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ABSTRACT: Millions of chemicals have been designed; however, their product carbon footprints (PCFs) are largely unknown,
leaving questions about their sustainability. This general lack of PCF data is because the data needed for comprehensive
environmental analyses are typically not available in the early molecular design stages. Several predictive tools have been developed
to estimate the PCF of chemicals, which are applicable to only a narrow range of common chemicals and have limited predictive
ability. Here, we propose FineChem 2, which is based on a novel transformer framework and first-hand industry data, for accurately
predicting the PCF of chemicals. Compared to previous tools, FineChem 2 demonstrates significantly better predictive power, and
its applicability domains are improved by ∼75% on a diverse set of chemicals on the global market, including the high-production-
volume chemicals identified by regulators, daily chemicals, and chemical additives in food and plastics. In addition, through better
interpretability from the attention mechanism, FineChem 2 may successfully identify PCF-intensive substructures and critical raw
materials of chemicals, providing insights into the design of more sustainable molecules and processes. Therefore, we highlight
FineChem 2 for estimating the PCF of chemicals, contributing to advancements in the sustainable transition of the global chemical
industry.
KEYWORDS: life cycle assessment, sustainable chemistry, product carbon footprint, machine learning

1. INTRODUCTION
Chemicals are present in more than 90% of manufactured
goods and, thus, influence the environmental impacts of nearly
all sectors.1 In 2020, direct greenhouse gas (GHG) emissions
from the petrochemical sector, including energy supply,
amounted to 1.8 Gt CO2-equiv, equivalent to 4% of the
global GHG emissions, and indirect GHG emissions from
other industrial activities supplying inputs to the petrochemical
industry accounted for another 6%.2 As the production
capacity of the global chemical industry is expected to reach
nearly double that in 2017 by 2030, a timely sustainability
transition is crucial.3

To date, more than 250 million chemical substances have
been designed and registered in the Chemical Abstracts Service
database,4 among which over 300,000 have been industrial-
ized.5 Increasing efforts have been devoted to the design of
new, more sustainable chemicals to accelerate the sustainability
transition of the chemical industry.6 Among others, life cycle
assessment (LCA) has increasingly become a key method for

evaluating the environmental impacts of chemical products and
processes.7

However, the implementation of LCA in the chemical
industry has mostly been restricted to case studies of already
existing products and processes, with a particular focus on
basic chemicals,8 hindering the overall decarbonization efforts
of the chemical industry. This is owing to the fact that detailed
life cycle inventory data for LCA are usually not available due
to confidentiality issues or at the early design stage. Meanwhile,
the optimal time to minimize the environmental burden of
chemical production is in the early design stages of molecules
and synthesis routes. After the synthesis routes are
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implemented, improvements are significantly more expensive
and time-consuming to implement.9 In addition, because data
on many chemicals are scarce, sustainability studies usually
neglect or only crudely estimate the impacts of chemicals in
final products (e.g., chemical additives in food and plastics),
which affects the accuracy of LCA outcomes.10,11 Therefore,
accurately calculating the product carbon footprint (PCF) of
chemicals remains a major challenge in achieving more
sustainable chemistry and products.

Against this backdrop, several predictive LCA (pre-LCA)
tools were developed to fill this gap, for example, based on
similarities between characterized and noncharacterized
processes,12 molecular structures,13 process design and
simulation,14 or a hybrid approach.9 Among them, the
molecular structure-based approach has received the most
attention as a screening tool thanks to its simplicity and low
requirements for input data. In 2009, the first molecular
structure-based pre-LCA tool, FineChem13 was developed
based on artificial neural networks (ANNs) and basic
molecular descriptors to estimate the environmental impact
of chemicals. Subsequently, several other pre-LCA tools were
proposed based on machine learning (ML) algorithms and
mostly data from ecoinvent.15−20 For example, Sun et al.
developed a new ANN model based on data processing
strategies (ANN-DP) to enhance the predictive ability of the
model.15 Song et al. trained multilayer ANNs to rapidly
estimate the life cycle impacts of chemicals (rapid-ANN) and
highlighted the importance of understanding the applicability
domain (AD) of models.16 Calvo-Serrano et al. took molecular
descriptors, thermodynamic properties, and σ-profiles as ML
models’ input to predict the life cycle impacts of chemicals and
demonstrated that using additional thermodynamic descriptors
could improve the model performance.17,18 Kleinekorte et al.
integrated molecular and process descriptors to enable ML
models to distinguish the impacts of chemicals produced by
different processes.19 Zhu et al. developed an ANN model for
screening green chemical substitutes to replace trifluoroacetic
anhydride, a chemical used in the sitagliptin production
process.20

