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Abstract
In this article, we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions. We 
focus on the fluid–structure interaction leading to sound emission in the fluid domain by analyzing three different methods 
to account for acoustic sources. These are a discretized baffled piston using the discrete calculation method (DCM), a closed 
cylindrical volume using the boundary element method (BEM) and radiating elastic disks in a cubic enclosure solved with 
the finite element method (FEM). We provide the validation of the baffled piston and the BEM using measurements of 
the noise emission of a railway wheel by considering ground reflections in the numerical models. Selected space-resolved 
waveforms are compared with experimental results as well as with a fluid–structure interaction finite element model. The 
computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted, and the baf-
fled pistons limitations caused by a lack of edge radiation effects are investigated.
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1 Introduction

Present research in railway noise tackles various areas such 
as noise emission caused by aerodynamics, structure-borne 
sound, electric machines, ground vibration and rolling noise. 
Particularly, rolling noise has been a widely spread research 
topic for many years since it is dominant for trains driving at 
average speeds. In normal rolling conditions, the combined 
roughness of wheel and rail is the key mechanism of sound 
generation [1]. Particular challenges can arise with worn 
wheels, where so-called wheel flats or polygonization lead to 
particularly high noise generation [2, 3]. Many groups have 
been investigating the vibrations and sound radiation of train 
wheels. Particularly, the influence of the rolling contact and 
additional track effects such as sleeper behavior and ballast 
reflections have been considered [4–6].

Since the reduction of railway noise requires the consid-
eration of many different physical phenomena and techno-
logical aspects, a wide variety of noise abatement measures 
are possible. Rolling noise dominates the sound emission 

between 30 and 250 km/h [7]. Therefore, the wheel–rail 
interaction is often considered in terms of its subcompo-
nents to study their contribution in more detail and can be 
optimized by redesigning the parts that strongly contribute 
to the noise such as the wheel [8–10]. To deal with public 
requirements and regulations, there is an increasing demand 
for physics-based models since they are cheap and fast com-
pared to large measurement campaigns.

For the investigation of railway noise, analytical, numeri-
cal and experimental methods are available. Sound emission 
from train wheelsets has been modeled via several analyti-
cal [11] and numerical (finite element method (FEM) and 
boundary element method (BEM)) [2, 12, 13]) techniques. 
To calculate the vibrational response of train wheels, sim-
plified analytical models exist, assuming a rigid mass and a 
point sound source for predicting the estimated sound radia-
tion [11]. Adding more complex geometries but still keeping 
the computational effort low, axial symmetry is exploited, 
e.g., the waveguide finite element formulation for axisym-
metric bodies [14]. Nevertheless, when considering point 
excitation at the wheel–rail contact interface, the exploi-
tation of axisymmetry alone is insufficient for conducting 
harmonic analysis. It needs incorporation of approaches 
such as 2.5D methods  [12, 15]. In  [12], the vibrational 
response of the wheel is obtained by using a 2.5D FEM 
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model, and its output is used for a boundary element model. 
The authors show measurements of a plate to validate their 
method and then apply it to a railway wheel and show radia-
tion efficiency and peak frequencies. In the work of Fabre 
et al. [15], a waveguide FEM combined with the Fourier 
BEM is used to examine the impact of reflective planes on 
the sound radiation of railway wheels. The authors state that 
the radiation characteristics stay mostly unchanged when 
the reflective plane is included. Valid results in the range 
of 150–10,000 Hz are obtained. For validation, they use a 
suspended disk in a fully anechoic room with a shaker as an 
excitation source.

In general, both the axisymmetric and 3D finite element 
methods are appropriate models to perform computation-
ally feasible vibration calculations for geometries such 
as railway wheels. However, in the acoustic domain, the 
computational effort for receiver points at large distances 
(a common standard is 7.5 m away from the centerline of 
the railway track [16]) makes finite element simulations 
very challenging due to the domain size and therefore the 
BEM is preferable. With the BEM, complex geometries can 
be investigated, but precise meshes for closed surfaces are 
needed. Reference [17] presents a notable study that employs 
BEM, where the author compares distinct sound radiation 
attributes of wheel modes occurring during curve squealing, 
focusing on the evaluation of radiation efficiency and direc-
tivity. To investigate different wheel profiles, the author of 
[18] uses the axisymmetry of the wheel for an axiharmonic 
formulation. Open-source BEM implementations are readily 
available and allow to avoid time-intensive development of 
in-house codes [19].

