying 𝜆𝑥 ∈ [1,
√

𝑁). The corresponding 1st Piola–Kirchhoff stress reads

𝐏UA = 𝑃11𝒆1 ⊗ 𝒆1, (86)

since in 𝑦- and 𝑧-direction 𝑃22 = 𝑃33 = 0. Similarly, the deformation gradient corresponding to equibiaxial tension is described by

𝐅EB = 𝜆𝑥𝑦𝒆1 ⊗ 𝒆1 + 𝜆𝑥𝑦𝒆2 ⊗ 𝒆2 + 𝜆−2𝑥𝑦 𝒆3 ⊗ 𝒆3 (87)

nd varying 𝜆𝑥𝑦 ∈ [1,
√

𝑁). The 1st Piola–Kirchhoff tensor is

𝐏EB = 𝑃11𝒆1 ⊗ 𝒆1 + 𝑃22𝒆2 ⊗ 𝒆2, (88)

here 𝑃11 = 𝑃22, and since in 𝑧-direction one has 𝑃33 = 0.
For each state of deformation 𝐅UA as well as 𝐅EB for a series of 𝜆𝑥, respectively 𝜆𝑥𝑦, between 1 and 5 the work-related part of the

econd Piola–Kirchhoff tensor 𝐒 is computed with the integration methods in Section 5.1. Specifically, the work-related constitutive
art 𝐒c of 𝐒 is given by

𝐒c = 2 𝜕𝛹
𝜕𝐂

= 2𝜈 E [𝜓],𝐂 , (89)

where E [𝜓],𝐂 is to be replaced with GI [𝜓],𝐂 for the GI method EWI [𝜓],𝐂 for the EWI method SC [𝜓],𝐂 for the spherical cubature and
inally TE [𝜓],𝐂 for the method using a Taylor expansion of the integrand. Notably, the EWI methods, due to the complex numbers
nvolved, requires the chain strain–energy function to be analytic in C. Consequently the EWI method is only applied to the Taylor
pproximations (80) and (83) while the other methods are also applied to the rounded Padé approximation (78) and the closed
orm model by Ilg et al. [32] (82). Finally, in view of the boundary conditions, the first Piola–Kirchhoff stress tensor for the special
ases (86) and (88) is deduced as

𝐏∗ = 𝐅∗𝐒c − (𝐅∗𝐒c𝐅T
∗ ∶ 𝒆3 ⊗ 𝒆3)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝

𝐅−T
∗ , (90)

here the subscript ∗ may be replaced by UA and EB.

. Results and discussion

The proposed quadratures and benchmark methods were applied to evaluate the response of the non-Gaussian full network
odel under uniaxial and biaxial loads, obtained with one of the different representations of the entropy elastic chain behaviour as
escribed in Section 5.

.1. Response in simple and equibiaxial tension

Figs. 3 and 4 show the first Piola–Kirchhoff stress 𝑃11 in uniaxial and equibiaxial tension of the inverse Langevin model, using
ither the rounded Padé approximation (78) or the Taylor-series approximation (80), respectively. We remind that both the TE and
WI method rely on the Taylor series of the integrand, while GI can be applied to the function itself. TE and EWI hence strictly
ead to the network free energy of chains whose free energy is a polynomial. Figs. 5 and 6 illustrate the corresponding results for
he closed form (82) and the Taylor approximation (83) of the model by Ilg et al. [32].

The results presented in Figs. 3 and 5, and the first rows of Figs. 4 and 6, illustrate that GI represents an accurate method
or computing the network response based on very few function evaluations, i.e. 3 or 4 in the shown GI 3-5 or GI 4-7 schemes,
espectively, even for rational function’s as Cohen’s rounded Padé approximant to the inverse Langevin function. The results of
he EWI method applied to the complex analytic Taylor series approximations of the inverse Langevin function and Ilg model,
espectively, are shown in the second rows of Figs. 4 and 6 and are less accurate. Specifically in the equibiaxial case (d panels
f Figs. 4 and 6) the shown odd EWI methods (EWI 3, 5 and 7) start deviating from the ground truth close to the extension limit
= 5, leading to a drastic underestimation of the ground truth, while the even ones (EWI 4,6 and 8) overestimate it. This behaviour

an be explained through the positions of the integration points (Supp. Figs. 1 and 2): For equibiaxial extension, i.e. 𝛬 = 𝛬 and
14
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(
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Fig. 3. Full network based on rounded Padé approximation. Non-zero components of first Piola–Kirchhoff stress in case of uniaxial (a) and equibiaxial tension
b) (cf. Section 5.4). SC 5810-131: spherical integration ground truth, GI-𝑋-𝑌 : Gauss integration of order 𝑌 with 𝑋 points, TE: Taylor series expansion (with
xpansion points), cf. Section 5.1.

