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A B S T R A C T   

X-ray Absorption Fine Structure (XAFS) spectroscopy is an analytical technique of chemical insight. Improve-
ments to this technique are continuously carried out for reduction of the acquisition time and increasing the 
resolution, especially for studying operando processes. The accurate reconstruction of XAFS signals requires that 
the collected data are noise-free to extract elemental structure information in post-processing. A novel approach 
to rapid sampling (encoded measurement) is validated conceptually. The technique relies on sparse signal re-
covery, i.e. using compressed sensing to reconstruct under-sampled signals. The proof of concept is demonstrated 
by using a python code to reconstruct under-sampled XAFS spectra. A case study of transition metal samples and 
their oxides is considered for this purpose. The results demonstrate a robust recovery of chemical information 
from a 30% sampled signal for the near-edge region analysis and from a 45% sampled signal for extended-edge 
region analysis. The application of this procedure is important for demonstrating the feasibility of tabletop 
operation using laboratory X-ray sources which are not continuously tunable.   

1. Introduction 

X-ray Absorption Fine Structure (XAFS) spectroscopy is an insightful 
technique for obtaining elemental and structural information from 
crystalline and amorphous samples in biosciences [1], material science 
[2], catalysis [3], or physical chemistry [4]. XAFS utilizes bright X-rays 
probing the electronic structure of solids, solutions, and metal clusters 
[5,6]. X-rays interrogate the chemical structure by means of excitation 
of core electrons, scanning over K, L, or M absorption edges of target 
elements in the irradiated sample. Notoriously, XAFS experiments can 
be divided into Near Edge X-ray Absorption Fine Structure (NEXAFS) 
and Extended Edge X-ray Absorption Fine Structure (EXAFS). As shown 
in Fig. 1, NEXAFS is the XAFS signal region, which includes the pre- 
edge, the absorption edge and the post-edge peaks to fingerprint 
samples. 

The absorption edge energy is a function of the oxidation state and 
the binding geometry, which scales with the energy, position and shape 
of the edge. The post-edge gives finer details about the local atomic 
structure and coordination [7,8]. EXAFS on the other hand is the signal 
region in the extended post-edge region and subsequently provides in-
formation about the neighboring atoms of the element being studied, e. 
g. multi-shell coordination numbers and bond lengths [9]. 

The EXAFS signal is usually analyzed by conversion of energy- 

domain signals to the wave vector k-space, where the frequency of the 
signal oscillations and their amplitude indicate the number of neigh-
boring atoms and an estimate of the interspacing between them. For 
that, the k-space is conveniently converted to R-space by means of 
Fourier transformation, which gives preliminary information about the 
inner shells and values for interatomic distances. Finally, the R-space 
data are fitted and compared to reference data according to the EXAFS 
Eq. [10], which is as follows: 

X (k) =
∑

j

Njfj(k)e− 2k2ζ2
j

kR2
j

sin
[
2kRj + δjk

]
(1) 

The most important terms in Eq. 1 are f(k) that is the scattering 
amplitude and the δ(k) that denotes the phase. Both terms determine the 
scattering properties of neighboring atoms depending on the atomic 
number (Z). After a parametric optimization of the fitting, chemical 
information is extracted such as distance among the neighboring 
atoms (R), coordination number (N), and mean square disorder (ζ2).

The state-of-the-art X-ray source for XAFS is the synchrotron beam-
line. It offers scanning measurements, where the XAFS spectra are ac-
quired sequentially in a rather time-consuming approach. Many 
beamlines nowadays, therefore, integrate either dispersive XAFS setups 
or also “QuickXAFS setups” [11]. QuickXAFS uses double 
monochromator-crystals for repetitive measurements and also fast 
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detectors with unique data acquisition electronics [12]. With dispersive 
XAFS setups a spectrum can be obtained in seconds while with Quick-
XAFS setups a spectrum is obtained in a few milliseconds. However, as 
beamline access is not guaranteed, nor it is available 24/7 like home-lab 
equipment, there has been a rising interest in compact “tabletop” 
sources for carrying out XAFS experiments in-house. Furthermore, there 
are some other technical challenges to be addressed, such as (i) the 
sequential acquisition is too slow for operando, and some samples are 
not stable over long exposure [13]; (ii) a sensitive sample is prone to 
damage in a conventional high-flux scanning; (iii) Quick-XAFS often 
produces large data volumes that are impractical to process [14] as 
compared to dispersive XAFS; (iv) These fast methods can produce noisy 
data as the temporal resolution increases. Therefore, for in-situ XAFS 
studies, a flexible, fast acquisition method for tabletop operation is 
required. 

On a tabletop system, simpler hardware is coupled with smarter 
methods. For instance, broadband sources are mainly coupled to 
dispersive spectrometers to perform energy-dispersive XAFS experi-
ments. Use of polychromatic X-ray sources with bent crystals have 
become common [15] and tailored optics [16], unique spectrometer 
designs [17] and even cryogenic detectors [18] are used in the lab to 
acquire XAFS signals in a short time. Large radiance loads on the de-
tector may limit the dynamic range, whereas the resolution is in tradeoff 
with the sensitivity. Alternatively, Inagaki et al. [19] demonstrated the 
use of parametric X-ray radiation, generated by the interaction of an 
electron with a crystal lattice; to perform wavelength-dispersive XAFS. 
Seidler et al. [20] demonstrated lab-based XAFS measurements using X- 
ray tubes combined with a Rowland spectrometer. Further compact (but 
complex to operate) setups are based on Inverse Compton sources to 
perform energy-dispersive XAFS [21]. 