In the field of building acoustics, it is customary to 
model the radiation of sound assuming a piston mounted 
on a baffle. This is generally used in cases where the veloc-
ity over the piston surface is constant. However, several 
authors developed expressions for a discretized vibrating 
piston with non-uniform velocity using analytical solutions 
[20] or asymptotic expressions for calculating the mutual 
impedance between the rectangular [21] or circular [22] 
discretized elements of the oscillating plate. In the study of 
railway wheels, the baffled piston has been explored in  [10] 
and  [23]. Railway wheels are discretized into smaller baf-
fles and the pressure at specific distances can be obtained 
through integration over each individual subbaffle. This is 
done using a discretized Rayleigh integral (DRI). Thomp-
son [10] uses the acceleration spectra from five points on 
two distinct railway wheels to approximate the levels across 
five concentric rings. In [23], the radiation efficiency and 
directionality of different wheel types are calculated using a 
discretized piston segmented into small subbaffles. Despite 
this, both investigations only account for the self-radiation 
impedance, as described by the Rayleigh integral, and 
disregard the mutual radiation impedance as defined by 

Stepanishen [22]. A precise and holistic formulation of the 
impedance of a discretized baffled piston, also known as 
discrete calculation method (DCM), is presented in [24]. To 
the best of our knowledge, DCM is used for evaluating the 
overall radiation efficiency from experimental data [25] and 
not for radiation patterns. There is no work available com-
paring DCM for the acoustic impedance connecting acoustic 
pressure and structural velocity.

The goal of this work is to show that the DCM and the 
associated impedance matrix can be used to reduce the 
computational effort and simplify the entire model signifi-
cantly. To better understand the assumptions of the DCM 
method used for the baffled piston, we review in Sect. 2 its 
derivation and compare it to the more standard BEM and 
FE method in the acoustic domain. We put special empha-
sis on calculating the impedance matrix that relates sound 
pressure and normal velocities of the vibrating wheelset, 
which is common in all three methods. In Sects. 3 and 
4 a detailed validation of the vibrometric and acoustic 
models is presented. This provides the possibility to show 
a comprehensive comparison between the methods and 
explains the strengths and limitations of the baffled piston 
assumptions.

2  Numerical methods for sound radiation

In our approach, the modeling of sound radiation of a wheel-
set follows two steps: the structural response to an input 
force calculated using FEM and the propagation in the 
acoustic domain according to three different methods. The 
structural finite element model is introduced in order to cal-
culate the velocities of the acoustic source. Three different 
models representing the acoustic domain (DCM, BEM and 
FEM) are presented in order to calculate the emitting sound 
pressure from the previously obtained structural velocities. 
This procedure is valid since the railway wheel is a heavy 
structure in the acoustic domain considering air as light 
fluid. No back-coupling from fluid to structural domain is 
required since pressure changes on the fluid side are negli-
gibly small. Thus, the system can be solved in two consecu-
tive steps.

2.1  Harmonic finite element analysis for vibrational 
input data

The theory for time-harmonic analysis in finite elements is 
based on the equation of motion:

solving for displacement u with mass matrix M̂ , damping 
matrix Ĉ , stiffness matrix K̂ and the external force f  . Using 

(1)M̂ü(t) + Ĉu̇(t) + K̂u(t) = f (t),
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u(t) = ue−j�t and f (t) = fe−j�t with amplitudes u and f  in 
Eq. (1) yields

where � is the angular frequency and j is the imaginary unit. 
The traditional convention of the equation of motion is com-
monly obtained using the time-dependent factor ej�t instead 
of e−j�t . In order to be consistent with wave-propagation 
studies in the acoustic domain, the notation e−j�t is used. The 
wheel is excited at one specific node at the wheel rim with 
unit force f  and the displacements u are calculated using the 
finite element method in Ansys. From the harmonic analysis, 
the velocity field vs on the surface can be obtained with

by extracting the displacement field us on the surface.
In the time-harmonic structural analysis, the steel wheel 

(see Fig. 1) is excited by a time-harmonic force in order to 
calculate its frequency response and associated waveforms, 
shown in panel (Fig. 1a). The excitation takes place at the 
rim (see blue arrow in Fig. 1a) for axial forces or at one 
point at the tread (red arrow) for radial forces in order to act 
consistently with the experiments that follow at a later step. 
In the second step, the velocities at each excitation frequency 
calculated in the harmonic analysis are exported from the 
green area in Fig. 1b and projected on a flat circular surface 
in order to act as a source in the acoustic domain.

