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Abstract. We present the first application of the ICOsahedral Nonhydrostatic model with Aerosols and Reactive
Trace gases (ICON-ART) in inverse modeling in inverse modeling of greenhouse gas fluxes with an ensemble
Kalman smoother. For this purpose, we extended ICON-ART to efficiently handle gridded emissions, generate
an ensemble of perturbed emissions during runtime and use nudging on selected variables to keep the simulations
close to analyzed meteorology. We show that the system can optimize total and anthropogenic European CHy
fluxes on a national scale in an idealized setup using pseudo-observations from a realistic network of measure-
ment stations. However, we were unable to constrain the sum of the natural emission sources of comparatively
low magnitude. Also regions with low emissions and regions with low observational coverage could not be
optimized individually for lack of observational constraints. Furthermore, we investigated the sensitivities to-
wards different inversion parameters and design choices with 15 sensitivity runs using the same idealized setup,
demonstrating the robustness of the approach when regarding some minimal requirements of the setup (e.g.,
number of ensemble members). Subsequently, we applied the system to real in situ observations from 28 Euro-
pean stations for three years, 2008, 2013 and 2018. We used a priori anthropogenic fluxes from the EDGARv6
inventory and a priori natural fluxes from peatlands and mineral soils, inland waters, the ocean, biofuels and
biomass burning, and geology. Our results for the year 2018 indicate that anthropogenic emissions may be un-
derestimated in EDGARV6 by ca. 25 % in the Benelux countries and, to a smaller degree, in northwestern France
and southern England. In the rest of the domain, anthropogenic fluxes are corrected downwards by the inversion,
suggesting an overestimation in the a priori. For most countries, this means that the a posteriori country-total an-
thropogenic emissions are closer to the values reported to the United Nations Framework Convention on Climate
Change (UNFCCC) than the a priori emissions from EDGARv6. Aggregating the a posteriori emissions across
the EU27 + UK results in a total of 17.4 Tgyr~!, while the a priori emissions were 19.9 Tgyr~!. Our a posteriori
is close to the total reported to the UNFCCC of 17.8 Tgyr~!. Natural emissions are reduced from their a priori
magnitude almost everywhere, especially over Italy and Romania—Moldova, where a priori geological emissions
are high, and over the United Kingdom and Scandinavia, where emissions from peatlands and wetlands were
possibly unusually low during the hot and dry summer of 2018. Our a posteriori anthropogenic emissions for
the EU27 + UK fall within the range estimated by global top-down studies but are lower than most other re-
gional inversions. However, many of these studies have used observations from different measurement stations
or satellite observations. The spatial pattern of the emission increments in our results, especially the increase in
the Benelux countries, also agrees well with other regional inversions.
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1 Introduction

To achieve the long-term goal of the Paris Agreement to
limit global temperature increases to well below 2 °C, global
greenhouse gas (GHG) emissions will have to be reduced
drastically in the coming decades. The implementation of
the Paris Agreement requires all parties to commit to mitiga-
tion measures (described in nationally determined contribu-
tions) and to regularly report their anthropogenic GHG emis-
sions, in the form of national inventory reports (NIRs), to the
United Nations Framework Convention on Climate Change
(UNFCCC). NIRs are developed from socioeconomic statis-
tics, activity data and emission factors following the guide-
lines of the Intergovernmental Panel on Climate Change
(Eggleston et al., 2006). Following these guidelines, most
parties also report uncertainties in emissions, which they cal-
culate based on uncertainties in activity data and emission
factors or uncertainties in the underlying data.

Complementary to these bottom-up emission inventories
is the “top-down approach”, where atmospheric inversions
are used for emission estimation from observations (Berga-
maschi et al., 2018; Nisbet and Weiss, 2010). Due to the Paris
Agreement, the interest in high-resolution inversions with
country-scale emission estimates has grown recently. How-
ever, top-down emission estimation is still subject to large
and poorly quantified uncertainties due to insufficient cover-
age of measurements, errors in simulated atmospheric trans-
port, representation errors, measurement biases and other
factors. To advance the field, it is therefore paramount to re-
duce these errors as much as possible and to build modeling
systems that properly account for the remaining uncertain-
ties.

Inversions for CH4 have already been made in previous
studies. European CH,4 emissions have been estimated and
compared to bottom-up values in both regional (Bergamaschi
et al., 2018, 2022; Petrescu et al., 2023) and global (Deng
et al., 2022; Petrescu et al., 2023) inversions, using both sur-
face in situ measurements and satellite observations. Berga-
maschi et al. (2018) compared a total of seven inversion mod-
els with a regional setup for the period 2006 to 2012, with
all models using harmonized observations. The mean of the
estimates of the models for the anthropogenic emissions for
EU27 + UK was higher than the reported values for all years
but still within the calculated uncertainty range. Another re-
gional inversion study for Europe was recently presented by
Bergamaschi et al. (2022) using a new nested high-resolution
inversion system FLEXPART-COSMO TMS5 4DVAR. They
also compared the results with FLEXPART extended Kalman
filter (FLExKF) (Brunner et al., 2012) and with TM5 4DVAR
(Meirink et al., 2008) inversions. All three inversion models
resulted in higher emissions for 2018 for Germany, France
and Benelux than the sum of UNFCCC reported and natural
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(estimated by the Global Carbon Project, hereafter referred
to as GCP) emissions.

European CH4 emissions were also estimated from global
inversions operating at lower resolution and often assimi-
lating a smaller set of observations available over Europe
compared to the regional systems. Deng et al. (2022) and
Petrescu et al. (2023) compared a number of global inver-
sions presented previously by Saunois et al. (2020) with the
reported values. While Deng et al. (2022) included all An-
nex I countries (with periodic emission reports) and non-
Annex I countries (with only sporadic reports) worldwide,
Petrescu et al. (2023) focused on EU27 + UK and also com-
pared regional inversions with the reported values. The re-
sults showed that anthropogenic CH4 emissions estimated in
regional inversions were generally higher than reported emis-
sions, while global inversions were mostly lower. This gen-
eral tendency was found irrespective of whether only ground
in situ measurements or satellite observations were assimi-
lated. These results show that there is still little consistency
between different inversion results and that further work is
needed to identify the causes of the discrepancies. Therefore,
a new model intercomparison experiment was established
by the Atmospheric Tracer Transport Model Intercomparison
Project (TransCom), which requires all participating groups
to follow a common data protocol ensuring maximum con-
sistency in terms of the usage of observation data, boundary
conditions and a priori fluxes. The results presented here for
the real-data application are based on simulations following
this protocol.

In inverse modeling, measured atmospheric dry-air mole
fractions are linked to emissions using an atmospheric trans-
port model (ATM). The most likely set of emissions is de-
termined by minimizing a Bayesian cost function with an in-
version algorithm given a prior constraint (usually a bottom-
up inventory or flux model) and uncertainties. Different in-
version techniques exist (see, e.g., Chap. 11 of Brasseur and
Jacob, 2017), such as synthesis (Gurney et al., 2002; Baker
et al.,, 2006; Butler et al., 2010); geostatistical (Michalak
et al., 2004; Gourdji et al., 2012); Kalman smoother (Bruh-
wiler et al., 2005), ensemble Kalman filter (EnKF), ensemble
Kalman smoother (EnKS) or ensemble square root filter (En-
SRF) (Peters et al., 2005; Tsuruta et al., 2017); and 4D varia-
tional inversion (4D-Var; Chevallier et al., 2005; Baker et al.,
2010; Bergamaschi et al., 2022) methods. They have been de-
veloped to address different trace gases, observations types,
and spatial and temporal scales. The 4D-Var and EnKF meth-
ods are computationally expensive but have become standard
methods today to address large inversion problems.

A limiting factor for analytical synthesis and geostatistical
inversions is the dimension of the inversion problem (both
the control and the observation space), which needs to be suf-
ficiently small to store the related covariance error matrices
in computer memory and calculate their algebraic inverse.
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The 4D variational approach, on the other hand, where the
cost function is minimized by the calculation of its gradient
and through an iterative descent, requires an adjoint model,
which is often not available for a given ATM. The ensem-
ble Kalman filter or smoother data assimilation (Evensen,
1994, 2003; Burgers et al., 1998) has the advantages that it
can deal with large inversion problems, that no adjoint ATM
is required (Kalnay, 2010) and that it returns an approximate
error covariance matrix. The disadvantage is that the covari-
ance error matrix and the Kalman gain are only approximated
based on a finite ensemble.

Peters et al. (2005) developed such an ensemble Kalman
smoother, which was further implemented in the Carbon-
Tracker Data Assimilation Shell (CTDAS) (van der Laan-
Luijkx et al., 2017). It was designed to optimize biospheric
and oceanic CO; fluxes from different biomes and ocean re-
gions on a weekly timescale by assimilating the CO, ob-
servations from a global network of stations. CTDAS has
been applied in subsequent studies to investigate, for exam-
ple, the carbon budget over North America (Peters et al.,
2007), over Europe (Peters et al., 2010; Smith et al., 2020),
over South America (van der Laan-Luijkx et al., 2015) and
globally (van der Laan-Luijkx et al., 2017). More recently,
CTDAS has been coupled with a Lagrangian particle disper-
sion model for studying regional carbon budgets (He et al.,
2018) and has also been applied to other species like methane
(Bruhwiler et al., 2014; Tsuruta et al., 2019).