As a contending dispersive approach, Laser Produced Plasma (LPP) 
[22] sources give access to a broadband high photon flux spectrum 
usually with a peak brightness of 1018 − 1026 photons.s− 1.mrad− 2.mm− 2 

for a 0.1% bandwidth, with a repetition rate of 10–100 Hz. Tallents et al. 
[23] reported the use of elliptical bent crystal spectrograph in combi-
nation with a LPP source and photodiode-detection. Vogt et al. and 
Mantaouvalou et al. [24–26] have shown the use of Off-Axis Reflection 
zone plates, which focus and disperse the X-ray radiation from a point 
source to an image plane, with a detection system design consisting of a 
transmission grating and reflection spectrograph respectively. Wachulak 
et al. [27] have used an LPP source in combination with a grazing 
incidence spectrometer to measure the X-ray emission and absorption 
spectrum simultaneously. 

The lab based spectrometers used with broadband X-ray sources such 
as laser produced plasma or high harmonic generation, are operated in a 
transmission mode where the sample is illuminated by the poly-
chromatic beam. The transmitted beam goes through dispersive optic 
and then is imaged on an appropriate detector. To average out the noise 
and collect a good quality, noise-free spectrum, the measurements are 
repeated several time. This process is time intensive and data intensive. 
It would be efficient to reduce the number of measurements on the table- 
top as well and still get a quality spectrum which doesn’t suffer from 
noise and can reliably provide the relevant chemical information. 

Another crucial issue is that it is very hard to scale down XAFS setups 
maintaining the identical data collection and processing procedure. The 
idea explored in this work is whether a substantial reduction of the 
physical size and capabilities of a spectroscopy platform can be 
compensated by a more powerful data collection and processing 
procedure. 

State-of-the-art procedure are lossy, i.e. a full bandwidth “big data” 
acquisition, is followed by a compression, i.e. data selection, which is 
irreversible. Alternatively, this work proposes a direct encoding of the 
data during acquisition (compression through sparse transformation), 
followed by a decoding, using linear programming (L1 norm) [28]. In 
fact, several domains in the analytical sciences and spectroscopy have 
benefited from the potential of so-called compressed sensing (CS) such 
as medical imaging [29], single pixel imaging [30] and CS has found its 
use in various other scientific fields, such as combustion science [31], 
seismic exploration [32], and astronomy [33]. Hence, CS was also 
applied for several spectroscopy measurements such as X-ray fluores-
cence spectroscopy [34], Laser induced breakdown spectroscopy [35], 
Raman spectroscopy [36]. 

The aim of this study was to investigate a XAFS acquisition method 
based on CS, for enhancing the efficiency in time, sensitivity and data 
load. The paper is organized as follows: Section 2 has theoretical defi-
nitions and gives an overview of the materials and method to approach 
the problem, Section 3 shows the proof of concept via multiple case 
studies as examples of under-sampled XAFS signals, reconstructed with 
various compression rates and solvers. An analysis of the error is pre-
sented and the limitations of post processing analysis are discussed. 

2. Materials and methods 

2.1. Conceptual framework 

XAFS spectra are usually collected following a “frequentist approach”, 

Fig. 1. Structure of a XAFS spectra. The pre-edge is the region right before the absorption edge. The absorption edge is part of the near edge region (NEXAFS). The 
oscillations that follow the edge are a part of the extended edge region (EXAFS). 
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i.e. the absorption cross-sections are collected energy-by-energy bin 
with the highest point density where the signal is steep (Fig. 2). Such 
sequential approach is time-consuming, data-load intensive and not al-
ways possible if not with a tunable source and a large spectral and dy-
namic range detector. Alternative strategies on a “Bayesian approach” 
can overcome these drawbacks [37]. Bayesian methods differ from 
frequentist ones, in that information is extracted in terms of evidence- 
based probability, conditional on the available information. This af-
fects the collection procedure dramatically, for instance knowing the 
nature of the signal as composed by few non-zero value (sparse). 
Henceforth, a high-dimensional inference problem is analyzed with 
respect to its inherent low-dimensional structure. 

The NEXAFS and EXAFS signals have different sampling density re-
quirements, which imply an adaptive scheme For accurately “catching 
the edge” in the NEXAFS region, a signal is sampled at a much higher 
rate (e.g. 8–10 times) than in the EXAFS region, i.e. 1 data point per 0.5 
eV. On the other hand, in EXAFS, the sampling rate is lower than in the 
NEXAFS region, with a step size of ca. 1 point per 4 eV, sufficient for 
tracking low-frequency features, as shown in Fig. 2.a. The most densely 
sampled region is thus NEXAFS where the absorption edge lies. The 
second densest sampling region is the post-absorption edge region 
(EXAFS) in order to catch the primary peaks. The least dense is the pre- 
edge region. As shown in Fig. 2.b, the sampling rate function is an 
experimental adaptive concatenation of sampling rate coefficients (c’s) 
for each n-th energy bins. Fig. 2 visualizes that three domains are suf-
ficient, with approx. c ~ 0.1 eV− 1 at the pre-edge, c ~ 2.00 eV− 1 at the 
edge, and c ~ 1/E in the extended region. This kind of sampling method 
is not only standard at synchrotrons, but also important to consider 
when measuring with tabletop setups. If the sampling is not adaptive, 
the oversampled signal is noisy, which is a drawback for the extraction 
of accurate information in post-processing. The adaptive scheme is 
however a limitation for unknown samples, because it implies pre- 
knowledge. 