2.2  Sound emission in fluid domain

To describe the emission and propagation of sound, the 
structural velocity must be related with the sound pres-
sure at the interface. In the first step, the impedance is 
introduced. In the second step, the governing equations to 

(2)
(
−𝜔2M̂−j𝜔Ĉ + K̂

)
u = f ,

(3)vs = −j�us,

express this impedance term are reviewed and then applied 
in a third step to discretized structures, leading to matrix-
over-node impedance expressions.

2.2.1  Impedance

In time-harmonic acoustics, the propagation of sound is 
described by the Helmholtz equation

where p defines the pressure, k = �∕c the wave number, � 
the angular frequency and c the speed of sound. By introduc-
ing the 3D free-space Green’s function G =

1

‖r−r�‖e
jk‖r−r�‖ 

with the receiver position r = (x, y, z) and the source at posi-
tion r� = (xs, ys, zs) , the inhomogeneous spatial wave 
equation

is satisfied for an unbounded medium external to the 
source [26], where �(r − r�) is the Dirac delta function rep-
resenting the point source distribution. Combining Eq. (4) 
multiplied with G(r, r�) and Eq. (5) with p(r�) and rearrang-
ing them leads to

Then applying the divergence theorem

with

(4)∇2p(r) + k2p(r) = 0,

(5)(∇2 + k2)G(r, r�) = 4π�(r − r
�),

(6)
∫V

[
G(r, r�)∇2p(r�) − p(r�)∇2G(r, r�)

]
dV

= 4π∫V

p(r�)�(r − r
�).

(7)C(r)p(r) = ∬Γ

[
p(r�)

�G(r, r�)

�n
− G(r, r�)

�p(r�)

�n

]
dS(r�)

(a) (b) Tread Rim

Web

Fig. 1  Numerical model of railway wheelset DB97 for harmonic structural simulations: a vibrational mode shape of an excited wheel and loca-
tion of the point source; b the geometry of the wheelset with the relevant surface (in green) acting as acoustic source
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is obtained [27], where R is the distance R = |r − r�| , n is 
the normal vector and S is a closed surface in the volume V. 
For the pressures on the surface, C(r) is introduced, with a 
value equal to 2π for smooth surfaces. For the case of pres-
sures within the same volume V, we can reformulate the 
equation to

which is used in a later step to derive the Rayleigh integral. 
Neglecting external forces, we obtain in linear acoustics

(8)C(r) =

⎧
⎪⎨⎪⎩

4π for r ∈ V, r ∉ S

4π + ∫
S

�

�n

1

R
dS for r ∈ V, r ∈ S

0 for r ∉ V, r ∉ S

(9)p(r) =
1

4π ∬Γ

[
p(r�)

�G(r, r�)

�n
− G(r, r�)

�p(r�)

�n

]
dS(r�),

which is used in the integral equation and therefore relates 
p and v ⋅ n , the latter being known due to the continuity 
equation.

The numerical calculation of the impedance on vibrat-
ing structures requires their discretization. Three different 
frameworks are compared, as shown in Fig. 2. These are a 
baffled piston which represents a flat circular disk using the 
discrete calculation method (DCM) (Fig. 2a), the boundary 
element method (BEM) which represents a cylindrical sur-
face (Fig. 2b) and the one-way fluid structure interaction in 
finite elements (FE) developed by using a cubic volume with 
cylindrical faces inside (Fig. 2c). The mesh of these models 
is shown in panels Fig. 2d–f. For the DCM, a grid with 
square elements is selected, see Fig. 2d. The BEM model 
consists of linear triangular surface elements (Fig. 2e), and 

(10)
�p(r�)

�n
= −j��v ⋅ n,

Fig. 2  The three investigated models and the corresponding meshes: a a circular piston mounted on an infinite rigid baffle, b a closed area for the 
boundary element method, c a finite element model with enclosure for the fluid domain, d the mesh of the discretized circular piston mounted 
on an infinite rigid baffle, e the closed surface mesh for the boundary element method, and f the mesh of the finite element model for the fluid 
domain
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the FEM model is composed of tetrahedral elements of 
quadratic order (Fig. 2f). The maximum element size for 
each model is 0.01 m.