A critical requirement for accurate emission estimates by
inverse modeling is the quality of the ATM. An attractive new
atmospheric model is the global ICOsahedral Nonhydrostatic
(ICON) atmospheric modeling framework (Wan et al., 2013;
Zingl et al., 2015; Pham et al., 2021), which can be extended
with the Aerosols and Reactive Trace gases (ART) model,
developed at the Karlsruhe Institute of Technology (KIT)
(Rieger et al., 2015; Weimer et al., 2017; Schréter et al.,
2018) to simulate aerosols and trace gases. ICON-ART can
be run from a global scale down to a cloud-resolving scale
and has attractive transport properties such as mass conversa-
tion, positivity of tracers and the use of recent developments
in subgrid-scale transport.

Here we present the first application of ICON-ART in in-
verse modeling of GHG emissions with CTDAS. For this
purpose, we extended ICON-ART with modules for efficient
handling of emissions and online (i.e., during runtime) gen-
eration of the ensemble of perturbed fluxes and with a nudg-
ing scheme to keep the simulations close to analyzed me-
teorology. Using an idealized setup with synthetically gen-
erated observations, we analyze how well the new compu-
tationally efficient model is suited to constraining European
anthropogenic CHy4 emissions for individual countries with
observations from a European observation network. The sen-
sitivity of the system to different parameters is analyzed in
a set of sensitivity experiments. The system is then applied
to real observations from a harmonized set of CH, dry-air
mole fraction observations from 28 European stations to as-
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sess the performance of ICON-ART in terms of atmospheric
transport and to demonstrate the capability of the new sys-
tem to constrain European emissions using this network. A
detailed description of our model setup and the methodology
is given in Sect. 2. In Sect. 3 we present the results of both
applications, with pseudo-observations as well as with real
observations. Section 4 provides conclusions.

2 Model description and methodology

2.1 ICON-ART model and simulation setup
2.1.1  Weather and climate model ICON

ICON is a highly versatile non-hydrostatic atmospheric
model for global and regional weather and climate simu-
lations developed jointly by the German Weather Service
(DWD) and the Max Planck Institute for Meteorology (Wan
etal., 2013; Zingl et al., 2015; Pham et al., 2021). It has been
used at DWD for operational weather prediction since 2016
and has been coupled with other models including an ocean
and a land surface model for climate simulations (Giorgetta
etal., 2018). ICON is based on an icosahedral triangular grid,
where 20 equilateral triangles of an icosahedron are itera-
tively split into smaller triangles up to the desired resolution.
With such a grid, the problem of singularity at the poles is
avoided. To zoom into a specific region, refined grids can be
nested into the parent grid, with one additional edge bisec-
tion. The model equations are fully compressible, and the
vertical discretization is in generalized smooth-level verti-
cal coordinates (SLEVEs) (Leuenberger et al., 2010). Trac-
ers in ICON are transported with perfect mass conservation
by solving the continuity equation of mass for each tracer
consecutively in the vertical direction with a finite-volume
method and in the horizontal direction with a simplified flux-
form semi-Lagrangian method (Miura, 2007; Lauritzen et al.,
2011; Rieger et al., 2015).

2.1.2 ART extension for trace gases and aerosols

The ART model was developed as an extension for ICON at
the Karlsruhe Institute of Technology (KIT) (Rieger et al.,
2015; Weimer et al., 2017; Schréter et al., 2018) with the
aim of simulating aerosols as well as passive and chemi-
cally reactive trace gases. The ART module is coupled on-
line with ICON and allows a flexible definition of tracers and
processes to be included (Schréter et al., 2018). Since only
CHy4 was simulated in the present study, all tracers are pas-
sive tracers; i.e., they are only transported without radiative
feedback on the meteorology and without degradation by the
hydroxyl radical (OH). Depletion by reaction with OH is as-
sumed to be negligible given the short residence time of the
air masses within the domain of no more than a few days
compared to the CHy4 lifetimes of about 10 years.

To simplify and accelerate the treatment of emissions dur-
ing the simulations, we implemented the online emissions
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module (OEM) into ICON-ART, which was originally de-
veloped for the regional weather and climate model COSMO
(Jahn et al., 2020). Unlike the standard offline approach,
where numerous input files have to be provided at discrete
model time steps, OEM requires only a small number of files
at the beginning of a simulation. These files contain annual
mean sector-specific 2D emission fields as well as the tem-
poral and vertical profiles for individual emission categories
and countries. During the simulation, these profiles are ap-
plied online to update the hourly emissions for each species.
OEM has recently become an official component of ART
(since ART version 2.6.3).

To project the inventory data onto the ICON grid, we ex-
tended the stand-alone Python package emiproc (also de-
scribed in Jihn et al., 2020). The package emiproc projects
emission data of various inventories onto the model grid in
a mass-conserving manner by calculating the overlap of the
source and target grid at every grid cell. It also generates the
temporal and vertical scaling profiles.

2.1.3 General setup of ICON-ART forward simulations

The ICON-ART simulations were performed in limited-area
mode (LAM) on a grid covering Europe (see figures in
Sects. 2 and 3). The horizontal grid was R3B06 (see the es-
tablished grid notation in Zingl et al., 2015), which corre-
sponds to a mean grid spacing Ax between neighboring tri-
angles of about 26 km and yields a total of 21 344 grid cells.
Vertically, 60 levels were used between the surface and about
23 km altitude. The time step was 120s. We used ICON in
the numerical weather prediction (NWP) configuration with
a single-moment microphysics scheme including graupel and
the tile approach for soil switched on, considering subgrid-
scale land-cover variability with six tiles (three land plus
three water types).

The meteorological fields were initialized at the beginning
of every simulation with the reanalysis data of ERAS (Hers-
bach et al., 2020). During the simulation, the meteorological
fields were weakly nudged in the entire domain towards the
3-hourly reanalysis data to keep the simulated meteorology
close to the analyzed meteorology. This required a modifica-
tion of the ICON code, since ICON in the LAM configuration
only allows nudging towards meteorological boundary con-
ditions (density, virtual potential temperature, Exner pres-
sure, specific humidity and wind) near the borders of the do-
main. Additionally, the LAM grid was created such that the
boundary zone extends over the entire domain. As in the stan-
dard scheme, the nudging strength audge Was set to decrease
with the distance of the cell row r from the lateral boundaries
(ro), but the nudging was not restricted to the eight cell rows
closest to the boundaries. Instead it decreased exponentially
with an e-folding width of two cell rows towards a minimum
dimensionless nudging strength of 0.001 applied in the main
part of the domain: apugge = 0.069 exp(—"52) + 0.001.
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The modeled CHy dry-air mole fractions were constructed
with three different types of tracers representing the CHy
background, emissions and ensemble members. The tracer
representing CH4 from emissions (CHE) within the model
domain was initialized with a value of zero (or rather with an
offset value which is later subtracted in the post-processing)
at the simulation start and was updated by OEM with the
emissions from the inventories (described in Sect. 2.2.4) at
every model time step. The ensemble members used for
the optimization scheme in EnKS are represented as trac-
ers in the model, similarly to CHE but with perturbed emis-
sions (see Sect. 2.2). The background CHy dry-air mole frac-
tions (CHEG) were represented as a separate tracer, which
was initialized and updated at the lateral boundaries with
data from the CAMS v19r1 inversion product (available via
https://ads.atmosphere.copernicus.eu/, last access: 4 Decem-
ber 2023).

For every 10d simulation window of CTDAS (see
Sect. 2.2.1), one ICON-ART simulation was performed. The
model runs were initialized 24 h before each 10d window
to allow for model spin-up. At the end of the 24 h meteo-
rological spin-up period, all CH4 tracer mole fractions were
overwritten by the initial CH4 conditions produced by the
CTDAS system (see Sect. 2.2.1).

We carried out the simulations on the supercomputer Piz
Daint of the Swiss National Supercomputing Centre (CSCS,
https://www.cscs.ch/, last access: 4 December 2023), namely
on the XC40 compute nodes, each with two Intel Xeon
E5-2695 v4 2.10 GHz processors (2 x 18 cores, 64/128 GB
RAM). A simulation with the described setup and spread
across 16 nodes required around 10 node hours per 11d
simulation. For the inversion of a whole year, the total
costs (including the comparatively low costs for CTDAS)
amounted to around 1300 node hours or 36 x 1300 = 46 800
core hours.

2.1.4 Adaptations of ICON-ART to CTDAS

To couple ICON-ART with CTDAS in a robust and efficient
way, we made a few adaptations to [CON-ART and the simu-
lation setup. CTDAS requires a large ensemble of CH4 trac-
ers to be simulated, each ensemble member corresponding to
one specific perturbation of the state vector (e.g., fluxes and
boundary conditions). This is usually achieved by generating
an ensemble of input fields, typically one set of perturbed
hourly emission maps and boundary conditions per member.
For a large ensemble with a few hundred members and hourly
emissions, this may result in a very large number or size of
input files and correspondingly expensive I/O during the si-
mulation. To overcome this problem, we extended OEM with
the option to generate an ensemble of perturbed fluxes and
corresponding tracers online during the simulation. With this
extension, the only input required at the start of the simu-
lation is the ensemble of perturbed scaling factors (A) pro-
vided by CTDAS, which greatly simplified and accelerated
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the simulations. Each scaling factor scales the flux of one
emission category (one tracer can experience the emissions
of multiple categories) in one region. The regions can be any
combination of grid cells (including individual cells) and are
defined by a region mask provided as input for OEM (see
Sect. 2.2.2). The setups used in this study, e.g., the emission
categories and regions, are described in Sect. 2.2.