The Shannon-Nyquist theorem dictates the threshold sampling rate 
to a non-aliased measurement, stating that the sampling must be at least 
twice as high as the largest signal frequency [38]. This theoretical limit 
formally prevents any improvement in data collection efficiency as 
proposed in this work. It is however possible to have a robust signal 
reconstruction even in an under-sampled condition, if some information 
(e.g. sparsity) on the signal is independently available of enforced by ad 
hoc transformation. This Bayesian approach henceforth works because 
the useful information bandwidth is not spanning over the entire spec-
tral bandwidth. 

Compressed sensing (CS) makes use of such an idea of signal pro-
cessing. Here it was customized to XAFS signal acquisition. CS is 

thereafter a super-resolution technique, which combines the sampling 
and compression of data in a single step [39]. It is noteworthy to say that 
traditional compression of data, realized with lossy methods (e.g. JPG, 
MP3) are a rather different approach. Lossless techniques such as CS 
take advantage of data encoding and preserve all the information until 
data is uncompressed. CS provides undistorted real-time data 
compression for cryptoanalytics, which is important for data manage-
ment plans at central facilities. CS in spectroscopy offers also the 
advantage of reducing the number of measurements for rapid or tabletop 
data capturing. 

The use of CS relies on two crucial requirements: (i) the sampling (Φ 
function) of the signal has to be incoherent with the signal transform (ψ 
function); (ii) the target signal has to be highly sparse within a so-called 
restricted isometric property (RIP), i.e. the signal is transformed into a 
sparse version but not distorted [40]. A sparse signal has a few non-zero 
values (say S spectral peaks), which represent the whole signal. In a 
vector picture, a few non-zero values are plotted on the reference axis (i. 
e. all other components are zero). This means that one knows a-priori 
that of most values of the signal are in a few spectral components. While 
sparsity of a signal can be measured in a variety of ways, the l0

E 
measure 

is often used in noisy settings [41]. It is a modification of the l0 measure, 
where coefficients below a threshold E are considered negligible. One 
needs a number of samplings (m) smaller than the total number of values 
(n) but larger than the few sparse values (m ≥ 2S). A signal might not be 
sparse on its own, but it may be transformed to another basis, to become 
sparse. For instance, the Fourier transform (FT) can enforce signal 
sparsity. Unfortunately, FT resorts on the use of complex values which is 
more difficult to process in term of spectroscopic analysis as well as 
computation. Alternative transforms were investigated in this work. 

Aim of this work was to investigate: (i) how an XAFS signal can be 
acquired fulfilling the requirements of sparsity and incoherence and (ii) 
the numerical solver to achieve a full signal reconstruction with best 
accuracy and precision, to deliver a robust method. 

2.2. Theoretical background 

Consider a compressible array (1D) signal represented as F = f(n x 1)
where F is in a experimental space and f is a real valued function of the 
chemical information. The signal is experimentally discretized on n 
values, which is the target signal of interest shown in Fig. 3.a. The 
matrix Φ (m x n) is the measurement matrix used to sample the signal. 
However, the target signal is by default not sparse. It can be transformed 
to a sparse form, here indicated as f*(n x 1), using a suitable transform 
Ѱ (n x n) to map it isometrically (no distortion) into another space. 

The minimum required number of samplings m is given by the 

Fig. 2. a) Sampling rate of an arbitrary XAFS signal in the regions of NEXAFS and EXAFS. b) Sampling rate for a selection of target materials measured at syn-
chrotrons. The open source spectra are available to use and included in the public domain. The curves show that a polynomial function is chosen for adap-
tive samplings. 
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following expression [42], 

m = Cμ2S log n (3a)  

μ(ϕ,ψ) =
̅̅̅
n

√
max

1≤k,j≤n

⃒
⃒
〈
ϕk,ψj〉| (3b)  

where, μ is the coherence between measurement (Φ) and representation 
(Ѱ) basis (as defined in Eq. 3b) and S is its sparsity, while n is the number 
of data points and C is the RIP constant. One of the reasons to sample 
randomly is to satisfy incoherence requirements [43]. Random matrices 
are largely incoherent with any given fixed basis. The measurement 
matrix is the probe spectrum. The target signal is under-sampled at 
discrete values. The under-sampled signal is denoted as fs(m x 1). 
Finally, a compression encoding matrix denoted by Ө (m x n) is gener-
ated which is the convolution of the measurement matrix and the 
transform matrix (Fig. 3.a). 

Any possible solution for the CS problem can be classified broadly 
into three different algorithm categories: namely Greedy pursuits, 
Convex relaxation, Combinatorial algorithms [44]. A greedy pursuit 
algorithm approximates the target signal using a local iterative process 
by making optimal choices at each step. A convex relaxation algorithm 
converts a minimization problem into a convex optimization problem. 
This is a useful method for a large number of target signals, with 
numerous solutions available. Lastly, a combinatorial algorithm is based 
on a target-testing environment and can be applied for specific, struc-
tured measurements signals. 

The under-sampled signals are processed such that the target signal is 
decoded by solving a linear algebra problem (L1 norm minimization) 
[45]. This is a convex optimization problem, to solve an under-
determined linear system. The equation needed for the analytical signal 
retrieval is represented by y = Ax where, A = m x n, given S≪m < n. To 
reconstruct the target signal from the under sampled signal, i.e. to 
construct x from A and y, the recovery of the target signal is done by 
finding the sparsest solution. 