Fig. 4. Full network based on Taylor approximation of inverse Langevin model. Non-zero components of first Piola–Kirchhoff stress in case of uniaxial (a,c)
and equibiaxial tension (b,d) (cf. Section 5.4). For the integration methods (see labels) cf. Section 5.1. GI-𝑋-𝑌 : Gauss integration of order 𝑌 with 𝑋 points, TE:
Taylor series expansion (with expansion points), EWI-𝑌 : Equal weights integration with 𝑌 points.

thus 𝛬n
2 = 1, the largest real part among the integration points is outside the range [𝛬3, 𝛬1], and in fact > 𝛬1. For even 𝑛, the

corresponding imaginary parts are zero, so that the chain free energy function is evaluated at 𝛬 > 𝛬1, and given the extremely steep
ascent of the series expansion of 𝜓 near the theoretical locking stretch, this leads to an overestimation of the integral. For the odd
EWI methods this analysis is more subtle, since the imaginary part of the integration point with highest real part in non-zero. The
underestimation can thus only be explained when considering the complex analytic function representing 𝜓 in the complex plane.
15
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Fig. 5. Full network based on closed form Ilg model [32]. Non-zero components of first Piola–Kirchhoff stress in case of uniaxial (a) and equibiaxial tension
b) (cf. Section 5.4). SC 5810-131: spherical integration ground truth, GI-𝑋-𝑌 : Gauss integration of order 𝑌 with 𝑋 points, TE: Taylor series expansion (with
xpansion points), cf. Section 5.1.

Fig. 6. Full network based on Taylor approximation of Ilg model. Non-zero components of first Piola–Kirchhoff stress in case of uniaxial (a,c) and equibiaxial
ension (b,d) (cf. Section 5.4). For the integration methods (see labels) cf. Section 5.1. GI-𝑋-𝑌 : Gauss integration of order 𝑌 with 𝑋 points, TE: Taylor series

expansion (with expansion points), EWI-𝑌 : Equal weights integration with 𝑌 points.

To this end, Fig. 7a shows the complex continuation of 𝜓 based on a Taylor approximation of the Langevin model for equibiaxial
extension, together with the positions of the 5 integration points used to determine E [𝜓] at 𝜆𝑥𝑦 = 4.95 in the EWI 5 method. Since
𝜓 is at a maximum on the real axis (𝑦 = 0), the evaluation of 𝜓 for 𝑥 + 𝑖𝑦 with 𝑦 ≠ 0 leads to Re(𝜓(𝑥 + 𝑖𝑦)) < 𝜓(𝑥) in the present
example. The strong non-linearity of the function for high stretches thus leads to an underestimation of the result. Fig. 7b shows
the curves for Re(𝜓(𝑧𝑘)) for all 5 integration points over the whole stretch range of the equibiaxial experiment, and indicates again
16
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Fig. 7. Complex analytic 𝜓 (Taylor approximation of inv. Langevin model) and integration points of the EWI method: (a) complex continuation (blue surface)
f integrand 𝜓 (orange) and location of the integration points (red) of the EWI 5 method for equibiaxial stretch 𝜆𝑥𝑦 = 4.95. (b) evolution of Re(𝜓) for the 5
ntegration points {𝑧𝑘} for equibiaxial tension from 𝜆𝑥𝑦 = 1 to 𝜆𝑥𝑦 = 5. The curves for the minimum and maximum principal stretch are shown as dash-dotted
nd dotted lines, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Convergence study (Full network based on Taylor approximation of inv. Langevin model): (a) uniaxial tension for 𝜆𝑥 = 4.95 and (b) equibiaxial tension
for 𝜆𝑥𝑦 = 4.95. SC 5810-131: ground truth, GI-𝑋-𝑌 : Gauss integration of order 𝑌 with 𝑋 points, TE: Taylor series expansion (with expansion points), EWI-𝑌 :
Equal weights integration with 𝑌 points.