The generation of the flux ensemble permits negative
fluxes, which could result in negative mole fractions of the
CHy4 tracers. Since none of the available transport schemes
in ICON allows for negative tracer mole fractions, we by-
passed this problem by adding a constant offset mass mole
fraction of 1.2 x 107 to all CHE tracers and subtracting the
same offset afterwards from the output. Since the transport
characteristics within the numerical model ICON-ART ex-
hibit non-linearity, the tracer concentrations are not identi-
cal when transported with or without an offset. However, our
tests showed that these differences are negligible, and we
consequently expect no significant impact on the outcome
of the simulations.

Not only does our implementation of ICON-ART in CT-
DAS allow for the perturbation of fluxes, but also the ensem-
ble can at the same time hold perturbed background mole
fractions. This allows for the optimization of the background
mole fractions, which is described in Sect. 2.2.6. Technically,
this is achieved by perturbing the CHEG tracer mole fractions
in different regions of the lateral boundary, with scaling fac-
tors provided by CTDAS in a separate file. Similarly to the
generation of the flux ensemble, a lateral boundary region
can be any combination of grid cells (in this case of the lat-
eral boundary cells) defined by a region mask.

Figure 1 gives a schematic overview of how CTDAS is
coupled to ICON-ART. ICON-ART is driven by initial and
boundary data from ERAS for meteorology and CAMS for
tracer concentrations and adds CH4 emissions via OEM. Us-
ing a priori perturbation scaling factors from CTDAS, an
ensemble of CHy tracers is generated. The simulated con-
centrations of the individual ensemble members (H (x")) and
the ensemble means (H(x)) are sampled at the stations and
read into CTDAS. CTDAS optimizes the emissions based
on these values and the observations and uses the optimized
scaling factors to generate the scaling factors for the next cy-
cle.

2.2 CTDAS inversion setup

In this study, we used CTDAS to estimate anthropogenic
CH4 emissions either in an idealized setup using syntheti-
cally generated atmospheric observations or in a real-data
application using quasi-continuous in situ observations and
very few discrete flask samples of CHy dry-air mole frac-
tions. ICON-ART acts as an observation operator; i.e., it con-
nects the surface fluxes to atmospheric CH4 dry-air mole
fractions. In the following, we describe the setups for the two
applications. The description of the idealized setup refers to
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the reference inversion in which we only optimize emissions
but otherwise stay as close to the real setup as possible. In
addition to the reference inversion, we performed sensitivity
experiments testing different aspects of the inversion setup
as described in Sect. 2.3. These include experiments where
we optimized background mole fractions in addition to emis-
sions (see Sect. 2.2.6). Background optimization is also ap-
plied in the real-data application.

2.2.1  Optimization scheme

CTDAS applies an ensemble Kalman smoother with a fixed-
lag assimilation window (Peters et al., 2005). A schematic
of the configuration used here is shown in Fig. 2. Since our
model domain is limited to Europe, the fluxes can affect ob-
served CH4 mole fractions only over a couple of days. In our
simulations, almost all mass of the emission tracer has left
the domain after 20 d. Accordingly, CTDAS has been set up
to optimize 10d mean fluxes with a fixed lag of 2, resulting
in a total assimilation window length of 20 d. Observations
in a given 10d window can thus constrain the fluxes of the
previous and the present 10d window.

The s scaling factors are optimized using an ensemble
Kalman smoother as described in Peters et al. (2005), which
is based on the ensemble square root filter presented by
Whitaker and Hamill (2002). In the filter, the error covari-
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ance matrix P (both a priori and a posteriori) of size [s x 5] is
represented by information in a smaller dimension N, which
corresponds to the number of ensemble members and is set
to 192 in our applications. The ensemble is generated from
randomly perturbed state vectors with the magnitude and cor-
relation structure of the perturbations, as determined by the a
priori error covariance matrix.

Since we start with a priori scaling factors with a value of
1, the initial perturbation of the scaling factors for the first
two windows of the simulation has a mean of A;—12) = 1.
After assimilation of the observations during these two win-
dows, the first window is simulated again with the optimized
scaling factors )&;‘1 (superscript al indicates analyzed/opti-
mized once) to provide updated initial CH4 mole fractions
for the second cycle. From there, the second cycle uses the
optimized scaling factors )ﬁz‘l from the first cycle and contin-
ues with the third window, which inherits the scaling factors
from the previous window with the following state propa-
gation model: A;41 =1/342/ 3X;‘1. A priori information is
thus inserted with a weight of 1/3, while a posteriori in-
formation from the previous assimilation step is propagated
with a weight of 2/3. This weighting is based on the study
of van der Laan-Luijkx et al. (2017), where the average of
the optimized scaling factors from the two previous windows
was taken into account with a weight of 2/3. Their choice
of 2/3 was a design choice based on the concept that the
timescale to revert a system to the prior state should be ap-
proximately 8 weeks in the case where no data are available
to constrain it. Full propagation of a posteriori information is
analyzed in a sensitivity inversion. We apply the state prop-
agation model only to the mean scaling factors and not to
the individual ensemble members. Each window starts with
a new a priori covariance again; hence no information on
the uncertainty reduction in the previous windows is taken
into account. During the second cycle, observations of the
third window are assimilated. The second cycle is completed
by simulating the second window again with the now twice-
optimized scaling factors )\32’ to provide updated initial mole
fractions for the third cycle. The third and all following cy-
cles follow the same principle as the second cycle (Peters
et al., 2005, their Fig. 1). The main output is thus the se-
quence of twice-optimized scaling factors (and their uncer-
tainties) for each 10 d window of the simulation period. Error
covariances are discussed separately in Sect. 2.2.5.

2.2.2 State vector

In our setup, CTDAS separately optimizes anthropogenic
and natural fluxes. For both categories, the emissions are
optimized for 21 344 individual regions, each region corre-
sponding to one grid cell in the domain. The formalism of
CTDAS is described in detail in Peters et al. (2005). As we
use a lag of 2, the state vector x has 85376 flux elements
in our implementation (2 windows x 2 categories x 21344
grid cells). Only flux elements are optimized in the refer-

Atmos. Chem. Phys., 24, 2759-2782, 2024

M. Steiner et al.: European CHy inversions with ICON-ART coupled to CTDAS

ence setup of the idealized study. Simultaneous optimization
of fluxes and background mole fraction is analyzed in addi-
tional sensitivity inversions and then applied in the real-data
application where eight state vector parameters are used to
optimize the background mole fractions (see Fig. 4).

2.2.3 Ensembile size

Previous applications of CTDAS used 200, 1500 (Peters
et al., 2005), 500 (Tsuruta et al., 2017, 2019) and 150 en-
semble members (van der Laan-Luijkx et al., 2017). In Pe-
ters et al. (2005) 100-200 model ensemble members were
sufficient to represent a state vector of 14400 parameters,
albeit with substantial spatial correlations to reduce the de-
grees of freedom. In our setup we use an ensemble size of
192, wherein every ensemble member is represented by one
tracer. The sensitivity to a smaller and larger size of 50 and
300 members was also analyzed. While the performance was
significantly reduced with only 50 members, there was only
a marginal improvement with 300 members. Therefore, we
chose 192 members for our inversions. The degrees of free-
dom (calculated with Eq. 21 in Peters et al., 2005) in our
a priori covariance error matrix is 425.

2.2.4 A priori fluxes

In the application of our system, we followed the “protocol
for the intercomparison of national CH4 emissions estimated
by inverse modeling system for Western Europe”, an inter-
comparison effort of the TransCom modeling community.
The protocol prescribes the prior fluxes to be used, which
were pre-processed and provided on a 0.25° x0.25° grid. The
anthropogenic fluxes (agriculture, waste and fossil fuels) are
taken from the EDGARvV6 (Crippa et al., 2021) inventory.
The following natural fluxes are taken into account: peat-
lands and mineral soils from JSBACH-HIMMELI (Raivo-
nen et al., 2017; Reick et al., 2013) (version 2), inland water
(provided by Université Libre de Bruxelles to the GCP-CH4
data set; Saunois et al., 2020), termites (Saunois et al., 2020),
ocean (Weber et al., 2019), and biofuels and biomass burning
(GFED 4.1s; van der Werf et al., 2017) as well as geologi-
cal emissions (Etiope et al., 2019) (scaled to a global total of
15 Tg). The pre-processed fluxes with monthly resolution are
temporally interpolated to the 10 d windows of our inversion
system such that we have a separate emission file for every
10d simulation. Since we optimize anthropogenic and natu-
ral emissions separately (see Sect. 2.2.2), the various natural
fluxes were merged into one category. An example of the an-
thropogenic and natural emissions is shown in Fig. 3 for the
period of 11-21 June 2018.