2.3. CS-XAFS algorithm 

For the purpose of applying compressed sensing to XAFS spectra, a 

python suite of codes was self-developed in our lab. The code samples at 
random a given spectrum, which in the present case is obtained from the 
open source XAFS measurements library (IXAS, X-ray Absorption Data 
Library) [46]. After extraction, the code reconstructs the signal using 
different numerical solvers and computes the error between the original 
signal and the reconstruction. The code has been tested on the XAFS data 
of several metal foils and their oxides with respect to the data available 
on the data base. The signal reconstruction algorithm written as a py-
thon program ideally works with a standard data format known as XAFS 
data interchange (.xdi) [47]. The XAFS data interchange file contains 
raw data for a single spectrum with the relevant metadata. Information 
such as energy (eV), incident energy, transmitted energy, absorption 
coefficient and sample thickness are entered into the code. A parser 
Matlab code sorts the data file and feeds into the python code for CS- 
XAFS analysis. 

The code architecture is based on a network of modules and libraries. 
One of the most crucial one is CVXPY, a python language module for 
solving convex optimization problems [48]. The major benefit of using 
this module is that it enable the user to define the problem statement in 
standard mathematical syntax. It converts the problem statement to the 
solver acceptable terminology and calculates the result. Other important 
libraries include NumPy, Pandas and SciPy. NumPy is a scientific 
computing package [49] which is useful in defining n-dimensional ar-
rays and implementing a variety of linear mathematical functions 
including transformations and random number generator functions. 
Pandas provides high performance data structures and easy to use data 
analysis tools [50], which can be implemented depending on the prob-
lem statement. SciPy provides algorithm to solve many class of problems 
in mathematics and statistics [51] such as interpolation, differential 
equations, eigenvalue problems and optimization functions. Lastly, the 
code is also complemented by Matplotlib package, which is used to 
create high quality figs. [52]. 

The code utilizes these packages in several steps and functions. 
Firstly it is important to define all the variables and constraints. Sec-
ondly, to define a minimization objective and a suitable transform. 
Lastly to define optimal parameters for a target solution. The code has 
several functions such a data input / extraction function, a sparsity / 
transformation function and a data reconstruction / solver function. The 

Fig. 3. a) Conceptual approach to acquire the XAFS signal of interest through under-sampling by specifying a measurement matrix, representation matrix and 
compression matrix. See text for details. b) Flowchart of how the compressed sensing code works with different solvers. SCS is Splitting Conic Solver, OSQP is 
Operator Splitting Quadrating Program, ECOS is Embedded Conic Solver and MOSEK is an optimization suite. 
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code is also made up of three scripts. The first script contains the core 
code. The second script defines the runtime parameters and configura-
tion variables. The third script contains the most commonly used func-
tions and performs read and write operations. The suite of codes has 
been tested with different numerical solvers. The solvers are the 
following ones: (i) splitting conic solver (SCS), (ii) operating splitter 
quadratic program (OSQP), (iii) embedded conic solver (ECOS), and (iv) 
the MOSEK application package. SCS is an optimization package for 
python which solves large scale convex cone problems [53]. OSQP is 
used for solving convex quadratic mathematical problems [54]. ECOS is 
used to solve convex second order cone problems [55]. MOSEK is a li-
brary of different conical solvers [56]. Fig. 3.b shows a flowchart of how 
the code works. 

The mean square error (MSE) in experimental retrieval is determined 
by deviation of the reconstructed spectra from the original reference 
spectra curve, using the following formula: 

MSE =
1
n
∑n

i=0
(yi − yi)

2 (4)  

where, n represents the number of data points, yi represents the values of 
the original reference curve and y denotes the values of the recon-
structed curve. 

To visualize the sparsity of XAFS signal in another domain Fig. 4 
shows a reference Co foil XAFS signal, with its main components in the 
transform domain (here DCT, see below). Arguments to adopt the DCT 
domain as the sparse representation for XAFS signals are (i) the use of 
real values, and (ii) that frequency components are given in the 
ascending order of their amplitude [57]. One notes that few frequencies 
carry the largest coefficients, and hence contribute for the most to the 
target signal structure. Dropping the minor frequencies is an acceptable 
compromise between signal accuracy and acquisition speed. 

2.4. Boundary conditions 

The number of measurements done to accurately reconstruct the 
target signal is given by m. This number must be larger than the sparsity 
S of a signal and in an ideal case more than twice as much (m> > 2S). 
The sparsity S for the signal is defined as the few significant non- 
components of target signal. Using the open source XAFS signal, the 
spectra are converted into the sparse domain to check for the degree of 
sparsity. Considering a threshold of 1%, and an target signal matrix 
composed of 360 components on a average synchrotron acquisition (n), 
the median degree of sparsity is calculated as 77%, which means only 

23% of the components are significant. This approximates the value of S 
to 83. The operating conditions used in this paper relate to three 
different sampling rates as discussed below. In all cases the values of n 
and S remain constant and the value of m changes i.e. the rate of under 
sampling is different. At 15%, m = 54 (m < S), resulting in an insuffi-
cient measurement matrix. When sampled at 30%, m = 108 (m> > S), 
the measurement matrix is enough for NEXAFS reconstruction. When 
sampled at 45%, m = 162 (m ~ 2S), the measurement matrix is good 
enough for even the EXAFS reconstruction. This analysis is presented in 
detail in the results section. Using the values of m, n and S, the RIP 
constant can be calculated (Table I). It is also important to verify the 
incoherence requirement for the application of compressed sensing and 
the respective RIP constant (C) and check if it is within the upper and 
lower bounds as dictated in literature and calculated in Table I [67]. The 
values are computed as a function of ρ = m/n (compression) and the 
upper bound is defined as δ = S/m (sparseness). The RIP constant is also 
related to coherence as = 1

μ2. Assuming 30% sampling (ρ = 0.77, δ =

0.3) and 45% sampling (ρ = 0.51, δ = 0.45), the value of coherence 
comes out be 0.4. Therefore the value for C becomes 6.25 which is well 
within the upper and lower bounds of a Gaussian matrix. If a m by n 
matrix satisfies a RIP of order 2S, then also m ≥ 0.281 Sln

( n
S
)

is valid. 