For discretized bodies, an acoustic impedance matrix Ẑ 
is necessary to describe the relation between pressure and 
velocity. In the following, for all three models, which are 
based on different discretization schemes, the velocity field 
vΓ from the harmonic structural simulation is used as a sound 
source to calculate the sound pressure of this sound source 
pΓ on the input surface Γ.

Since each model is subject of different discretization 
methods, the differences in the calculation of the imped-
ance matrix will be discussed in the following sections. 
The velocities of each frequency extracted in the harmonic 
analysis are now projected on the green surface for a baffled 
piston, a closed cylinder volume and a closed cylinder inside 
a box filled with a fluid. After calculating the impedance on 
the corresponding surfaces, the sound propagation in space 
can be further calculated by using the retrieved surface pres-
sure pΓ.

2.2.2  Boundary element method

The boundary element method is based on a closed structure 
that is discretized on its surface. In order to calculate the sur-
face pressures, Eq. (7) follows the discretized form [19, 27]

with Akl =
�G(rk , rl)

�n
sk and Bkl = j��G(rk, rl)sk being entries 

of  matrices Â and B̂ , respectively, where G is the Green’s 
function and k and l are the elements on the vibrating sur-
face; rk and rl are the spatial coordinates of the receiving 
and emitting points and sk is the surface area; and C is the 
geometric quantity of the surface angle, which is generally 
2π for continuous surfaces. By including the geometric sur-
face properties, BEM takes radiation effects of edges and 
therefore the realistic boundary conditions into account.

For stability and robustness, the BE method used in this 
article considers the combined Helmholtz integral equation 
formulation (CHIEF). In [19], the authors use the CHIEF so 
that more complex geometries with complex meshes can be 
treated and the uniqueness problem is solved by introducing 
additional points, leading to an over-determined system that 
is solvable

where Î is the identity matrix. Finally, using the obtained 
pressure on the surface pΓ , one can calculate the pressure in 

(11)pΓ = ẐvΓ.

(12)CpΓ = ÂpΓ − B̂vΓ,

(13)pΓ = (Â − CÎ)−1B̂vΓ.

receiver points prec within the fluid volume V using C = 4π , 
according to Eq. (8),

2.2.3  Baffled piston model

The case of a piston mounted on an infinite rigid baffle can 
be derived in the frequency and time domain [28]. In this 
work, the expression for the acoustic pressure of a baffle is 
derived using the Kirchhoff–Helmholtz integral theorem 
Eq. (9) in the frequency domain describing the sound pres-
sures within a volume free of sources, where sound pres-
sures and velocity are prescribed in all points on any surface. 
Since a baffle is a vibrating surface mounted on an infinite 
rigid wall, the method of images is used in the Green’s func-
tion considering two acoustic sources

where R =
√
(x − xs)

2 + (y − ys)
2 + (z − zs)

2  and R
� =√

(x − x
s
)2 + (y − y

s
)2 + (z + z

s
)2 are the distances between 

receiver and the source and receiver and the image source, 
respectively, with the receiver position r = (x, y, z) and 
source at position r� = (xs, ys, zs) . Since the sources are on 
the wall z = 0 , the second term of the Green’s function on 
the surface becomes due to the infinitely small disk (equiva-
lent to R = R�)

and since the normal vector is perpendicular to the flat sur-
face, ∇SG ⋅ nS vanishes in normal direction. Due to Euler 
equation for the gradient of the pressure we obtain the Ray-
leigh integral [28]:

where � represents the density of the fluid. Since this equa-
tion is only valid for constant velocities over the vibrating 
surface, a varying velocity field on the surface is not possible 
and therefore a discretization of the surface is needed. To 
deal with this issue, Hashimoto introduced the DCM [24]. It 
expresses the radiation impedance of a vibrating piston on an 
infinite planar baffle. The impedance is calculated from two 
parts: the self-radiation impedance describing the impact 
of the velocity on the pressure of the same element, see 
Fig. 3a, and the mutual radiation impedance describing the 
impact of the velocities of all interacting elements except the 

(14)Cprec = ÂpΓ + B̂vΓ.

(15)
G =

ejkR

R
⏟⏟⏟
Source

+
ejkR

�

R�

⏟⏟⏟
Image source

,

(16)G(z = 0) =
2

R
ejkR,

(17)p = −
j��

2π ∬
v

R
ejkRdS,
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one of the element itself on the pressure, see panel (b). The 
application and validation of the DCM method can be found 
in several publications [25, 29].