All CHy emissions are considered to be constant in time
over 10d and are emitted between 0 and 20 m above the sur-
face.
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(a) 2018 domain-wide total: 29.9 Tg yr—t
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Figure 3. Spatial distribution of CH4 emissions from anthro-
pogenic (a) and natural sources (b) used in the real-data application
for the period of 11-21 June 2018. Overlaid are the measurement
locations used in the inversion. The numbers for the domain-wide
total fluxes are given for the entire year of 2018. The circles show
the in situ measurement locations, while the small crosses show the
locations of flask sampling.

2.2.5 A priori error covariance matrix

We apply an uncertainty of 100 % for each flux in each grid
cell. This takes into account that EDGAR applies its own
methodologies uniformly to the whole domain and, in con-
trast to the European TNO inventory, does not scale the to-
tal national emissions to the officially reported values. The
scaling factors corresponding to the same category but be-
longing to different regions are correlated depending on the
great-circle distance between the centers of the grid cells as-
suming an exponential decay of the correlation with a length
scale L =200km (see Gaspari and Cohn, 1999; Peters et al.,
2005), regardless of country borders. Between different cate-
gories we assume no correlation. Also, temporal a priori cor-
relations between consecutive cycles are not applied; how-
ever, inheriting a posteriori information from the previous
assimilation step with a weighting of 2/3 (see Sect. 2.2.1)
has a comparable impact to applying temporal correlations.

2.2.6 Background optimization

In the reference inversion of the pseudo-observation applica-
tion, only emissions and no background mole fractions are
optimized. However, if background mole fractions provided
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Figure 4. Map showing the eight inflow regions (labeled 1-8) used
for the background optimization.

at the lateral boundaries from a global model are biased, an
inversion system without background optimization will try
to compensate for this bias by increasing or decreasing the
emissions, which ultimately leads to biased emission esti-
mates.

To address this problem, we implemented the option to op-
timize background mole fractions alongside the emissions.
For this purpose, eight additional state vector parameters
were introduced to optimize the background mole fractions
from eight different inflow regions where CHy from the
global CAMS model enters our model domain (see Fig. 4).
We test the capability of this approach to correct for different
magnitudes and types of biases in three dedicated sensitiv-
ity experiments. In these experiments we introduce different
artificial biases with magnitudes of 1 %, which we think to
be a realistic bias for reanalysis products, and set the un-
certainty correspondingly. Background optimization is also
applied in the real-data application, where we apply an un-
certainty of 0.05 %, which is roughly 1 ppb CHy. This un-
certainty is smaller than what we assumed in the sensitivity
simulations. We choose a smaller uncertainty in the real-data
application as the CAMS v19r1 product used here, which is
the result of a global inversion system, proofed to have al-
most no biases. We apply a different state propagation model
(see Sect. 2.2.1) for the eight background parameters than for
the emission parameters. We propagate the a posteriori with a
weight of 100 % to the next window assuming that biases are
changing only slowly with time and are therefore similar in
subsequent assimilation windows. This allows the system to
adjust the background concentration by roughly 1 ppb every
10d.

2.2.7 Localization

To avoid erroneous state vector updates due to spurious co-
variances between observations and far-distant grid cells, the
Kalman gain can be modified using a method called local-
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Figure 5. The values of the Kalman gain matrix for anthropogenic
emissions for one single observation at the Torfhaus station in Ger-
many (29 January 2018, 12:00-16:00 UTC) before (a) and after (b)
applying localization.

ization. As shown by Houtekamer and Mitchell (1998), lo-
calization reduces spurious correlation and reduces the num-
ber of required ensemble members. Spatial localization with
damping factors decaying exponentially with distance from,
or normally distributed around, each observation is possi-
ble. An alternative is to only update state vector parameters
whose correlation passes a two-tailed ¢ test, but this proved
to be computationally too expensive for our large problem
size. To reduce correlations with far-distant grid cells, in all
our inversions we apply a damping to the Kalman gain with
factors normally distributed around the observation location
with a 1o standard deviation of 600 km. The optimal length
scale is dependent on the setup and the number of the ensem-
ble members. Our choice of 600 km was tested in sensitivity
inversions. The effect is illustrated in Fig. 5 for one obser-
vation and one emission category. The values of the Kalman
gain matrix can be interpreted as the sensitivity of the obser-
vation to upstream emissions from that category.

2.2.8 Observations

In our application, a harmonized set of measurements includ-
ing quasi-continuous in situ observations and a few discrete
flask samples is used. The in situ measurements are from 28
stations, while the flask samples are taken at 10 different lo-
cations. The flask samples account for ca. 0.5 % of the total
number of observations. Another four in situ stations are used
for validation. Most stations are from the atmosphere net-
work of the Integrated Carbon Observation System (ICOS)
(Heiskanen et al., 2022). All 32 in situ stations and 10 flask
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sample locations are listed in Table 1, where the assimilated
sites are indicated in the column “T” with “x” and the val-
idation sites with “V”. It is important to note that not all
time series are complete. We distinguish mountain sites from
sites in flat terrain. For the sites in flat terrain, observations
in the afternoon from 11:00 to 16:00 UTC were assimilated,
as usually done in atmospheric inverse modeling to avoid
the difficulties in simulating the effects of shallow nocturnal
boundary layers. In contrast, only nighttime values between
23:00 and 06:00 UTC were assimilated for mountain sites.
At this time such stations are more representative of free-
tropospheric conditions and are not influenced by pollution
from daytime upslope valley winds, which would require a
very high model resolution in order to be reasonably repre-
sented.

Pseudo-observations were synthetically generated for the
first 2 months of the year 2018 (the synthetic inversions are
performed in the period 2 January—3 March 2018) by sam-
pling the output of a forward ICON-ART model simulation
at a prescribed set of locations. To make the synthetic ex-
periment comparable to an inversion with real observations,
these locations correspond to actual CH4 measurements sta-
tions that are used for the real-data inversion for the year
2018. Furthermore, the pseudo-observations were generated
only for the times when actual observations were available.
The four stations that are used for validation purposes in the
real application were also not assimilated in the reference in-
version, but the effect of assimilating their observations was
tested in a separate inversion. We added Gaussian noise to
the pseudo-observations with o = 2 ppb.

The simulation used to produce the synthetic observations
followed the reference setup described in Sect. 2.1.3 with one
exception. Emissions from the two categories were scaled
with a pre-defined field of scaling factors in order to create
a “true” emission field that is systematically different from
the a priori. The performance of the inversion can then be
assessed in terms of its ability to reconstruct the true emis-
sion field. The field of scaling factors was randomly drawn
from a normal distribution but spatially correlated assuming
an exponential decay with a length scale of 200 km. In one
sensitivity inversion, a different field of scaling factors was
used to scale the so-called true emissions in which 11 Eu-
ropean regions were scaled uniformly with different scaling
factors.

2.2.9 Model-data mismatch

We use a model-data mismatch of 10 ppb+30 % of the mean
(over the entire inversion period) emitted signal (CHE) in
the forward model simulations using the prior emissions for
all observations. We assume uncorrelated errors (diagonal
observation-error covariance matrix R). The reasoning for
scaling the model-data mismatch with the mean instead of
the instantaneous emission signal is that the latter approach
would generally result in higher uncertainties for measure-
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Table 1. List of observation locations used in this study. The column “M” indicates mountain sites while the column “F” indicates if it is a
flask sampling location. The column “T” indicate if this station is assimilated (“x”) or used as a validation site (“V”).

ID Station name M F Latitude Longitude Elevation Inlet height Network/source T
(°N) (°E) (m) (m)
BIR Birkenes (NO) No No 58.39 8.25 215 3  EBAS X
CIB Centro de Investigaciéon (ES) No  Yes 41.81 —4.93 845 5 NOAA X
CMN  Mt. Cimone (IT) Yes No 44.17 10.68 2165 7  WDCGG X
GAT  Gartow (DE) No No 53.07 11.44 69 341 ICOS A%
HEI Heidelberg (DE) No No 49.42 8.68 113 30 InGOS X
HPB  Hohenpeilenberg (DE) No No 47.8 11.01 934 131 ICOS X
HPB  HohenpeiBlenberg (DE) No  Yes 47.8 11.02 936 5 NOAA X
HTM  Hyltemossa (SE) No No 56.1 13.42 115 150 ICOS X
HUN  Hegyhitsél (HU) No No 46.96 16.65 248 96 InGOS + HMS X
HUN  Hegyhatsél (HU) No Yes 46.95 16.63 248 96 NOAA X
IPR Ispra (IT) No No 45.81 8.64 210 16 ICOS X
JF] Jungfraujoch (CH) Yes No 46.55 7.99 3570 10 WDCGG X
KAS Kasprowy Wierch (SK) Yes No 49.23 19.98 1987 2 AGH X
KIT Karlsruhe (DE) No No 49.09 8.42 110 200 ICOS \'%
KRE  Kfesin u Pacova (CZ) No No 49.57 15.08 534 250 ICOS X
LIN Lindenberg (DE) No No 52.17 14.12 73 98 ICOS X
LMP  Lampedusa (IT) No  Yes 35.51 12.61 45 5 NOAA X
LUT  Lutjewad (NL) No No 53.40 6.35 1 60 ICOS X
MHD  Mace Head (IE) No No 53.33 —-9.90 5 10 AGAGE X
MHD Mace Head (IE) No  Yes 53.33 —-9.90 5 21  NOAA X
NOR  Norunda (SE) No No 60.09 17.48 46 100 ICOS X
OPE  Observatoire pérenne (FR) No No 48.56 5.50 390 120 LSCE X
ORL  Orléans (FR) No Yes 47.83 2.50 170  1467-1634 LSCE X
OXK  Ochsenkopf (DE) Yes Yes 50.03 11.81 1022 163 NOAA X
PAL Pallas (FI) No No 67.97 24.12 560 7 WDCGG+1COS x
PAL Pallas (FI) No Yes 67.97 24.12 565 5 NOAA X
PDM  Pic du Midi (FR) Yes No 42.94 0.14 2877 10 LSCE X
PDM  Pic du Midi (FR) Yes Yes 42.94 0.14 2877 0 LSCE X
PUY  Puy de Dome (FR) Yes No 45.77 2.97 1465 10 ICOS X
PUY Puy de Déme (FR) Yes Yes 45.77 2.97 1465 10 LSCE X
RGL  Ridge Hill (GB) No No 52.00 —2.54 204 90 DECC X
SAC Saclay (FR) No No 48.72 2.14 160 100 WDCGG X
SMR  Hyytidla (FI) No No 61.85 24.29 181 125 ICOS X
SNB Sonnblick (AT) Yes No 47.05 12.96 3106 5 WDCGG A%
SSL Schauinsland (DE) No No 47.90 7.92 1205 6 WDCGG X
SVB Svartberget (SE) No No 64.26 19.78 235 150 ICOS A%
TAC Tacolneston (GB) No No 52.52 1.14 56 185 DECC X
TOH  Torfhaus (DE) No No 51.81 10.54 801 147 1COS X
TRN  Trainou (FR) No No 47.96 2.11 131 180 LSCE X
UTO  Uto (FI) No No 59.78 21.37 8 57 ICOS X
WAO  Weybourne (GB) No No 52.95 1.12 17 10 UEA X
ZSF Zugspitze (DE) Yes No 47.42 10.98 2667 3 WDCGG X