3. Results and discussion 

3.1. Method optimization 

3.1.1. Comparison of sparse transform matrices 
For the optimization of the CS algorithm, it is crucial to find the best 

possible transform matrix to a sparse base [68]. Using the XAFS signal of 
an Fe foil at different sampling rates, reconstruction was done and 
compared against the accuracy of a reference with alternative transform 
bases, namely: Discrete Cosine Transform (DCT) type II, Discrete Fourier 
Transform (DFT) [69], Discrete Wavelet Transform (DWT) [70], 
Hadamard-Walsh Transform (HWT) [71] and Random Orthogonal Ma-
trix (ROM) [72]. The ideal identity matrix (IDM) is used as a reference, 
and the different matrices are visualized in Fig. 5 in the form of a 8 bit 
greyscale heat map. The figure shows comparison at 15%, 30%, 45% 
and 100% sampling rates. The analysis concluded that DFT, DWT, HWT 
and ROM produced artefacts and noisy peaks. Therefore, the choice of 
DCT basis was preferred to represent sparsity and implement com-
pressed sensing for XAFS signals. 

Fig. 4. a) Distribution of characteristic frequencies in ascending order and amplitude of polynomial coefficients for a XAFS signal for the element Co in discrete 
cosine transform space. b) a scree plot shows the spread of frequencies in the discrete cosine transform domain where DCT component number are the eigenvectors of 
the transform and the eigenvalues are defined as a scalar quantity denoting the magnitude of the vectors. 
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Table I 
Calculated lower and upper Restricted Isometric Property (RIP) thresholds (Eq. 3a) following models proposed by (i) Bah, Bubacarr, and J Tanner. “Improved bounds on restricted isometry constants for Gaussian 
matrices.” SIAM Journal on Matrix Analysis and Applications 31.5 (2010): 2882–2898; (ii) Blanchard, Jeffrey D., Coralia Cartis, and Jared Tanner. “Compressed sensing: How sharp is the RIP.” SIAM Rev., 10 (2009): 
090748160; (iii) Candes, Emmanuel J., and Terence Tao. “Decoding by linear programming.” IEEE transactions on information theory 51.12 (2005): 4203–4215. Value were calculated with 0.1 ppm precision (7 decimals) 
but here are truncated to 3 decimals for space reasons. The lower and upper bound are computed as a function of two parameters, i.e. defined as ρ = m/n (compression) and δ = S/m (sparseness efficiency).  

Ref. i), Lower          Ref. i), Upper          
ρ↓, δ→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 ρ↓, δ→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
0.10 0.926 0.912 0.903 0.895 0.889 0.883 0.878 0.874 0.870 0.10 2.915 2.717 2.599 2.513 2.446 2.390 2.342 2.300 2.262 
0.20 0.986 0.979 0.974 0.970 0.966 0.962 0.958 0.955 0.952 0.20 4.419 4.049 3.826 3.663 3.534 3.427 3.334 3.252 3.178 
0.30 0.998 0.996 0.994 0.992 0.989 0.987 0.985 0.983 0.981 0.30 5.668 5.123 4.792 4.550 4.355 4.192 4.050 3.923 3.807 
0.40 1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.994 0.983 0.40 6.771 6.049 5.606 5.278 5.014 4.789 4.590 4.411 4.247 
0.50 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.993 0.50 7.774 6.869 6.309 5.891 5.549 5.255 4.992 4.752 4.526 
0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.60 8.701 7.608 6.925 6.408 5.981 5.608 5.269 4.952 4.646 
0.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.70 9.566 8.278 7.465 6.842 6.319 5.853 5.420 5.004 4.650 
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.80 10.378 8.890 7.938 7.199 6.565 5.987 5.444 5.004 4.650 
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.90 11.145 9.449 8.349 7.480 6.717 6.007 5.444 5.004 4.650  

Ref. ii). Lower          Ref. ii), Upper          
ρ↓, δ→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 ρ↓, δ→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
0.10 0.928 0.915 0.906 0.898 0.892 0.887 0.882 0.878 0.874 0.10 2.966 2.771 2.654 2.570 2.503 2.449 2.402 2.360 2.324 
0.20 0.986 0.980 0.976 0.971 0.968 0.964 0.961 0.958 0.955 0.20 4.536 4.174 3.956 3.797 3.672 3.568 3.478 3.399 3.327 
0.30 0.998 0.996 0.994 0.992 0.990 0.988 0.987 0.985 0.983 0.30 5.859 5.330 5.009 4.776 4.589 4.433 4.297 4.176 4.067 
0.40 1.000 0.999 0.999 0.998 0.997 0.997 0.996 0.995 0.994 0.40 7.044 6.346 5.921 5.609 5.358 5.145 4.960 4.793 4.641 
0.50 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.998 0.50 8.135 7.266 6.733 6.338 6.019 5.746 5.505 5.287 5.084 
0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.60 9.155 8.111 7.467 6.986 6.594 6.255 5.953 5.675 5.413 
0.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.70 10.117 8.896 8.137 7.566 7.094 6.684 6.312 5.964 5.451 
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.80 11.031 9.630 8.752 8.085 7.529 7.038 6.586 6.154 5.451 
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.90 11.905 10.319 9.318 8.549 7.901 7.320 6.774 6.199 5.451  