For the DCM, the baffled piston is discretized into 
square elements with length Δx , see Fig. 4a. Each of the 
elements can be approximated by disks (Fig. 4b) that can 
be treated as small pistons with an equivalent radius 
a =

√
Δx2

π
 and surface area S. Their interaction is calcu-

lated to the corresponding distance d between the center 
of each circle.

The self-radiation impedance is originally derived 
from the Rayleigh integral [30]. It is valid for the entire 
frequency domain and can be found in textbooks such as 
[28, 31]. A vast body of literature is available on deriving 
asymptotic and series expansion solutions for special cases 
of the Rayleigh integral for circular  [22, 32] as well as 
for rectangular plates [33]. Two very interesting cases are 
the axial pressure ( � = 0 ) and far-field pressure ( r ≫ a ) 
for all � mentioned in [28]. In this work, we describe the 
relationship between pressure and velocity derived from 
the mechanical radiation impedance Zm , which relates to 
the relationship between force and velocity:

where f is the force and vn is the velocity. This complex 
integral is solved in [28] to

with

and

which results in the analytical formula for the self-radiation 
impedance:

(18)
Zm =

f

vn
=

∫
S
pdS

vn
=

∫
S

−j��

2π
∫
S

vn

R
ejkRdSdS

vn

=�S

−j��

2π �S

ejkR

R
dSdS,

(19)Zm = Rr + jXr = �cS[R1(2ka) + jX1(2ka)]

(20)R1 = 1 −
2J1(2ka)

2ka

(21)X1 =
2S1(2ka)

2ka
,

Fig. 3  The schematic view of a the self-radiation impedance and b the mutual radiation impedance

Fig. 4  Illustration of discretized elements interaction in the DCM: a a grid of square elements that is suitable for the DCM method and b the 
square mesh approximated in DCM by as many circular pistons interacting with each other. a is the radius of one baffle and d the distance of 
between the center of two baffles. Δx defines the side length of a square element

∆
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where c is the speed of sound in air, J1 is the Bessel func-
tion of first kind and S1 is the Struve function of first kind. 
The relation between the pressure p� and velocity v� at one 
specific baffled piston is called the acoustic impedance Z��:

The expression of the mutual radiation impedance men-
tioned in the DCM can be found in [22] for interactions of 
circular pistons of arbitrary size and spacing. It is derived 
by taking the far-field solution of the pressure field of a baf-
fled piston. As derived in the transient analysis of [22], the 
time-dependent pressure p(x, �) can be expressed as a con-
volutional integral of the time-dependent velocity of the jth 
piston vj and the piston’s impulse response h(x, �):

From this, we obtain the far-field expression for the pressure 
velocity relation caused by the interaction of element � and 
element �:

with d considering the distance between � and �.
By using the expressions for the self-radiation and mutual 

radiation impedance (i.e., Eqs. (23) and (25), respectively), one 
can now calculate the pressure on the interface Γ as described 
in Eq. (11). The propagation of sound in the acoustic domain 
is then achieved in the same way as in Eq. (14).

2.2.4  Finite element method

The one-way coupling of a fluid–structure interaction problem 
in the frequency domain is described by the following equa-
tions [34]:

where M̂S and M̂F are the mass matrices of solid an fluid, 
ĈS and ĈF are the corresponding damping matrices, and 
K̂S and K̂F the corresponding stiffness matrices; R̂ is the 
coupling matrix between fluid and solid domain; u and p 
are the degrees of freedom of displacement and pressures, 

(22)Zm��
= �cS

(
1 −

J1(2ka)

ka
+ j

S1(2ka)

ka

)
,

(23)Z�� =
p�

vn,�
=

Zm��

S
= �c

(
1 −

J1(2ka)

ka
+ j

S1(2ka)

ka

)
.

(24)p(x, �) = �c
�

�� ∫
�

0

h(x, u)vj(� − u)du.

(25)Z�� = j�ckaS
e
−jkd

2πd

(
2J

1
(ka)

ka

)2

,

(26)

[
− 𝜔2

[
M̂S 0

𝜌0R̂
T
M̂F

]
−j𝜔

[
ĈS 0

0 ĈF

]
+

[
K̂S − R̂

0 K̂F

] ]{
u

p

}

=

{
fS
fF

}
.

respectively; fS and fF represent the external forces acting 
on the fluid and solid domain; �0 is the density of the fluid.