ments with high mole fractions and, hence, those measure-
ments that contain the largest regional signal would receive
the lowest weight in the inversion. More importantly, mis-
matches between real and simulated pollution events could
then lead to overestimated uncertainties where an event oc-
curred in the model but not in the observations and to under-
estimated uncertainties in the opposite situation. However,
we still want to account for the overall higher uncertainty
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at sites which are more strongly exposed to local emissions.
The use of a model-data mismatch based on instantaneous
tracer signals is tested in one sensitivity experiment.

2.3 Sensitivity experiments

Numerous choices such as the length of the assimilation win-
dow, the size of the ensemble or the a priori error correlation
length scale have to be made before starting an inversion. The
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settings for the reference inversion were motivated by previ-
ous studies but are to some extent still arbitrary. To evalu-
ate the impact of these choices, additional sensitivity exper-
iments were conducted by systematically varying individual
settings. An overview of these experiments is presented in
Table 2. We did not test a longer assimilation window of 20
instead of 10 d, which would constrain fluxes over 40 instead
of 20d, as tests showed that after 20 d of simulation usually
almost no regional tracer mass is left in the model domain.
This means that after 20 d no more flux signal can be “seen”
by the observations. Like the reference inversion, all sensitiv-
ity inversions are run for the period 2 January—3 March 2018.
The short period of 2 months is justified as the results of the
performance in all synthetic inversions equilibrated after two
assimilation windows and did not change significantly after-
wards.

— The setup of the reference inversion described in
Sect. 2.2 is labeled case 1.

— In three further inversions we test the sensitivity to-
wards a lower and larger number of ensemble members
(cases 2 and 3) as well as towards a smaller model-data
mismatch uncertainty (case 4), which only corresponds
to the 2 ppb measurement noise added to the pseudo-
observations and which represents the ideal scenario in
which no transport error has to be accounted for.

— The influence of the Kalman gain localization is inves-
tigated by not applying any localization (case 5) or in-
creasing o from 600 to 1200 km (case 6).

— In case 7, a different field of true scaling factors is ap-
plied to produce the pseudo-observations, in which 11
large regions are uniformly scaled (labeled “by region”
in Table 2) instead of the randomly drawn but spatially
correlated true scaling factors of the reference inversion
(labeled “spatially correlated” in Table 2).

— A different state propagation model for the mean state
is tested in case 8, which propagates the once-optimized
state vector of the previous window by 100 % instead of
66 %.

— Three cases (9-11) are used to test the optimiza-
tion of the background mole fractions as described in
Sect. 2.2.6. We set the relative standard deviation for
the eight dimensionless state vector parameters to 0.01.
In case 9, the eight background tracer mole fractions are
uniformly scaled by 0.99. In case 10, instead, eight dif-
ferent scaling factors (randomly drawn with a standard
deviation of 1 %) are applied to the eight inflow regions.
Case 11 is similar to case 10, but the scaling factors
for the eight regions additionally vary with time. This
is probably the most realistic experiment, capturing the
possibility of large-scale biases in a global model vary-
ing both geographically and with time. For this case,
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a second set of true background scaling factors is se-
lected. The true scaling factors linearly move with every
10d window from the first set to this second set.

— Case 12 tests the sensitivity to the assimilation of four
more stations (which are the validation sites in our real-
data application), three in central Europe and one in
Scandinavia. These stations (Gartow (DE), Karlsruhe
(DE), Svartberget (SE) and Sonnblick (AT)) are indi-
cated in Table 1 with “V” in the column “T”.

— Incase 13 we use a model-data mismatch which is com-
puted from instantaneous CH3™* values instead of the
mean values over the inversion period (10 + 0.3 CH{™®

instead of 10 + 0.3 CHZmiS).

— Case 14 tests the ability of the system to capture tem-
porally varying emissions. For this case, similarly to the
temporally varying background scaling factors in case
11, a second set of true scaling factors is selected for the
emissions in different categories and regions, again ran-
domly drawn from a normal distribution with the same
variances as given in the a priori uncertainties. These
true emissions linearly move with every 10d window
from the first set (shown in Fig. 6, left column) to this
second set such that the second set represents the true
emissions at the end of the inversion period (3 March
2018).

— Finally, case 15 tests the capability of the system
to optimize the agricultural emissions separately from
the remainder of the anthropogenic emissions. In this
case, the emissions from agriculture represent the cat-
egory with the largest domain total flux (15.5 Tgyr™!),
followed by non-agricultural anthropogenic emissions
(14.2 Tgyr~!) and natural sources (7.9 Tgyr—1).

3 Results and discussion

3.1 Idealized setup
3.1.1 Reference inversion

Figure 6 shows the true (left) and the mean (from 12 January—
3 March 2018) a posteriori (right) scaling factors for the two
optimized emission categories. It can be seen that the opti-
mized state is close to the true state for the anthropogenic
emissions in regions with high emissions (see Fig. 3); large
deviations of A from 1 in the true state; and/or good coverage
with observation sites, which is the case in central Europe.
The a posteriori scaling factors for the natural emissions stay
close to 1 and do not agree well with the true state, which
means that the natural fluxes cannot be constrained indepen-
dently from the larger anthropogenic fluxes. It is important
to note that the performance of the optimization is strongly
dependent on the choices of the true state. Especially for the
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Table 2. Overview of the synthetic simulations. In the column “mdm” the formula used for calculating the model-data mismatch is specified.
The column “Variation” indicates if the emissions varied temporally in the simulation that was used to produce the pseudo-observations. The
column “bg” indicates if the background mole fractions were varied in the simulation producing the pseudo-observations and optimized in
the inversion. Boldface numbers or text signify changes compared to the reference inversion.

Case Members mdm (ppb) Localization ~ Variation bg Perturbation Remark

1 192 10+0.3 CHimis o =600km  None None spatially correlated — reference

2 50 10+0.3 CHf’lmiS o =600km  None None  spatially correlated

3 300 10+40.3 CHZmis o =600km  None None  spatially correlated

4 192 2 o = 600km None None spatially correlated

5 192 10+0.3 CHzmis None None None spatially correlated

6 192 10+0.3 CHiInis o =1200km None None spatially correlated

7 192 10+0.3 CHimis o = 600km None None by region

8 192 10+0.3 CHZmis o =600km  None None spatially correlated  full state propagation

9 192 10+0.3 CHZmiS o =600km  None Yes spatially correlated  bg uniformly scaled

10 192 10+0.3 CHZmiS o =600km  None Yes spatially correlated 8 Apg

11 192 10+0.3 CHZmiS o =600km  None Yes spatially correlated 8 Apg(?)

12 192 10+40.3 CHZ‘“'iS o = 600km None None spatially correlated ~ four additional stations
13 192 10+0.3CHZ™® o =600km None None spatially correlated  mdm from instant. values
14 192 10+0.3 CHZmiS o =600km  Yes None spatially correlated

15 192 10+0.3 CHzmis o = 600km None None spatially correlated  three emission categories
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Figure 6. Map showing the true scaling factors (a, b) and the 2-
month mean a posteriori scaling factors (¢, d) for the two optimized
emission categories for the reference inversion. Overlaid are the
measurement locations used in the inversion with the size of the
circle proportional to the number of observations available.

lower natural emissions, a different set of true scaling fac-
tors may yield different results. In this setup, the inability to
reproduce the true state of the natural emissions may come
from the fact that the perturbations are relatively small in ar-
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eas with large emissions (e.g., in Scandinavia) and that the
density of observation stations in Scandinavia is low.