Ref. iii), Lower          Ref. iii), Upper          
ρ↓, δ→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 ρ↓, δ→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.10 4.638 4.319 4.126 3.984 3.872 3.779 3.698 3.627 3.563 
0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.20 7.108 6.525 6.168 5.905 5.695 5.519 5.365 5.228 5.104 
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.30 9.172 8.329 7.808 7.423 7.111 6.847 6.615 6.406 6.216 
0.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.40 11.007 9.904 9.217 8.704 8.286 7.927 7.609 7.319 7.051 
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.50 12.688 11.321 10.464 9.817 9.284 0.999 8.408 8.025 7.665 
0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.60 14.250 12.617 11.584 10.796 10.141 9.565 9.041 8.549 8.077 
0.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.70 15.719 13.815 12.599 11.663 10.875 10.172 9.522 8.898 8.283 
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.80 17.111 14.930 13.525 12.431 11.497 10.653 9.853 9.065 8.256 
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.90 18.435 15.973 14.371 13.109 12.016 11.008 10.028 9.025 7.929  
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3.1.2. Comparison of solvers 
The compressed sensing code has the capability to utilize different 

solvers for convex optimization. The conical solvers mentioned in sec-
tion 2.2 are used for L1 norm minimization. To optimize the CS algo-
rithm for best possible reconstruction of the under-sampled signal in the 
shorted amount of time, the capabilities of these solvers are compared. 
Using a reference XAFS signal of a Fe foil and reconstructing the signal 
with random sampling at rates of 30% and 45%, the speed and the mean 
square percentage error is calculated for the four solvers namely: 
MOSEK, SCS, ECOS and OSQP are compared. The density distribution of 
a hundred measurements is shown in Fig. 6, in the form of a “violin plot” 
which gives the minimum, the maximum and the mean values. The 
Fig. 6.a shows that MOSEK is the fastest among other solvers, with ECOS 
as a close second. The Fig. 6.b shows that in term of mean square error, 
all conical solvers perform similarly. Therefore, for the scope of the re-
sults presented in this paper, MOSEK was chosen as the efficient solver. 

3.1.3. Signal reconstruction accuracy 
In Fig. 7, two sparse reconstruction methods are shown, i.e. using (i) 

a lossy and (ii) the CS method (Section 2.2), for a XAFS signal of iron. 
Fig. 7.a compares the distribution of DCT eigenvalues in the original and 
the reconstructed signal using the lossy algorithm. Eigenvalues repre-
sent coefficients of the transform being implemented. A lossy compres-
sion algorithm permanently eliminates some data points, which are 
considered redundant. In this example the l0

E 
sparsity definition with a 

threshold of 10− 3 is applied, which means any component below this 
value is filtered as a zero value. 

Henceforth, the XAFS signal is reconstructed by using the remaining 
non-sparse eigenvalues. The result is shown as the red curve in Fig. 7.b. 
The obtained reconstruction is not accurate as it puts the edge 16 eV off 
at 7109 eV (red) compared to the 7125 eV (blue). It also skews the 
extended region and thus, only distorted information can be extracted. 
The same reference spectra of a Fe foil (Fig. 7.c) is randomly under- 
sampled at 45% using a uniform sampling distribution and processed 
with the CS method. After that it is reconstructed using the SCS opti-
mization solver and is shown in Fig. 7.d. The reconstruction is satis-
factorily accurate. This validates the performance of compressed sensing 
and the importance of incoherence (random matrices) in finding the 
sparsest solution for a given signal of interest with good signal to noise 
ratio. To achieve an accurate reconstruction of the XAFS signal, it is 
crucial that the parameters of an ideal random sampling function and an 
ideal random measurement matrix are defined. Fig. 8.a indicates the 
ideal sampling function and Fig. 8.b represents the measurement matrix 
to get the best signal to noise ratio above 45% sampling. 

3.2. Method application 

The validation of results obtained after application of compressed 
sensing to XAFS signals is presented via case studies on metal foils and 
their oxides. Transition metals are ubiquitous in all biological and living 
systems to be studied [58]. Transition metals are also characterized by 
their magnetic properties dependent on their electronic configuration 
[59]. On the periodic table, transition metals belong to the d-block of the 
periodic system. When ions of such an element react with a species 

Fig. 5. Comparison of different transformation matrices for compressed sensing implementation for under sampling and reconstruction of XAFS signals. Five 
different basis are compared with the reference identity matrix (IDM), namely: DCT, DFT, DWT, HWT and ROM. The Latent space (z) is the transformed domain. They 
are visualized also as grey scale map (8 bit). The signal is represented with different sampling rates (15%, 30%, 45% and 100%). The DCT transform matrix is by far 
the best matrix to generate sparsity and for the implementation of CS XAFS signals as presented below. 
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capable of donating electrons, they form metal complexes [60]. X-ray 
absorption spectroscopy is particularly useful in determining the metal- 
ligand bonding by probing the d-orbitals. In addition, their ability to 
form oxides make them an important element to study and play a vital 
role in catalysis. XAFS can help in studying the metal K-edge to char-
acterize the oxidation state, the metal-metal bond distance and the 
metal‑oxygen bond distance. It can also help determine the degree of 
disorder of catalysis [61]. In transition metals K-edge is between 5 and 
10 keV and the L-edge is between 400 and 1000 eV. The pre-edge 
transition is from 1 s to 3d state and the edge transition is from 1 s to 
4p state. For the case studies presented in this chapter, Iron (Fe) and 
Cobalt (Co) are used as main examples. The study of Fe is very important 
for redox reactions [62] and Co for water oxidation catalysts [63]. 
Multiple oxidation states exist for both Iron (Fe+2, Fe+3) and Cobalt 
(Co+2, Co+3) [64]. The rising first absorption edges for both Fe and Co 
are at 7112 eV and 7708 eV, respectively [65,66]. 