Despite their successful application in approximate PCFs of
some chemicals, these existing models exhibit low accuracy and
generative ability caused by the conventional ML algorithms
and narrow AD because of limited training data, which restricts
their application to basic chemicals with simple molecular
structures. In addition, lower-quality proxy data related to
chemical production has been widely used in ecoinvent,
leading to errors in the PCF calculation.21 The contamination
of proxy data is transmitted to these pre-LCA tools,
compromising their performance. Furthermore, while ML has
been successfully applied in many fields, interpretability
remains challenging for ML-based models.22,23 Previous tools
used Shapley additive explanations (SHAP)24 to identify the
critical molecular descriptors that are relevant to PCFs.
However, the detailed correlations between PCFs and
functional groups and substructures cannot be distinctly
quantified, which limits their application in the design of
more sustainable molecules. Therefore, a robust tool with
better accuracy, expansive AD, and better interpretability is
required to determine the PCF of all chemicals.

In this study, we aim to overcome the limitations of low
accuracy and limited applicability of previous pre-LCA tools by
designing FineChem 2, a new tool built on high-quality
chemical production data sets and the state-of-the-art trans-

former framework. We perform extensive evaluations on
different testing data sets to validate the accuracy and
robustness of FineChem 2. Based on our findings, we
anticipate that FineChem 2 will serve as a useful tool for
filling data gaps in guiding the design of sustainable molecules
and production processes.

2. METHODS AND MATERIALS
2.1. Data Set Construction. Deep learning relies on high-quality

data for accurate predictions. To obtain a comprehensive data set on
the PCF of chemicals, chemical production data sets from IDEA
v2.325 and ecoinvent v3.826 were integrated, together with first-hand
data from the industry. Noting that inappropriate proxy data are
commonly used within the ecoinvent database to fill data gaps and
significantly affect the data quality,21 an additional quality check was
performed. More specifically, the ecoinvent data sets that are
contaminated with direct proxy data or with major proxy use in
their educts were excluded.

The molecular structures of the chemicals were retrieved from
public databases, e.g., PubChem27 and ChEMBL,28 and stored in the
simplified molecular input line entry system (SMILES) format.
Subsequently, any chemicals below 80% purity or with metal ions,
mixtures, polymers, and inorganic chemicals were removed from the
data set. To demonstrate the diversity of the training data set, the
number of unique molecular scaffolds of chemicals in different data
sets was calculated according to the definition of the Murcko
scaffold.29

The PCF of the chemicals was calculated based on the indicator of
global warming, 100a, Intergovernmental Panel on Climate Change
(IPCC) 201330 using SimaPro.31 For the IDEA and ecoinvent data
sets, the carbon footprint was adjusted by integrating the
corresponding cradle-to-gate data sets from extraction of raw
materials (like oil or natural gas) to the manufactured chemical
product (e.g., ethylene). This includes the energy-related carbon
footprint contributions, which were obtained by calculating the
cradle-to-gate, cumulative electricity, and heat inputs along the
chemical manufacturing supply chains. Data sets across data sets and
data sources were harmonized by using the average chemical industry
electricity and heat carbon footprints. To ensure consistency with the
aggregated system process data sets in the supply chains of some
chemicals in ecoinvent, the electricity and heat carbon footprints were
based on the European chemical industry data. For electricity, the
cradle-to-gate carbon footprint was 0.16 kg CO2-equiv per MJ
electricity, whereas for heat, it was 0.071 kg CO2-equiv per MJ heat,32

to avoid biases due to individual modeling choices and to align with
the European black box data sets prevalent in the chemical supply
chains in ecoinvent. For multichemical production processes,
ecoinvent used economic allocation to allocate impacts, and IDEA
and the industry data sets used mass allocation. Data sets of solutions
were adjusted to 100% active ingredients. For chemicals that are
presented in more than one data source or presented more than once
in one data source because of different production processes, their
PCF values were averaged.