The Taylor approximation as a polynomial intrinsically fails to capture the asymptotic behaviour of the non-Gaussian chain free
energy as the end-to-end stretch approaches the locking value 𝜆 →

√

𝑁 . Interestingly, however, the overestimation of the series’
integral of the even EWI methods (d panels of Figs. 4 and 6) leads to a better approximation of the extensibility limit than the
ground truth in equibiaxial tension, although they can clearly not exactly reproduce the asymptotic behaviour.

6.2. Quadrature errors

To investigate the reduction of the integration errors with the use of an increasing number of statistical moments 𝑛, we studied
the nominal stress close to the extensibility limit, at 𝜆 ≈ 0.99 𝜆lim = 4.95, for polynomial degrees from 𝑚 = 3 to 𝑚 = 20 (Fig. 8). The
Taylor expansion methods (TE) with different expansion points are also added for comparison.

Both proposed methods (GI and EWI) closely approximate the ground truth for large 𝑛. For the GI method, the error decreases
monotonically and very rapidly. For the EWI method, this monotonicity is observed only when considering the even and odd methods
separately, and for 𝑛 ≥ 7.

We remind that the GI method needs to compute the weights {𝑤𝑘}, and additionally their derivatives with respect to 𝐂 when
stress and stiffness are required, and is hence slightly more expensive than the EWI method, for which {𝑤𝑘} are constants. In view
of accuracy, however, the GI method generally outperforms all other methods in these graphs. Merely the EWI 3 method is more
accurate than the GI 2-3 method (both with max. polynomial degree 𝑚 = 3) in both the uniaxial and equibiaxial case. Taking the
uni- and equibiaxial cases together, both methods generally lead to smaller errors than the TE method based on the same amount
of information through the statistical moments. With increasing accuracy required, the rapid ‘convergence’ of GI suggests to use the
somewhat more expensive Gauss method.
17
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6.3. Comparison with TE method

The here proposed methods share some properties with the TE method, proposed by Itskov et al. [27] and recently discussed
n the light of stretch statistical models [9]. In fact, both methods are free of induced anisotropy by construction [cf. e.g. 40], and
elate the chain stretch to the macroscopic deformation through the moments of the affine stretch distribution, which are (mixed)
olynomials of the principal invariants. While GI and EWI for 𝑛 ≤ 3 do not pose restrictions on 𝜓 , EWI with 𝑛 > 3 requires 𝜓 to

be complex analytic, the 𝑛th order Taylor expansion method TE 𝑛 needs analytic integrands over the stretch range considered, or
unctions that are at least 𝑛 + 2 times continuously differentiable if the stiffness tensor is to be continuous. Noteworthy, the new
pproaches only require the fibre energy to be twice continuously differentiable in order to compute continuous stress and tangent
ensors.

Itskov et al. [27] showed that the radius of convergence of the TE method can be adjusted by an appropriate choice of the
xpansion point, which adds the complexity of defining the latter adequately. While this adaptability might actually be seen as an
dvantage, it is associated with additional computational cost. For example, we noted that the TE 10 method with 𝛬0 = 𝜇1 was much
aster than with 𝛬0 = 𝛬1∕2, and this is explained by the need for recalculating the moments with respect to 𝛬1∕2 and determining
he eigenprojections of 𝐂 as well as their derivatives with respect to 𝐂 in this case (cf. Section 5.1).

. Summary and conclusions

In the present work we proposed methods to integrate the free energy 𝜓 of a single fibre or chain towards computing the total
train–energy density 𝛹 = �̂� (𝐂) of a set or network of these elements, changing with macroscopic deformation expressed in 𝐂. This
roblem is typical for what is called the ‘structural approach’ in biomechanics or ‘full network model’ in rubber-elasticity. A recently
roposed method (GI) based on univariate Gauss quadrature was generalised towards numerically integrating functions up to an
rbitrary polynomial degree, and a new, simpler but typically less accurate method (EWI) was proposed that uses a constant set of
qual integration weights. The basis for both models is provided by the authors’ recent reinterpretation of the averaging operation
n terms of the statistics of stretch within the network.

Both methods are relatively straightforward with regard to their implementation and use standard tools of linear algebra, even
f the EWI method with 𝑛 > 3 requires complex number operations. We note that the numerical strategies elaborated in the present
ork may serve as a template to incorporate other moment-based quadrature schemes than Gauss or equal weights-type quadratures
laborated here. Moreover, the moments to inform these approaches are not limited to the isotropic affine moments used here. It is
ossible to, e.g., employ the moments of affinely deforming anisotropic materials, to which we previously applied a fully analytical
ersion of the GI 3-5 method [14].