Figure 7 shows the total emissions (a) as well as the a
priori (b) and a posteriori (c) error in the total emissions
summed over both categories compared to the true state. The
improvement (prior — posterior error) in terms of total flux
is shown in (d). The results were computed from the mean
fluxes for 12 January—3 March 2018. The first optimization
window (2—12 January 2018) is discarded as this first win-
dow is only optimized once by the smoother (see Fig. 2).
Almost every grid cell with deviations from the true state
improves clearly in the a posteriori field, especially in the re-
gions with a high station density in central Europe and on the
British Isles. The mean absolute error of the 2-month mean
total fluxes in this setup is reduced by 18.8 % in the a poste-
riori compared to the a priori emissions.

The system is thus capable of optimizing the total anthro-
pogenic emissions (and, as shown in case 15, also agricul-
tural emissions) of Europe. However, the system is not able
to optimize the natural CHy emissions individually, which
have comparatively small fluxes.

3.1.2 Sensitivity simulations

For each of the 15 sensitivity inversions (see Table 2), we
quantify the reduction in the mean absolute error in the a
posteriori compared to the a priori emissions expressed as
a percentage. The results are summarized in Table 3. They
show the error reduction for the total emissions based on the
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Figure 7. Maps showing the total emissions (a), the a priori (b) and a posteriori (c) deviations of the fluxes, and the total improvement (d)

for the reference inversion.

10d windows (1 — ES/Ef) as well as for the two emission
categories (anthropological (anth) and natural) individually
(for case 15 also the agricultural emission error reduction is
shown). For the three inversions with background optimiza-
tion, the reduction in the error in the eight corresponding

state vector parameters (l - E;’bg/ EE’bg) is shown addition-
ally. The reduction in the a posteriori mean absolute error
of the mean total emission fluxes for the considered period
(i.e., of the temporally averaged fluxes) is shown in the col-
umn 1 — EZ"™%/EC™" Al results are computed for a 2-
month period (12 January-3 March 2018).

In the reference inversion (case 1), the error in the total
a priori fluxes is reduced by 18.1 %, while the error in the
2-month mean total fluxes is reduced by 18.8 %. The an-
thropogenic emissions show an error reduction of 21.0 %,
whereas the error for the natural emissions increased by
2.7%.

The performance for the total fluxes as well as for the in-
dividual categories decreases as expected when reducing the
number of ensemble members (case 2) or switching off the
localization of the Kalman gain matrix (case 5), highlight-
ing the importance of using the localization technique. Other
sensitivity inversions show a similar performance to the ref-
erence inversion, such as inversions with 300 instead of 192
ensemble members (case 3), which justifies the use of 192
ensemble members in our setup. Also a longer localization
length scale (case 6) or adding four additional stations in cen-
tral Europe, where the observation network is already dense
(case 11), does not change the performance significantly. The
use of a model-data mismatch based on instantaneous con-
centration values (case 13) instead of the average concen-
trations also does not change the performance. As explained
in Sect. 2.2.9, we expect the use of a model-data mismatch
based on mean instead of instantaneous concentrations to
have advantages when assimilating real data where we have
areal transport error between simulated and real tracer trans-
port. This situation is not mimicked in this idealized setup.
Propagating the state vector by 100 % (case 8) improves the
error reduction significantly. Such an improvement is to be
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expected for an idealized setup with constant emissions and a
perfect transport model and without any measurement noise.
The same is true for case 3 with a very small model-data mis-
match (2 ppb), as a lower model-data mismatch gives more
weight to the unbiased pseudo-observations and hence pulls
the a posteriori scaling factors closer to the true scaling fac-
tors. A significantly better performance (especially for the
natural fluxes) is reached in case 7, where a different type of
“true state” (11 scaled European regions) is used. This pro-
duces a more distinct flux signal, which is easier to optimize.
Disturbing the background with a constant factor (0.98) and
optimizing the background mole fractions with eight addi-
tional state vector parameters (case 10) influences the op-
timization of the emissions only minimally. This is due to
the fact that the error in the eight state vector parameters
representing the background mole fractions is reduced by
91.1 %. Similarly, using eight different (but still temporarily
constant) scaling factors for the background mole fractions
(case 10) reduces the performance of the emission optimiza-
tion very little. The error in the eight state vector parameters
representing the background mole fractions is again reduced
strongly by 88.2 %. As with the emissions, the performance
of the background optimization is also highly dependent on
the chosen true scaling factors. Due to the dominating west-
erly winds, the two scaling factors at the western border of
the domain can be constrained the best. Using eight different
scaling factors for the background mole fractions which addi-
tionally change in time (case 11) shows a performance of the
emission optimization similar to cases 9 and 10 but shows a
worse performance in optimizing the eight background state
vector parameters (which are now time-varying). The reason
for this is one single background parameter (representing the
inflow region 1; see Fig. 4). As there is almost no inflow from
this region and the distance from this region to the next ob-
servation stations is very large, this region cannot be con-
strained. When only looking at the inflow regions 2-7, the
error in the scaling factors is reduced by 84.7 %, which is a
similar performance to in cases 9 and 10. In case 14, where
the scaling factors of the true state are time-dependent, i.e.,
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M. Steiner et al.: European CHy, inversions with ICON-ART coupled to CTDAS 2771

Table 3. Statistical results of the sensitivity simulations for the period 2 January—3 March 2018. The expression 1 — ES/ Eg is the a posteriori
mean absolute error of the total emission fluxes (ES) compared to the a priori situation at the beginning of the inversion (Ef)), expressed as
a percentage reduction of the prior. The statistics are computed considering every single flux component (every single grid cell and every

single assimilation window). The expressions 1 — Eg’amh / Eg’amh and 1 — Ef{’natural / Eg’natural show the same as 1 — ES/EY, but for the two

categories individually. The expression 1 — E;’bg / Ets)’bg denotes the reduction in mean absolute error for the eight state vector parameters

optimizing the background CH4 mole fractions. The expression 1 — Eg" "¢ /EZ™ finally shows the same as 1 — ES/ Eg but for the
mean fluxes during the period instead of considering the individual assimilation windows. Boldface numbers or text signifies the reference
inversion.

L E€ le,zmlh e,natural ‘e,agri 's,bg ¢, mean
Case  Sensitivity - E—E 1— ggamh 1— ggnamm] 1— % 1— Esbg 1— %
1 reference 18.1 % 21.0 % 2.7 % - - 18.8 %
2 50 members 14.1% 16.9 % —6.4 % - - 14.9 %
3 300 members 18.6 % 21.3% —-1.8% - - 19.2%
4 small mdm 23.4 % 25.2 % 2.0% - - 28.0 %
5 no localization 15.7 % 20.0 % —10.3% - - 16.4 %
6 localization w. L = 1200km  18.8 % 22.4% —-57% - - 19.4 %
7 different true state 30.8 % 29.8 % 16.6 % - - 32.6 %
8 full state propagation 20.2 % 234 % —2.6% - - 20.8 %
9 bg uniformly scaled 17.9 % 21.0% —-3.6% - 91.1% 18.5%
10 8 Abg 17.6 % 20.8 % —4.0 % - 88.2 % 18.3%
11 8 Apg(t) 18.0% 21.3% -3.1% - 49.7 % 18.7 %
12 four more stations 18.5 % 21.3% —2.6% - - 19.1 %
13 mdm from instant. values 17.6 % 20.1 % —2.0% - - 18.1 %
14 temp. varying true state 20.3 % 21.1 % —1.9% - - 23.4 %
15 three emission categories 16.2 % 6.8 % 3.0% 17.8 % - 16.6 %

where they gradually move to a second set of scaling factors,
the improvement of the total flux is even slightly better than
in the reference inversion, which shows that the system is
also capable of capturing slowly varying emission strengths.
Case 15 finally shows that agricultural emissions individually
can be optimized well (17.8 %), but then the error reduction
in the remaining anthropogenic sources without the agricul-
tural emissions significantly drops from 21.0 % to 6.8 %.

In all cases, the total error reduction is based on the error
reduction in the anthropogenic emissions (or the agriculture
emissions in case 15), while the error in the natural emis-
sions almost always increases, especially for the cases that
perform less well in general (e.g., when only using 50 en-
semble members or switching off localization). This suggests
that the natural emissions cannot be estimated independently
from the anthropogenic emissions. This is different for case 7
with a different type of true state, which highlights the impact
of the chosen true state on the performance of the inversions.

The sensitivity runs allow us to draw conclusions for the
application with real observations. They emphasize the sig-
nificance of the localization technique for optimal perfor-
mance, suggesting that a ¢ value of 600km is a favorable
selection. Additionally, the findings indicate that 192 ensem-
ble members are sufficient. As a “perfect transport model”
without transport error is used in this idealized setup, these
inversions show the upper limit of what we can expect from
the application with real observations: the total fluxes and
anthropogenic emissions can be well optimized, and this is
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especially true for central and western Europe with good ob-
servational coverage. However, categories with small fluxes
(such as natural emissions in central Europe) can hardly be
optimized independently. It is also to be expected that the
improvement in regions with few measurements (e.g., south-
western and eastern Europe) will be very small. We further
see that the system can correct slowly varying large-scale
background biases of around 1 % very well.