2.2. Construction of the FineChem 2 Model. Molecular
representations at the bond, atomic, and molecular levels were
extracted via graph neural networks.33 The molecular structures of
chemicals were considered as graphs G = (ν,ϵ). We used one-hot
vectors to represent categorical features of atoms and bonds, which is
a process of converting numerical variables to categorical data
variables and can make categorical data more expressive and ensure
that ML models do not assume that higher numbers are more
important.34 Each atom vi∈ν was represented by a one-hot vector,
representing its atom types, degrees, chirality, hybridization types,
number of hydrogen atoms attached, and aromaticity. Each bond
(vi,vj) ∈ ϵ was represented by a one-hot vector representing the bond
types, stereochemistry properties, and surrounding substructures. In
addition, to enhance the model’s predictive ability on small-scale data
sets, we calculated ∼200 molecular descriptors, including exact
weights and types of molecular fragments, using the RDKit and
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DescriptaStorus, a Python package designed for generating molecular
descriptors, and used those descriptors as model’s input. Interatomic
matrices, including adjacency, distance, and Coulomb matrices, were
also generated as the model inputs because they can potentially
represent functional groups that have been proven relevant to the
PCFs of chemicals (Figure 1).13

The atom-bond transformer framework was adopted to develop the
FineChem 2 model (Figure 1).35 Compared with conventional
algorithms, it has a unique feature that combines message-passing
neural networks with a self-attention mechanism, which has been
proven to have a better representation ability of molecules.35 To
enhance the representation of molecules, bond features were extracted
via message-passing layers and then updated in the self-attention
layers. In message-passing networks, each bond was initialized with
feature vectors, and each bond feature was updated by summing
neighboring hidden states from the previous iteration.36 Next, bond
message was processed by the multihead self-attention mechanism.37

The multihead self-attention block consisted of six heads, where each
head was composed of two layers. The first layer implemented the
self-attention mechanism,37 and the second layer was a fully

connected feed-forward network with rectified linear unit activation.38

Then, the atomic features were obtained by summing the bond
features, followed by the concatenation of the atom feature matrix and
a self-attention layer in the decoder that also consisted of six identical
heads. Subsequently, the adjacency, distance, and Coulomb matrices
were incorporated into the model to provide electrostatic and
structural characteristics of chemicals. Finally, the learned features
were aggregated and concatenated with precalculated molecular
descriptors for PCF estimation. The self-attention weights of all
decoder blocks were summarized and assigned to the atoms to
present the hidden knowledge that the model had learned to elucidate
important substructures.

Adaptive moment estimation was used for optimization, which is
an extension of stochastic gradient descent that is based on adaptive
estimation of the first and second moments.39 The models adopted
the adaptive moment estimation optimizer because it converges faster
than conventional optimizers. To improve the model performance, its
hyperparameters were optimized using the Bayesian optimization.40

Four hyperparameters of the model were optimized: message-passing
iteration [1, 10] (interval: 1), interatomic feature scaler [0, 0.5]
(interval: 0.05), dropout probability [0, 0.5] (interval: 0.05), and
hidden dimension [100, 3000] (interval: 50). The model was
constructed by using PyTorch 1.11.

2.3. ML Framework Evaluation. The data set was segregated
into training, validation, and test data sets at 80, 10, and 10%,
respectively, using two methods: random splitting and scaffold
splitting. The validation set was used to find the optimal hyper-
parameters, while the test set was used to test the model’s
performance. The segregation was repeated five times to demonstrate
the robustness of the deep learning model. Root-mean-square error
(RMSE) and mean and median absolute percentage errors (PEs)
were employed to evaluate the performance of the ML models.
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To evaluate the improvement of FineChem 2 in comparison with
commonly used ML frameworks, nine baseline ML models were
additionally developed using different combinations of three ML
algorithms�ANN,41 random forest (RF),42 and support vector
machine (SVM)43�and three types of molecular descriptors�the
molecular access system (MACCS) fingerprint, RDKit fingerprint,
and extended connectivity fingerprint with a diameter of 4
(ECFP4).44 Subsequently, 5-fold grid searches were conducted to
determine the optimal hyperparameters. The baseline models were
implemented using scikit-learn 1.2.1 and RDKit 2019.09.03 (see
Supporting Information for details).