Compared to existing methods the approaches have the benefit of not inducing spurious anisotropy by construction, and (when
imiting to 𝑛 ≤ 3 for EWI) pose little restrictions on the properties of the integrand 𝜓 . In fact, 𝑚-continuity is sufficient to compute
ontinuous network energy density (𝑚 = 0), stress (𝑚 = 1) and tangent tensors (𝑚 = 2).

We here applied the methods to the affine isotropic full network model of rubber-elasticity based on different implementations
f the entropy-elastic constitutive model for the single long chain molecules. Particularly in this application, the mentioned low
equirements imposed on the integrand allow applying the GI 𝑛 and EWI (𝑛 ≤ 3) methods directly to models that reflect limited-

chain extensibility, and not to Taylor-series thereof, which clearly lack the asymptotic behaviour intrinsic to these models. When
increasing 𝑛 the GI method approached the ground-truth strikingly fast and actually outperformed the other methods in all test
cases considered here. EWI (𝑛 > 3) includes conjugate complex pairs of integration points and hence requires complex analytic
approximations or representations for 𝜓 . However, given that EWI is computationally simpler than the GI method in that it omits
the computation of the integration weights, our results indicate that particularly the even-𝑛 variants may still be used as effective
models to represent the affine full network non-Gaussian chains.

Finally, we note that an additional perspective on the new models can be obtained by consideration of the integration points as
the square stretches of a finite set of chains. By this means GI 𝑛 and EWI (𝑛 ≤ 3) can be interpreted as particular families of 𝑛-chain
models, i.e. models that evaluate the chain network energy as the sum of free energies provided by 𝑛 representative chains (see
Supplementary Information, Sec. 2).

Altogether, we presented two promising numerical methods to compute averaged constitutive functions of random fibre or chain
networks up to arbitrary polynomial accuracy. Although these methods have here been showcased to represent serious alternatives
to existing approaches in the particular field of non-Gaussian rubber-elasticity, we anticipate that they may prove useful to address
problems beyond this application.
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Table A.1
Isotropic affine moments.
𝑛 �̄�𝑛