3.2 Real-data application
3.2.1 Posterior fluxes and background mole fractions

Figure 8 shows maps of annual mean CHj4 emissions
for 2018 for the a priori (left) and a posteriori (middle)
and the difference between the two (right) for the an-
thropogenic (top) and natural (bottom) fluxes. The anthro-
pogenic emissions show a strong upward correction of up
to 25mgm~2d~! in the Benelux countries and a moderate
upward correction in northwestern France and southern Eng-
land. In the rest of the domain, the anthropogenic emissions
are corrected downwards, especially over Ireland but also in
the Alpine region and in southern Finland. For the annual
mean, the natural fluxes are corrected downwards almost ev-
erywhere, especially over Italy (up to —22 %), the British
Isles (—15 %), Romania—Moldova (—10 %) and Scandinavia
(=10 %).

Atmos. Chem. Phys., 24, 2759-2782, 2024



2772

prior anthropogenic emissions posterior anthropogenic emissions

M. Steiner et al.: European CHy inversions with ICON-ART coupled to CTDAS

posterior - prior

(b)

70°N
>
50 ;
= 60°N
©
©
25 50°N g
= =
E
lo 40°N

N
w
[mg / m? / day]

R
10°W  0°

posterior natural emissions

10°w ©0° 10°E  20°E

posterior - prior

(e)

70°N
15
60°N

50°N

o
[mg / m2/ day]

-15 40°N

[mg / m?/ day]

10°w  0°

10°E 20°E 30°E 10°w  ©0°

10°E 20°E 30°E 10°w  ©0° 10°E 20°E

Figure 8. Map showing the mean a priori (a, d) and a posteriori (b, e) fluxes for the year 2018 as well as the difference (c, f) for the
anthropogenic (a—c) and natural (d—f) sources. The results for 2008 and 2013 are shown in Appendix B.

Over the Iberian Peninsula, northern Africa and Russia,
the increments are generally very low in both categories, as
those regions are poorly or not at all constrained by observa-
tions. The downward correction of the natural fluxes in Italy
and Romania—Moldova is most likely due to the very high
a priori geological emissions in these regions. The down-
ward correction of the Scandinavian natural fluxes is possibly
due to the unusually hot summer of 2018, though the study
of Thompson et al. (2022) did not find a clear anomaly of
CH4 fluxes in this region in 2018. The a priori wetland and
peatland emissions provided by JSBACH-HIMMELI for the
year 2018 are a repetition from the year 2017 and hence do
not account for the lower CH4 emissions expected for these
sources during a hot and dry summer caused by low water
table levels (e.g., Bridgham et al., 2013). For the years 2008
and 2013, the system corrects the natural fluxes in northern
Europe much less downwardly than in 2018. This can be seen
in Appendix A in Fig. Al. It shows the time series of the a
priori and a posteriori fluxes for the two categories and the
three years 2008, 2013 and 2018 for the EU27 + UK coun-
tries as well as for northern, western, eastern, and southern
Europe. It also shows less downward correction of anthro-
pogenic fluxes in northern Europe for the years 2008 and
2013 which could be an effect of cross-sector covariances
(see Fig. 9d).

Figure 9 presents maps of yearly mean uncertainty reduc-
tions (negative values mean a reduction in uncertainty) for
the total emissions (a), anthropogenic emissions (b) and nat-
ural emissions (c). The covariance as a fraction of the total

Atmos. Chem. Phys., 24, 2759-2782, 2024

variance is shown in (d). The total uncertainty is computed
from the variances of the two categories as well as the co-
variances between them, for each grid box. Since the covari-
ances are typically negative, the total uncertainty reduction
is larger than the sum of the uncertainty reduction in the two
categories. This is mainly the case in southwestern England
and the Alpine region and to a lesser extent also around the
Scandinavian measurement locations. Negative covariances
mean that in those regions the system cannot distinguish well
between the two fluxes; i.e., an improved match to observed
mole fractions could be achieved by increments of either an-
thropogenic or natural fluxes in these regions.

As described in Sect. 2.2.6, the system optimizes not only
emissions but also background mole fractions in eight dif-
ferent boundary regions. The effect of this optimization on
the mole fractions of the background field in the domain is
shown in Fig. 10, which displays the mean correction of the
background field in the lowest model level for 2018, spa-
tially, and as a time series of the domain-wide total. The
yearly mean mole fraction difference shows only very small
corrections between 0 and 1.6 ppb of the background field,
mainly downwards, except for the northeasterly inflow re-
gion. The time series shows that the domain total correc-
tions were slightly upwards in spring, while the corrections
were downwards during early summer and at the end of the
year. The minor adjustments of the background mole frac-
tions indicate a very small bias in the reanalysis product used,
CAMS v19rl, significantly smaller than what we assumed in
the sensitivity simulations (cases 10-12).
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Figure 9. Maps showing the differences in the a posteriori uncertainties compared to the a priori uncertainties for the total emissions (a),
anthropogenic emissions (b) and natural emissions (c¢). The fraction of the covariance on the total variance is shown in panel (d). Optimized
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Figure 10. The difference in the a posteriori and a priori back-
ground dry-air mole fractions in the lowest model layer shown as
a yearly mean on a map (a) and as a time series (the date format is
year-month) of the domain-wide total (b).

3.2.2 Time series at measurement sites

Figure 11 shows examples of time series for the period
30 March—13 June 2018 at the stations Lutjewad (NL),
Hyytidld (FI) and Heidelberg (DE). Simulated dry-air mole
fractions (from a priori emissions in red and a posteriori
emissions in blue) are compared to observations (in gray).
Additionally, the assimilated afternoon measurements (black
dots) and the simulated background tracer dry-air mole frac-
tions are shown, in dark green for the a posteriori and light
green for the a priori. The light-green line is mostly overlaid
by the dark-green line. At all three stations, the simulation
with the a posteriori emissions is closer to the observations.

https://doi.org/10.5194/acp-24-2759-2024

Furthermore, the a priori background mole fractions match
the lowest measured mole fractions in this period, indicating
that the bias of the background field is very low.

Table 4 summarizes the statistics of the model perfor-
mance at the in situ measurement stations assimilated in the
inversion (first part of the table). It shows the root-mean-
squared error (£) and Pearson correlation (r2) both for dry-
air mole fractions at hours where observations were assimi-
lated (i.e., afternoon values at non-mountain sites and night-
time values at mountain sites) and for all 24hd~!. For the
assimilated stations, the error always decreases and the cor-
relation always increases for the hours that were assimilated.
Also, the error almost always decreases and the correlation
mostly increases for the observations during the entire day.
The a posteriori correlation coefficients (r?) for the assimi-
lated observations range from a minimum of 0.59 at the sta-
tion Ispra (Italy) to 0.93 at the station Ridge Hill (UK). They
are above 0.7 at 25 out of 28 stations (89 %) and above 0.8
at 19 stations (68 %). These values are similar to those in the
high-resolution inversion study of Bergamaschi et al. (2022)
and suggest an excellent model performance the typically ex-
plains 70 %-90 % of the observed variance.

The bottom of Table 4 shows the same statistics for the
validation sites, which were not assimilated in the inversion.
At these validation sites, the error always decreases and the
correlation always increases or stays the same for the after-
noon hours (nighttime hours for the mountain site Sonnblick,
labeled SNB). When considering all 24-hourly averages per
day, the error mostly decreases and the correlation mostly in-
creases.

3.2.3 National-scale emissions

Figure 12 compares 2018 a priori and a posteriori country-
total emissions for both anthropogenic (left) and natural
sources (right) together with their uncertainties for the 15
largest countries in Europe and the Benelux countries. An-
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Figure 11. (a, ¢, e) Time series (the date format is month-day) of the simulated dry-air mole fractions with a priori (red) and a posteriori
(blue) emissions. Additionally, the background dry-air mole fractions are indicated in dark and light green for the a posteriori and a priori,
respectively, as well as the observations (gray) with the reported measurement uncertainty (gray shaded, often too small to see) for the period
30 March—13 June at the stations (a) Lutjewad (NL), (¢) Hyytiéld (FI) and (e) Heidelberg (DE). The assimilated afternoon measurements are
shown as black dots. (b, d, f) The residuals of the assimilated observations in the a posteriori simulation for the same period (b Lutjewad, d

Hyytiild, f Heidelberg).

thropogenic emissions are additionally compared to the val-
ues reported to the UNFCCC (including the reported uncer-
tainty range) for 2018 (year of report 2021). The a poste-
riori fluxes in the Benelux countries as well as Germany,
France, Norway and Finland are higher than reported. On
the other hand, the a posteriori fluxes are lower in the re-
maining countries. The strong downward correction of an-
thropogenic emissions in Italy is likely an effect of the very
high natural (geological) emissions. Although they are cor-
rected downwards strongly in the inversion, the a posteriori
natural emissions in Italy still seem unrealistically high, po-
tentially leading to a misattribution of anthropogenic and nat-
ural emissions in the a posteriori.

For the sum of all EU27 countries + the United King-
dom, the inversion reduces the a priori emissions from 19.9
to 17.4Tgyr~! in the a posteriori. The reported value for
EU27 + UK for the year 2018 is 17.8 Tgyr~!. We performed
two additional inversions for the years 2008 and 2013. In
these years, the a posteriori fluxes are also lower than the
a priori but still slightly higher than the reported values
(2008: a priori, 21.8 Tgyr~!; a posteriori, 21.3 Tgyr—!; re-
ported, 20.5 Tgyr~'; 2013: a priori, 20.5 Tgyr~'; a posteri-

ori, 18.9 Tgyr~!; reported, 18.6 Tgyr™").