2.4. Benchmarking FineChem 2 with Previous Pre-LCA
Tools. An external data set of 16 randomly selected chemicals from
the chemical industry that were not included in any model
development was used to deliver an unbiased and rigorous benchmark
study. It included four chemicals with a relatively high PCF (>10 kg
CO2-equiv/kg) and high complexity, seven chemicals with a moderate
PCF (5−10 kg CO2-equiv/kg) and diverse structures, and five
chemicals with a low PCF (<5 kg CO2-equiv/kg) that were mostly
linear molecules with simple structures. Three representative pre-LCA
tools that were developed based on features extracted from the
molecular structures were reproduced, including FineChem 1,13

ANN-DP,15 and rapid-ANN.16 The predictive abilities of FineChem 2
and the three existing pre-LCA tools were evaluated using the
aforementioned external data set (see Supporting Information for
details).

Figure 1. Development of FineChem 2 for estimating carbon
footprints of chemicals. The data set is collected from the chemical
industry, IDEA, and ecoinvent and is segregated into training,
validation, and test data sets at 80, 10, and 10%, respectively. The
bond and atom presentation of chemicals are extracted from the
molecular structures, and the molecular descriptors, such as exact
weights, types of molecular fragments, and number of rings, and the
interatomic matrices, including adjacency, distance, and Coulomb
matrixes, were also generated as the model’s input. The extracted
bond feature matrix is first processed through a self-attention layer
and bond update functions in the message-passing layer and then
combined with the atom feature matrix. Next, the combined matrix is
input into a self-attention layer in conjunction with interatomic
matrices to extract hidden interactions between the bonds and the
atoms. Finally, the learned features are concatenated with the list of
precalculated molecular descriptors and then entered into feed-
forward layers to achieve the final output. Add: residual connection;
Norm: layer normalization.
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2.5. Model Interpretability Evaluation. Three representative
chemicals (one linear, one with a ring structure, and one complex)
were selected as case studies to evaluate and demonstrate the
applicability of FineChem 2 for identifying PCF-intensive sub-
structures: butyl acrylate, 1-(2-hydroxyethyl)piperazine, and bis(2-
ethylhexyl) terephthalate. To interpret which chemical substructures
are mostly important to the prediction and contribute to their PCFs,
the attention weights of all decoder blocks were summarized, assigned
to atoms, and visualized using RDKit. The synthesis reactions and
corresponding raw materials of these three chemicals were retrieved
from the Reaxys database. The attention weights were also used to
infer the critical raw materials for production that contribute the most
to their PCFs. The predicted relative contribution of individual raw
materials to the PCF of the final chemical was compared with their
PCFs calculated based on standard LCA to evaluate the accuracy of
the predicted results.

2.6. Evaluation of the Applicability Domain of Pre-LCA
Tools. To evaluate the chemical space where FineChem 2 can make
reliable predictions, a comprehensive list of chemicals was obtained
from chemical databases. High-production-volume (HPV) chemicals
were collected from the database of existing chemicals of the
Organization for Economic Co-operation and Development (OECD).
Daily chemicals (chemicals in daily use products, e.g., cosmetics,
shampoo, toothpaste, body wash, and dish soap) and food additives
were obtained from MolBase, a comprehensive chemical e-commerce
platform. The plastic additives and processing aids were obtained
from a previous study.11 The molecular structures of the chemicals
were retrieved from PubChem27 and ChEMBL.28 Redundant data,
e.g., the same organic chemicals with different ions, were merged
according to normalized SMILES, and metal ions in chemicals were
removed using RDKit. Furthermore, mixtures, polymers, and
inorganic chemicals were removed.

A previously reported approach based on the Euclidean distance
and k-nearest neighbors was used to quantify the AD of pre-LCA
tools.45 First, the threshold T for determining whether a chemical was
within the AD was calculated on the training set according to the
previous approach, which is defined as

= +T Z Y (4)

where σ is the standard deviation, Y is the average of the Euclidean
distances of chemicals in the training set, and Z is an empirical
parameter to control the significance level. Z was set to 0.5 according
to the suggestion of the previous study.45 Subsequently, the average
Euclidean distance between the query chemical and k-most similar
chemicals in the training data set was calculated. k = 5 was selected
according to the suggestion of OECD.46

The Euclidean distance is defined as

=
=

D A B A B( , ) ( )
i

n

i i
1

2

(5)

where D is the distance between chemicals A and B, and Ai and Bi are
the ith molecular descriptors. The ECFP fingerprint was used as the
molecular descriptor owing to its simplicity.

If the distance was above the threshold, the query chemical was
considered outside the AD; otherwise, it was considered within the
AD. The previous pre-LCA tools were mostly developed based on
chemicals in ecoinvent or a part of ecoinvent.15−17 Therefore, organic
chemicals in ecoinvent used in a previous study15 were collected to
calculate the AD of the previous pre-LCA tools for comparison.