0 1

1 0

2 4𝐴
45

3 16𝐵
945

4 16𝐴2

945

5 128𝐴𝐵
18711

6 320𝐴3

81081
+ 512𝐵2

729729

7 256𝐴2𝐵
104247

8 256𝐴(63𝐴3+32𝐵2)
15949791

9 4096𝐵(189𝐴3+8𝐵2)
909138087

10 1024𝐴2(81𝐴3+80𝐵2)
303046029

11 20480𝐴𝐵(243𝐴3+32𝐵2)
17108325819

12 45056𝐴6

586705275
+ 131072𝐴3𝐵2

1056069495
+ 524288𝐵4

256624887285

13 32768𝐴2𝐵(297𝐴3+80𝐵2)
98701879725

14 16384𝐴(34749𝐴6+83160𝐴3𝐵2+4480𝐵4)
25761190608225

15 458752𝐵(34749𝐴6+15840𝐴3𝐵2+128𝐵4)
479158145312985

16 65536𝐴2(47385𝐴6+157248𝐴3𝐵2+17920𝐵4)
479158145312985

17 2097152𝐴𝐵(47385𝐴6+32760𝐴3𝐵2+896𝐵4)
8878518574917075

18 57933824𝐴9

30041626636665
+ 109051904𝐴6𝐵2

12874982844285
+ 1744830464𝐴3𝐵4

1042873610387085
+ 1073741824𝐵6

140787937402256475

19 1048576𝐴2𝐵(61965𝐴6+60480𝐴3𝐵2+3584𝐵4)
17289746698522725

20 1048576𝐴(2119203𝐴9+11897280𝐴6𝐵2+3628800𝐴3𝐵4+57344𝐵6)
3827949919052931315

21 8388608𝐵(10596015𝐴9+13880160𝐴6𝐵2+1451520𝐴3𝐵4+4096𝐵6)
70543648508261162805

22 4194304𝐴2(14834421𝐴9+103605480𝐴6𝐵2+45239040𝐴3𝐵4+1576960𝐵6)
352718242541305814025

23 184549376𝐴𝐵(14834421𝐴9+25116480𝐴6𝐵2+4112640𝐴3𝐵4+40960𝐵6)
6486948547607493884025

24 124637937664𝐴12

2306997908512546725
+ 1907502350336𝐴9𝐵2

4152596235322584105
+ 30520037605376𝐴6𝐵4

112120098353709770835

+ 51402168598528𝐴3𝐵6

3027242655550163812545
+ 6047313952768𝐵8

190716287299660320190335

25 268435456𝐴2𝐵(20070099𝐴9+42661080𝐴6𝐵2+10112256𝐴3𝐵4+225280𝐵6)
38143257459932064038067

26 67108864𝐴(4515772275𝐴12+45920386512𝐴9𝐵2+35494018560𝐴6𝐵4+3505582080𝐴3𝐵6+23429120𝐵8)
18194333808387594546157959

27 3489660928𝐵(40641950475𝐴12+105970122720𝐴9𝐵2+34401894912𝐴6𝐵4+1386823680𝐴3𝐵6+1802240𝐵8)
3002065078383953100116063235

28 268435456𝐴2(916735725𝐴12+10985738400𝐴9𝐵2+10741610880𝐴6𝐵4+1549836288𝐴3𝐵6+23429120𝐵8)
47651826641015128573270845

29 2147483648𝐴𝐵(57754350675𝐴12+181264683600𝐴9𝐵2+77339598336𝐴6𝐵4+4981616640𝐴3𝐵6+23429120𝐵8)
7852692397152113774195219595

30 3580928983040𝐴15

2225555048554239196179
+ 64209761075200𝐴12𝐵2

2861427919569736109373
+ 5136780886016000𝐴9𝐵4

189634632124212511248447

+ 9205111347740672𝐴6𝐵6

1706711689117912601236023
+ 2286984185774080𝐴3𝐵8

15360405202061213411124207
+ 3659174697238528𝐵10

26128049248706124012322276107

Data availability

Data will be made available on request.
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ppendix A. Moments of the affine distribution

The first 30 central moments (23)2 of the affine stretch distribution for the case of an isotropic orientation distribution are
provided in Table A.1. For the first 10, cf. also [27].
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A

A

Appendix B. 1,2 and 3-point EWI rules

Equal weights quadrature rules with 1,2 or 3 points can be obtained analytically.
The case 𝑛 = 1, i.e. the 1-point integration rule provides an average stretch model [see e.g. 25,49] with 𝑧1 = 𝜇1. While in the

isotropic case this means 𝑧1 = 𝐼1∕3, we note that for an anisotropic fibre distribution one can set 𝑧1 = 𝜇1 = 𝐂 ∶ H1, where H1 is the
first even order structural tensor [see e.g. 9]. In any case, since the stretch random variable is bounded in [𝛬3, 𝛬1] the expectation
and therefore 𝑧1 must lie within the same range.

With two integration points (𝑛 = 2) placed at the negative and positive distance of the standard deviation from the expectation,
i.e. {𝑧1, 𝑧2} = {𝜇1 −

√

�̄�2, 𝜇1 +
√

�̄�2} exact integration of at most quadratic polynomials is possible. For 𝑛 = 3 Eq. (38) becomes the
3-point rule

E [𝜓] ≈ EWI [𝜓] = 1
3

3
∑

𝑘=1
𝜓(𝑧𝑘) (B.1)

and Eq. (42) provides the fundamental requirement for the 3 points {𝑧𝑘}, i.e.

�̄�1 + �̄�2 + �̄�3 = 0

�̄�21 + �̄�
2
2 + �̄�

2
3 = 3 �̄�2

�̄�31 + �̄�
3
2 + �̄�

3
3 = 3 �̄�3.

(B.2)

Hence in order to determine the relative positions {�̄�𝑘} in (B.2) we seek the roots of the characteristic polynomial, i.e. the solutions
of

�̄�3𝑘 − 1�̄�2𝑘 + 2�̄�𝑘 − 3 = 0, (B.3)

where the principal invariants {𝑙} follow from inserting the values for the main invariants {0, 3 �̄�2, 3 �̄�3} into (4). Eq. (B.3) has
either three real or one real and two complex conjugate roots. By virtue of Cardano’s formula one finds

𝑧𝑘 = 𝜇1 + �̄�𝑘 = 𝜇1 + 𝛼 cos
(

arccos(𝛽) + 2𝜋(𝑘 − 1)
3

)