Atmos. Chem. Phys., 24, 2759-2782, 2024

4 Conclusions

We developed a new inverse modeling system combining the
atmospheric transport model ICON-ART with the ensemble
Kalman smoother data assimilation system CTDAS, and we
evaluated its performance in idealized and real CHy inver-
sions over Europe. For this purpose, we extended ICON-
ART with modules for efficient handling of emissions and
online generation of the ensemble of perturbed fluxes and
with a nudging scheme to keep the simulations close to ana-
lyzed meteorology. We showed that with this system, we can
optimize total anthropogenic European CHy fluxes on a na-
tional scale using pseudo-observations in an idealized setup
with a realistic network of measurement stations. However,
from the subcategories anthropogenic and natural, the ob-
servations can only successfully constrain the larger source
of the anthropogenic emissions (and in one sensitivity inver-
sion also the agricultural emissions). The natural emissions,
in turn, cannot be constrained independently. Furthermore,
we have investigated the sensitivities towards different pa-
rameters of the inversion setup with 15 sensitivity runs in the
idealized setup. We then applied the system to real in situ
observations from 28 European stations. We used a priori an-
thropogenic fluxes from the EDGARV6 inventory and a priori

https://doi.org/10.5194/acp-24-2759-2024
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Table 4. Statistical results at measurement stations assimilated in the inversion and used for validation (bottom). The root-mean-squared
error (E) and Pearson correlation (r2) are given once for dry-air mole fractions only at hours where observations were assimilated (denoted

by “assim.”) and for all 24 hd~! (denoted by “all obs.”).

Station  Eprior  Epost ; ior rgost Eprior Epost grior rgost

assim. assim. assim. assim. allobs. allobs. all obs. all obs.

(ppb)  (ppb) (ppb)  (ppb)

BIR 19.2 11.9 0.92 0.95 21.3 13.9 0.89 0.91
CMN 17.1 13.6 0.78 0.80 21.2 17.6 0.69 0.73
HEI 27.4 23.0 0.85 0.87 62.0 49.7 0.66 0.68
HPB 253 19.3 0.80 0.89 29.9 25.8 0.75 0.81
HTM 18.5 13.6 0.93 0.93 20.3 15.7 0.91 0.92
HUN 37.2 32.3 0.66 0.73 41.3 38.9 0.59 0.65
IPR 71.2 55.4 0.59 0.75 137.2 134.8 0.48 0.44
JEJ 114 10.6 0.85 0.87 13.7 12.7 0.79 0.82
KAS 22.1 17.4 0.65 0.74 26.6 23.3 0.57 0.63
KRE 18.6 14.7 0.87 0.91 22.7 20.2 0.81 0.83
LIN 22.3 16.1 0.89 0.94 25.1 222 0.86 0.87
LUT 78.8 56.1 0.75 0.86 106.5 87.5 0.76 0.79
MHD 13.6 8.7 0.82 0.88 16.8 10.4 0.76 0.84
NOR 21.3 11.0 0.90 0.93 23.9 12.2 0.87 0.91
OPE 19.3 16.2 0.88 0.91 22.1 10.5 0.85 0.86
PAL 17.6 9.4 0.79 0.91 19.5 11.7 0.73 0.86
PDM 7.5 7.4 0.95 0.95 8.39 8.37 0.92 0.92
PUY 17.2 16.5 0.78 0.82 18.5 17.9 0.75 0.78
RGL 15.3 14.2 0.93 0.94 20.1 20.9 0.88 0.87
SAC 28.7 21.7 0.86 0.91 35.2 30.3 0.83 0.84
SMR 27.1 13.6 0.86 0.91 30.0 15.1 0.83 0.90
SSL 194 15.6 0.78 0.83 19.6 17.9 0.76 0.78
TAC 20.8 19.3 0.90 0.91 25.0 26.7 0.85 0.84
TOH 16.5 14.3 0.82 0.85 18.3 17.8 0.78 0.79
TRN 20.5 17.2 0.87 0.91 24.6 234 0.83 0.85
UTO 27.0 13.8 0.81 0.92 26.7 14.2 0.81 0.91
WAO 28.1 20.1 0.84 0.92 31.3 31.2 0.83 0.83
ZSF 15.3 12.1 0.77 0.82 16.3 13.2 0.75 0.80
GAT 16.59 16.49 0.88 0.88 21.07 20.53 0.82 0.83
KIT 2540  20.02 0.89 0.90 30.08 27.47 0.84 0.82
SNB 15.09 12.99 0.76 0.80 16.11 13.85 0.75 0.78
SVB 17.16 11.20 0.89 0.92 17.76 11.53 0.88 0.91

natural fluxes from various sources (peatlands, mineral soils,
inland water, termites, ocean, and biofuels and biomass burn-
ing as well as geology).

Our results show that the anthropogenic emissions are sig-
nificantly underestimated in EDGARV6 for the year 2018 in
the Benelux countries (by ca. 25 %) and to a weaker ex-
tent in northwestern France and southern England. In the
rest of the domain, the anthropogenic fluxes are corrected
downwards by the inversion. The natural fluxes are cor-
rected downwards almost everywhere, especially over Italy
and Romania—Moldova, where both regions have very high
a priori geological emissions in the data set from Etiope
et al. (2019) (scaled to a global total of 15Tg), as well as
in England and Scandinavia (during the hot and dry sum-
mer of 2018). For most countries, the a posteriori country-
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total emissions are closer to the values that were indepen-
dently determined and reported to the UNFCCC than they
are to the a priori emissions. The total anthropogenic fluxes
for the EU27 + UK are corrected downwards from 19.9 to
17.4Tgyr~!. The emissions reported to the UNFCCC (in-
ventory year 2021) are 17.8 Tgyr~!.

The a posteriori anthropogenic emissions in our study are
lower than in most other regional inversions (Bergamaschi
et al., 2018, 2022; Petrescu et al., 2023). It is important to
emphasize that in the various inversions other in situ obser-
vations or satellite measurements were partially assimilated.
While the a posteriori anthropogenic emissions in our study
are lower, the pattern of the emission increments is compara-
ble to that in Bergamaschi et al. (2022). However, our results
for anthropogenic emissions are comparable to the results for

Atmos. Chem. Phys., 24, 2759-2782, 2024
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Figure 12. Country-total emissions for the year 2018 in the a priori
(red) and a posteriori (blue) for anthropogenic and natural sources
separately as well as the reported anthropogenic emissions to the
UNFCCC (green if available). The black bar indicates the total un-
certainty, as derived from the error covariance matrices (for the a
priori and a posteriori emissions) or as reported to the UNFCCC
by the countries. The results for 2008 and 2013 are shown in Ap-
pendix B.

Europe from global inversions (Deng et al., 2022; Petrescu
et al., 2023), when these assimilate either in situ measure-
ments or satellite observations. It is noticeable that the inver-
sion strongly corrects the overall European emissions down-
wards such that the independently determined emissions that
are reported to the UNFCCC are better matched. However,
the large spread in the various inversions of recent studies
shows that there is still substantial uncertainty in the inverse
emission estimation of European emissions, and care needs
to be taken to assign realistic a posteriori uncertainties. The
most prominent pattern in our results is the increase over the
Benelux countries. This increase in emissions is also visible
in other inversion studies, at least in parts of Benelux (e.g.,
Bergamaschi et al., 2022). This may indicate higher emis-
sions than reported for 2018 in this region due to agricultural
emissions.
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This overall downward correction is more pronounced for
2018 than for the other two years where we applied our sys-
tem (2008 and 2013). The reason for this is most likely the
unusually hot and dry summer of 2018, which was not taken
into account in the a priori peatland emissions and which
influences the a posteriori anthropogenic emissions due to
Cross-sector covariances.

This study presents the new CTDAS-ICON system and
shows its application for CHs in an idealized setup and
with in situ measurements. In future applications, the system
could be extended to additionally assimilate satellite obser-
vations or estimate NoO or CO, emissions, the latter requir-
ing an extension of ICON-ART with a biosphere—atmosphere
exchange flux model. The large uncertainties associated with
inverse modeling could be addressed by extending the sys-
tem with a flow-dependent model-data mismatch, where the
emission flux ensemble is coupled to a meteorological en-
semble for a more realistic representation of the model trans-
port error.
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Appendix A: Further results 2018
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Figure A1. Time series (the date format is year-month) for the years 2008, 2013 and 2018 of a priori (red) and a posteriori (blue) CHy
emissions for the EU27 + UK countries as well as for northern (Norway, Sweden, Finland, Denmark, Estonia, Latvia, Lithuania), western
(the United Kingdom, Ireland, the Netherlands, Belgium, Luxembourg, France, Georgia, Switzerland, Austria), eastern (Poland, the Czech
Republic, Slovakia, Hungary) and southern (Portugal, Spain, Italy, Slovenia, Croatia, Greece, Romania, Bulgaria) Europe.

Appendix B: Results 2008 and 2013
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Figure B1. The same as Fig. 8 but for the year 2008.
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Figure B4. The same as Fig. 12 but for the year 2013.
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