3. RESULTS AND DISCUSSION
3.1. Construction of a Comprehensive Data Set for

Predicting PCFs. 1108 data sets of organic chemicals were
obtained from ecoinvent (Table S1), IDEA (Table S2), and
the industry. After data cleaning, they accounted for the PCFs
of 547 unique organic chemicals, which are significantly larger
than the data sets used in previous studies (Figure
S1).13,15−17,47 Most data from the industry have not been
included in any public LCA databases and have resulted in a
structurally more diverse training data set than previous works
(Figure S2). In addition, chemicals in our new data set have
more widely distributed physicochemical proprieties and PCFs
than the chemicals that were previously used for modeling

Figure 2. Evaluation of model performances for carbon footprint prediction. (a) Performance of the FineChem 2 on training and test sets. (b)
RMSE of FineChem 2 and top four baseline ML models when using random splitting. (c) RMSE of FineChem 2 and top four baseline ML models
when using scaffold splitting. RMSE (d), median PEs (e), and mean PEs (f) of pre-LCA tools on the external test set.
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(Figures S1 and S3).15 The percentage of chemicals with PCF
>8 kg CO2-equiv/kg in the new data set is 20.3%, whereas that
in the ecoinvent is 9.6%. 63 unique molecular scaffolds are
identified in our data set, which shows a ∼3-fold improvement
over those used in previous studies. The improvement in the
training data set provided an opportunity to use more delicate
ML algorithms in FineChem 2 and a basis for predicting the
PCFs of fine chemicals with more complex structures.

3.2. Benchmarking FineChem 2 with the Baseline ML
Models. Good predictive accuracy of FineChem 2 is observed
for both training and test data sets (Figure 2a). For the
randomly segregated test sets, it obtains an RMSE of 2.89 kg
CO2-equiv/kg. In comparison with the nine baseline models
based on the commonly used ML algorithms and molecular
descriptors, FineChem 2 exhibits the best performance (RMSE
= 2.89), followed by ECFP4-ANN (RMSE = 2.97), ECFP4-RF
(RMSE = 2.98), and RDKit-RF (RMSE = 2.99; Table S3 and
Figure 2b).

A major limitation of previous pre-LCA tools is their weak
predictive ability for chemicals with structures that differ from
those of the training set because of the relatively weak
extrapolation ability of the algorithms used. To evaluate the
predictive ability, the performance of the ML models was
tested by using chemicals with new scaffolds. As a result,
despite the performances of all models being compromised,
FineChem 2 still achieves the best performance (RMSE =
4.06), illustrating that it has better extrapolation ability than
the other conventional ML algorithms (Table S3 and Figure
2c).

3.3. Benchmarking FineChem 2 with the Previous
Pre-LCA Tools. When compared with the previous tools,
FineChem 2 featured the lowest values for various evaluation
metrics, including median PE (27.3%), mean PE (38.6%), and
RMSE (3.96), thanks to the high-quality training data and the

state-of-the-art ML algorithm (Figure 2d−f). FineChem 2
displays an improvement of the RMSE, median PE, and mean
PE by ∼55% compared to FineChem 1. When compared to
the recently released rapid-ANN16 and ANN-DP,15 the
performance of FineChem 2 generally improved by ∼30%.

The predictive ability of FineChem 2 and the previous pre-
LCA tools is presented in Figures S4 and S5. All tools struggled
when predicting chemicals with relatively high or extremely
low PCFs because the information extracted from the
molecular structures may not fully represent the complex
chemical production processes. For simple chemicals (e.g.,
ethylene) with extremely low PCFs, different feedstock types
(e.g., petroleum, natural gas, and coal) with different emission
profiles are a major determinant of the impact and, hence,
cause large variability in the data. As these chemicals are
usually covered by available data, pre-LCA tools should not be
used for them. For chemicals with high PCFs, multiple
synthesis routes may exist, and extensive purification may
sometimes be required, thus increasing the variability of the
PCFs. At the same time, the availability of training data sets for
complex chemicals with molecular weight >800 Da is still low,
which may limit the predictive ability of ML tools for more
complex substances. For chemicals with moderate PCFs (5−10
kg CO2-equiv/kg), FineChem 2 demonstrates a more robust
performance, whereas the performance of the other tools is
perturbed drastically. ANN-DP15 achieves relatively lower
median PE than the other previous pre-LCA tools mostly
because it used a special data processing strategy: developing a
specific ML model for each individual test chemical based only
on 60% of the most similar chemicals in the entire training
set.15 The median PE of ANN-DP is 32.2%, while the mean PE
is 71.1%, indicating that the data processing strategy is useful
for most of the chemicals tested. But from another perspective,
such a data processing strategy limits the extrapolation ability