=∶ 𝜇1 + 𝛼 cos(𝛾𝑘)
⏟⏟⏟

𝐶𝑘

, (B.4)

with

𝛼 =
√

2 �̄�2, 𝛽 =

√

2 �̄�3
�̄�3∕22

, (B.5)

where here and henceforth we assume �̄�2 ≠ 0. We emphasise, that given a stable problem, adding a small perturbation to �̄�2 to
enforce this restriction if needed per definition does not significantly affect the result [cf. e.g. 50]. We also note that if �̄�2 = 0, then
all eigenvalues {�̄�𝑘} vanish, i.e. 𝑧𝑘 = 𝜇1 for all 𝑘, and the problem simplifies to 1-point case. For an affine deformation and uniform
fibre orientation distribution, it can be shown that −1 < 𝛽 < 1, and thus the values {𝑧𝑖} are real and lie between the minimal and

aximal eigenvalue of 𝐂 (Supplementary Information, Sec. 1).
The quantities 𝑧𝑘,𝐂 and 𝑧𝑘,𝐂𝐂 essential for the calculation of stress and stiffness can be determined fully analytically. E.g. for

= 3

𝑧𝑘,𝐂 = 𝜇1,𝐂 + 𝐶𝑘 𝛼,𝐂 +
𝛼𝑆𝑘

3
√

1 − 𝛽2
𝛽,𝐂 , (B.6)

and

𝑧𝑘,𝐂𝐂 = 𝜇1,𝐂𝐂 + 𝐶𝑘 𝛼,𝐂𝐂 +
𝑆𝑘

3
√

1 − 𝛽2
(

𝛼,𝐂 ⊗ 𝛽,𝐂 + 𝛽,𝐂 ⊗ 𝛼,𝐂
)

+ 𝛼
3(1 − 𝛽2)

(

𝛽𝑆𝑘
√

1 − 𝛽2
−
𝐶𝑘
3

)

𝛽,𝐂 ⊗ 𝛽,𝐂 +
𝛼𝑆𝑘

3
√

1 − 𝛽2
𝛽,𝐂𝐂 , (B.7)

where 𝐶𝑘 = cos(𝛾𝑘) and 𝑆𝑘 = sin(𝛾𝑘), 𝛾𝑘 is defined in (B.4) and by the Pythagoras trigonometric identity 𝐶2
𝑘 + 𝑆

2
𝑘 = 1. It can be seen

hat these derivatives require 𝛽2 ≠ 1, which is always the case for an isotropic fibre distribution.

ppendix C. Taylor approximation of the model by Ilg et al. [32]

The coefficients 𝐶𝑘 up to 𝑛 = 34 specifying the truncated series (83) are given in Table C.2.

ppendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2024.116792.
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Table C.2
Coefficients for Taylor approximation of model by Ilg et al. [32].
𝑘 𝐶𝑘

1 1
6

2 1
180

3 1
2835

4 1
37800

5 1
467775

6 691
3831077250

7 2
127702575

8 3617
2605132530000

9 43867
350813659321125

10 174611
15313294652906250

11 155366
147926426347074375

12 236364091
2423034863565078262500

13 1315862
144228265688397515625

14 3392780147
3952575621190533915703125

15 6892673020804
84913182070036240111050234375

16 7709321041217
999843529136357459316262500000

17 151628697551
206217727884373725983979140625

18 26315271553053477373
374003596113598594556777315916808593750

19 308420411983322
45665884751355139750522260795703125

20 261082718496449122051
401608623445792776535968022567811132812500

21 3040195287836141605382
48463572986198162681964482985158015982421875

22 2530297234481911294093
417050475017283508793775993035543470869140625

23 103730628103289071874428
176412350932310924219767245054034888177646484375

24 5609403368997817686249127547
98247566481222599916472774115493109923894880078125000

25 39604576419286371856998202
7131469286438669111584090881309360354581359130859375

26 61628132164268458257532691681
113905772389167451778160622490149824318015626590576171875

27 116599854539539449685672495250764
2208792394707301724411023894955491303280368221468498779296875

28 354198989901889536240773677094747
68674929231152948351570820905536230579574801427724279785156250

29 11652912186052419567178865654349796
23095378700436736530633267070531834343911005720143675291748046875

30 2430466280967511144080609988159640492082982
49181663794104443979232802480706833748465053469684541875006283721923828125

31 3174344628151447365665300608362164168
655100416837888031691412620455635481165035677251875349650433349609375

32 106783830147866529886385444979142647942017
224516014858680986221280933282555392104881027307762719832196517578125000000

33 133872729284212332186510857141084758385627191
2864822079673825040901514897940676924481339671598430627310741025545318603515625

34 125235502160125163977598011460214000388469
27251958678560251634114349093498689338135960168526283176253481861267089843750
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