3.2.1. NEXAFS (edge and oxidation state determination) 
In a specific study the compressed sensing method was evaluated to 

enable the extraction of information from the near edge profile, of 
reference XAFS spectra (Fe and its oxides). The Figs. 9a, 9b, 9c show 
spectra for Fe and its oxides with different under sampling rates (15%, 
30%, 45%) respectively, compared to the reference (100%) in Fig. 9d. 
The spectra sampled at 15% are very noisy and no good information is 

discernable. As the sampling rate is increased, the noise in the spectra 
dials down and information can easily be extracted at 30% and 45% 
sampling. The reconstructed results clearly show that there is a shift in 
amplitude and energy of the Fe K-edge when the oxidation state of iron 
changes from 0 (Fe) to +2 (FeO) to +3 (Fe2O3). This proves that a 
compression rate of almost 70% still allows one to collect the NEXAFS 
data accurately, as compared to a full 100% scan and over-sampled data. 

3.2.2. EXAFS (bond length determination) 
Since the extended edge is more susceptible to noise, the best 

compression rate still allowing accurate results was found to be as much 
as 55%, as shown below. This is proven by first considering a Co foil 
sample reference data which is compared with different percentages of 
sampling and the amount of error is shown. To validate the case study 
for extended edge analysis, the first step was to reconstruct the Co-foil 
XAFS spectra with different sampling rates. 

Fig. 10 shows three reconstructed XAFS signals with different sam-
pling rates 15% (blue), 30% (green) and 45% (red) as compared to the 
original (dotted). The quantitative analysis of reconstructed spectra, 
which are not smoothed by any filters show significant noise in the 
extended edge area with low sampling rates. The qualitative study of the 
extended edge is performed by transforming the raw data into K- 
weighted frequency space. 

Fig. 11 shows the transformation of raw data with different sampling 
rates into k-weighted space, showing that at lower sampling rates (i.e. 
15%, 30%), the amplified noise produces artefacts which makes it 
difficult to interpret any useful information as compared to the reference 
(100%). Although at a slightly higher sampling rate (45%), the noise 
subsides for better data interpretation. The next step in the natural 
progression of EXAFS study is to convert the data from k-space to R- 
space using Fourier transformation, in order to extract preliminary bond 
information. 

Fig. 12 shows the data in R-space, where the bond distance values are 
given on the axis and can be extracted, depending on the width of the 
peaks. The values extracted here are still considered as preliminary 
chemical information as the data points extracted here are compared 
and fitted to reference models with EXAFS equation and Artemis Soft-
ware to realize the actual bond lengths of the sample being studied. 

As a second example in Fig. 13, the under-sampled spectra of FeO are 
also visualized in R-space to compare the bond lengths with respect to 
the reference. 

The results show that CS allows to obtain correct information with 
collection of up to a factor of 2–3 times less data points than usual, which 
turns into a gain in measurement time. To extract the chemical infor-
mation from the XAFS raw data, post-processing analysis is necessary, 
although some preliminary information can already be extracted from 
the raw data and also by converting the same raw data to k-space and R- 
space. The information extraction from pre-edge and near-edge is 
quantitative and can be extracted visually by observing the respective 
peaks. From the under-sampled reconstructions of Co foil at 30% and 
45% as compared to the reference, it is visible that although there is 
some noise, the compression does not affect the position of the peaks, 
which is essentially giving correct information about the oxidation state 
of the element. On the other hand, extended edge analysis is a qualita-
tive analysis where the noise has more impact on the sought-for chem-
ical information. To compare the information content, the reconstructed 
and the reference raw data are converted to k-space and R-space. In the 
k-space, information about the chemical structure and order/disorder is 
extracted. This is done by taking into account, the number of oscillations 
and their amplitudes. In R-space, the peaks and their widths give in-
formation about the interatomic distances and the number of shells. 

3.2.3. Effect of noise 
It is important to analyze how the level of compression affects the 

noise in detail. Obviously, the noise in the raw data is crucial as it is 
amplified when the data is converted in to k and R spaces. Therefore, in 

Fig. 6. a) Comparison of different conical solvers namely: MOSEK, SCS, ECOS, 
OSQP for reconstruction of undersampled signals at 30% and 45% for a Fe foil 
XAFS signal. The violin plot shows the density distribution of a 100 measure-
ments. a) Solvers are compared in time with MOSEK being the fastest. b) 
Solvers behave the same when the mean square error is compared. 
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the 15% and 30% under-sampled signals, even the slight noisy peaks are 
considered detrimental, because it is rather hard to get any accurate 
information from their k-space and R-space counterparts. At 45% under- 
sampling, and comparing it to the reference data in k-space and R-space, 
the signal is substantially accurate. After extraction of preliminary data 
in R-space, this data is fitted with the EXAFS equation in the Artemis 
Software [73] to extract the right values corresponding to the equation 
variables, which is then compared to reference values. It is important to 

note that this last step is an iterative process where raw data can be 
treated with smoothing algorithms until the desired result is achieved. 