Figure 3. Identification of PCF-intensive substructures and critical raw materials with the attention mechanism of FineChem 2. (a,c,e) Chemicals’
attention weights and synthesis reactions. Red areas show the corresponding substructures that have a relatively higher PCF contribution, while
green areas show the substructures that have a relatively lower contribution. (b,d,f) Relative PCF of raw materials of the tested synthesis reactions
calculated by standard LCA and data from the chemical industry and IDEA v2.3.
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of the model, which restricts the model AD to basic chemicals
similar to those with known PCFs. The rapid-ANN16 was
developed based on the standard ML procedure and chemical
data from ecoinvent. It presents the overall stable errors for
chemicals with different PCFs and complexities. However, the
median and mean PEs of the external test set are both
approximately 50%, in contrast to those of FineChem 2 being
27.3 and 38.6%, respectively (Figure 2e,f).

The evaluations of the external data set demonstrate that
FineChem 2 is more accurate and reliable than the previous
pre-LCA tools for predicting the PCFs of chemicals. To further
elucidate reasons for the improvements of FineChem 2, the
performance of the baseline model with the best extrapolation
ability, MACCS-RF, was tested using the same external data
set. Despite being trained on the same data set, the baseline
model demonstrates higher RMSE and median PE when
compared with FineChem 2 (Figures 2d,e and S4), indicating
that changes on both algorithm and data set levels are needed
to make a better prediction.

3.4. Identification of the PCF-Intensive Substructures
and Critical Raw Materials. ML models are usually
considered “black boxes” due to their poor interpretability.23,48

In response, previous studies have used a SHAP-based
approach24 to identify the most important molecular
descriptors that affect the PCFs of chemicals.15 However, it
could not provide clear insights on, for example, PCF-intensive
substructures and raw materials to guide the design of more
sustainable molecules and processes. The attention mechanism
has been used to identify important features that affect the
activity of molecules, enzymes, and reactions.22,49 FineChem 2
employs the attention mechanism to capture the contributions
of substructures in a chemical to its PCF, thereby promoting
learned knowledge and improving the model interpretability.

To demonstrate this ability of FineChem 2 in identifying the
PCF-intensive substructures, the attention weights of butyl
acrylate, 1-(2-hydroxyethyl)piperazine, and bis(2-ethylhexyl)
terephthalate were mapped to the corresponding atoms, and
the relative PCF contribution of each substructure was
identified (Figure 3). Butyl acrylate is a linear molecule that
is commonly synthesized by esterification of 1-butanol and
acrylic acid.50 The red contour of the alcohol indicates that the
PCF of butyl acrylate originated primarily from 1-butanol

(Figure 3a). Using standard LCA, we found that the PCF of
butanol was higher than that of acrylic acid (Figure 3b), which
was consistent with the inference of FineChem 2.

For more complex molecules, such as those with rings and
side chains, FineChem 2 may also achieve meaningful results.
1-(2-Hydroxyethyl)piperazine is a HPV intermediate used in
the manufacturing of surfactants, synthetic fibers, and
pharmaceuticals. It is usually synthesized from piperazine and
oxirane (Figure 3c).51 Bis(2-ethylhexyl) terephthalate is a
diester of terephthalic acid and branched-chain 2-ethyl-hexanol
(Figure 3e).52 FineChem 2 successfully predicts that their
PCFs were primarily derived from piperazine (Figure 3c,d) and
terephthalic acid (Figure 3e,f), respectively.

Compared to the SHAP-based approach, FineChem 2 can
provide more direct insights at the atomic level to guide the
design of more sustainable molecules. In addition, it could also
assist in tracking the relative PCF contribution along supply
chains when detailed process data are unavailable, thereby
identifying critical raw materials and intermediates for future
improvements. With these insights, strategies such as structural
modification of PCF-intensive substructures or replacing the
corresponding raw materials with more sustainable alternatives
can be specifically applied.53

3.5. Validation of the Applicability Domain of
FineChem 2. Based on the Euclidean distance-based
approach, FineChem 2 is applicable to 81.4% of the 2502
organic HPV chemicals listed by the OECD, which
significantly expands by eight times compared to existing
LCA databases (Figures 4a and S6). This is critical, as only
∼10% of the organic HPV chemicals have been included in the
ecoinvent v3.8 and IDEA v2.3 databases, demonstrating major
data gaps for chemicals in LCA (Figure S4).