Variance is a good measure of the noise present in the signal with 
respect to compression. Fig. 14 shows the noise variance for Co, Fe, Ni, 
Cu and Zn signals with respect to level of compression in the energy 
domain, where raw spectral data is reconstructed and visualized. An 
accuracy threshold (maximum 1% error between reconstructed and 
reference data) is defined. For transition metal foils, it shown that the 

Fig. 7. a) Comparison of signal eigenvalues (original vs. reconstructed with a lossy algorithm) for the sequence of DCT components using a Fe-foil XAFS signal. The 
sparsity threshold as a cutoff at values <10− 3 which are considered as zero b) Real space original (blue) vs reconstructed spectrum (blue), using a lossy algorithm. c) 
same as a) but using compressed sensing procedure. d) same as b) while using compressed sensing. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 8. a) Bayesian sampling function of an ideal measurement matrix (red) for undersampling the data at 45% for the best reconstruction via compressed sensing, as 
compared to the original (blue). b) For obtaining a good signal to noise ratio, a random ideal measurement matrix (red) versus the original sampling matrix (blue). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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error trend line is similar showing a 30% sampling rate being good 
enough for quantitative analysis of raw spectral data. The slight differ-
ences in trend lines of different materials are a result of random sam-
pling and also due to the complexity of the signal, which can be defined 
as the sum of significant components a spectra has in a sparse basis. 

4. Conclusion 

The application of compressed sensing to XAFS was studied. A CS- 
XAFS algorithm is developed and optimized based on the on best 
choice of a sparse domain and a conical solver. The XAFS spectra of 

transitional metal foils of Fe and Co are used as examples based on their 
importance in spectroscopy studies. A randomly sampled matrix and 
coherence requirements are satisfied and a proof of concept is shown. 
The results demonstrate that XAFS signals can be under-sampled and 
compressed up to two to three times depending on the region of interest. 
For the NEXAFS region, the compression rate is higher than the EXAFS 
region as the extraction of information is done quantitatively in the case 
of NEXAFS (section 3.3) and qualitatively in case of EXAFS (section 3.4). 
With a good signal to noise ratio, compressed sensing can reduce the 
time and the no. of measurements needed while doing XAFS measure-
ments without compromising the sensitivity and spectral resolution. 

Fig. 9. a): NEXAFS signal for Fe under different oxidation states and different sampling rates, reconstructed with 15%, 30%, 45% and 100% under-sampling. It is 
clearly shown 15% sampled spectra is noisy and can be discarded. The 30% sampled spectra and onwards are closer to the reference. A clear shift in energy and 
amplitude of the spectra is observed as the oxidation state of Fe changes. 

Fig. 10. Co Foil XAFS signal reconstructed with different sampling rates 15%, 30%, 45%, as compared to the original reference.  
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Fig. 11. Co XAFS reconstructed signals transformation to frequency K weighted space for different sampling rates as compared the reference transformation are 
shown in a) Co signal with 15% sampling, b) Co signal with 30% sampling, c) Co signal with 45% sampling and d) Reference Co signal fully sampled at 100%. At 
lower sampling rates, signal is more susceptible to noise. At 45%, the signal is in good conformity with the reference. 

Fig. 12. Co XAFS reconstructed signals Fourier transformation to R- space for different sampling rates as compared to the reference transformation are shown in a) 
Co signal at 15% sampling, b) Co signal at 30% sampling, c) Co signal at 45% sampling and d) Reference Co signal fully sampled at 100%. At lower sampling rates, 
the noise peaks are evident in the signal. At 45% sampling, the noise peaks are lower and in acceptable conformity with the reference. An expected typical phase shift 
is evident. 
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Compressed sensing can increase the efficiency for laboratory XAFS 
setups with dispersive spectrometers by reducing the need to repeat 
measurements as the collected data can be accurately reconstructed 
using the compressed sensing algorithm based on L1 norm optimization. 
This method can also be used as complimentary for beamlines even 
aiding in time resolved experiments; as a signal can be acquired with few 

shots in few minutes and can be reconstructed mathematically elimi-
nating the noise in the process. This can be particularly useful for per-
forming a noise-sensitive, data-intensive, high-resolution QuickXAFS 
experiment at the synchrotron and for taking it one step further, the 
compressed sensing code can be adapted for other photon-intensive 
spectroscopy methods such as X-ray Emission Spectroscopy (XES). 

Fig. 13. FeO XAFS reconstructed signals Fourier transformation to R- space for different sampling rates as compared to the reference transformation are shown in a) 
FeO signal at 15% sampling, b) FeO signal at 30% sampling, c) FeO signal at 45% sampling and d) Reference FeO signal fully sampled at 100%. At lower sampling 
rates, the noise peaks are evident in the signal. At 45% sampling, the noise peaks are lower and in acceptable conformity with the reference. An expected typical 
phase shift of 0.5 Å is evident in the first peak. 

Fig. 14. Residual of reconstruction as a function of under-sampling rate for different elements (Co, Cu, Ni, Zn, Fe). Typical data densities for various sources are 
indicated. Beamline are state-of-the-art, but laboratory sources can provide effective accuracy. 
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Open source code 

The CS-XAFS code is made available as open source on GitHub [74] 
within the scope of GNU General Public License. 
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