Chemicals are present in more than 90% of manufactured
goods.1 One major data gap in the PCF calculations, for
example, for plastics, food products, and daily necessities, is the
lack of data on chemical additives and processing aids. Because
of data unavailability, the chemical additives and processing
aids therein are usually neglected or only crudely estimated in
sustainability studies, while they may contribute significantly to
the PCFs. In our evaluation, 79.8% of the 506 food additives,
71.0% of the 5281 plastic additives, and 70.8% of the 1589
daily chemicals are within the AD of FineChem 2 (Figure 4a),

Figure 4. AD of FineChem 2 on HPV chemicals (N = 2502), chemicals in daily use products (N = 1589), food additives (N = 506), and plastic
additives (N = 5281). The blue area indicates the percentage of chemicals within AD, while the red area indicates outside AD. Orange bars indicate
the relative improvement of AD in comparison with previous pre-LCA tools developed based on ecoinvent data. The distribution of molecular
weights (b), number of heteroatoms (c), and number of rings (d) of all collected chemicals (N = 7254) within and outside the AD of FineChem 2.
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indicating that FineChem 2 can serve as an effective tool to fill
the data gaps in LCA. Thanks to the diverse and more
comprehensive training data, the AD of FineChem 2 for all
tested organic chemicals (N = 7254 after removing repetitive
chemicals) has improved overall by ∼75%, compared with the
previous tools (Figures 4a and S7). However, most chemicals
with molecular weights greater than 500, number of
heteroatoms over 10, or number of rings over 4 still lie
outside the AD of FineChem 2 (Figures 4b,d and S8),
requiring further expansion of the training sets.

4. LIMITATIONS AND OUTLOOK
With increasing efforts and attention toward designing
sustainable molecules, estimations are indispensable to fill in
the data gaps of chemical sustainability assessment. In this
study, we construct a comprehensive and high-quality training
data set and thus develop FineChem 2 for estimating the PCFs
of diverse chemicals. FineChem 2 performs well on the
randomly segregated test sets and exhibits significantly better
robustness than the baseline models for chemicals with new
scaffolds. Among the pre-LCA tools, FineChem 2 shows the
best performance in terms of various evaluation metrics.
FineChem 2 also exhibits a good interpretability. The attention
mechanism enables FineChem 2 to successfully identify the
PCF-intensive substructures and raw materials, which may aid
in the design of more sustainable molecules and synthesis
routes, including selection of raw materials.

Several aspects of this study could be expanded further. First,
current molecular structure-based models, including FineChem
2, are applicable only to pure organic chemicals. For polymers,
mixtures, and inorganic chemicals, different algorithms and
molecular descriptors are required; therefore, these are not
included in this study. Second, the production of specialty
chemicals such as pharmaceuticals requires extensive purifica-
tion processes; therefore, they usually have remarkably high
PCFs. The PCF contribution of the purification process could
not be fully represented in the molecular structures. Therefore,
molecular structure-based models are not ideal for predicting
their PCFs. Finally, chemicals synthesized via different routes
and produced in different regions may have different PCFs.
Although molecular structure-based models have the lowest
data requirements and the highest simplicity, the variability
caused by different synthesis routes and production processes
cannot be reflected in the molecular structures. In the future,
new pre-LCA models or modeling strategies will be required to
take into account different synthesis routes and production
processes to achieve more accurate predictions.

Nevertheless, we are confident that the current study
provides an effective approach for estimating the PCFs of
chemicals at early design stages, which can considerably bridge
the data gaps in LCA21 and assist in sustainable molecules
design54 and chemical engineering.55 Moreover, the general
framework used by FineChem 2 can be readily adopted into
prediction tasks other than PCFs, such as predictions of energy
demands and environmental toxicity, when high-quality
training data are available.
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Switzerland

Stefanie Hellweg − National Centre of Competence in
Research (NCCR) Catalysis, Ecological Systems Design,
Institute of Environmental Engineering, ETH Zürich, Zürich
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