The problem in the fluid domain can then be rewritten as

since the force on the fluid fF is zero. From that, the equa-
tions for the surface pressure can be expressed by the fol-
lowing equation

where

leads to the impedance matrix

Summarizing the three models, the baffled piston and BEM 
propagate in space with Green’s function and the closed sur-
face model solves spatial pressures and the surface pressures 
all at once. In comparison to the boundary element method, 
the discrete calculation method treats the impedance of an 
infinite baffled piston, describing the velocities on an infi-
nite plane without any discontinuities such as sharp edges. 
In contrast, the BEM and also the FEM for fluid–structure 
interaction capture these scattering effects.

3  Vibrational measurements and simulation

To validate the numerical models, two different measure-
ments are performed. At first, a typical freight train wheel 
of the type DB97, that has been in operation and is therefore 
worn, is excited in the axial direction with an electrodynamic 
shaker (TIRA—TV 51120) to measure the velocities in axial 
direction. The input force is measured with a force sensor 
(PCB 208C01) and the velocity by a SWIR scanning laser 
Doppler vibrometer (Optomet). The measurement is taken 
at a sampling rate of 40,000 Hz. The wheelset has a radius 
of 0.47 m and is part of a wheelset with a total weight of 
960 kg. To approximate free boundary conditions, two rub-
ber blocks are placed between the axle of the wheelset and 
the supporting wooden pallet.

The numerical model is built in Ansys. The mesh of the 
steel wheel in the structural domain consists of tetrahedral 
elements of quadratic order with a maximum element size 
of 0.02 m. The Young’s modulus is 210 GPa, the Poisson’s 
ratio is 0.3, and the density is 7850 kg/m3. The entire mesh 
consists of 98,000 elements. Structural damping is not con-
sidered in this model, which in theory leads to infinite mag-
nitude at the resonances and is only finite due to the chosen 

(27)−𝜔2𝜌
0
R̂

T

u + [−𝜔2
M̂

F
−j𝜔Ĉ

F
+ K̂

F
] p = 0,

(28)p = [−𝜔2
M̂F−j𝜔ĈF + K̂F]

−1𝜔2𝜌0R̂u,

(29)p = Ẑv = −Ẑj𝜔u

(30)Ẑ = [−𝜔2M̂F−j𝜔ĈF + K̂F]
−1(j𝜔𝜌0R̂).
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frequency sampling. The geometry is based on a technical 
drawing of a standard wheelset that is not worn, meaning 
differences between experiment and geometry exist.

In the frequency response function of Fig. 5, the com-
parison between the harmonic FEM model and the meas-
urements is shown. The frequencies, their mobility val-
ues, and the width of the peaks agree very well between 
the experiment and simulation. The error between the 
modal frequencies is less than 5% for the frequency range 
up to 3000 Hz. The mode shapes are shown at several fre-
quency peaks. The accurate prediction of the vibrational 
velocity magnitude and pattern is important, as they are 
the ultimate source of sound.

4  Validation of radiation models with lab 
measurements

In this section, the results predicted by the three acous-
tic models are presented. They are put into practice with 
different software tools. The BEM model is realized by 
using the OpenBEM code of Ref. [19]. The baffled pis-
ton model is implemented in MATLAB, and the FEM 
is implemented with the use of Ansys [34]. To reduce 
the complexity, the agreement between the three mod-
els is first investigated in a free-field environment with-
out any reflective surfaces. The modeled velocity pro-
files obtained in the previous chapter serve as input for 
the acoustic radiation models. Subsequently, acoustic 

measurements are used to validate the models. Due to 
the existing facilities for measurements, reflective sur-
faces must now be included in the numerical calculations.

4.1  Acoustic free‑field radiation

As mentioned in the Sect. 2, the front surface of the wheel 
is the excitation source and the interface between the struc-
tural and fluid domain. The green area in Fig. 6a represents 
the surface where the fluid–structure interaction occurs 
(contributions from the axle and other surfaces are assumed 
negligible with respect to the frontal emission of the single 
wheel). The impedance matrix Ẑ is evaluated as mentioned 
in Sect. 2.2.1 to obtain the surface pressure pΓ from the 
normal velocities vn . Due to the different meshes (triangular 
elements for BEM, quadrilateral for the baffled piston and 
tetrahedrons for FEM), a direct comparison of the imped-
ance matrix would be cumbersome. Therefore the pressure 
distribution along the marked line is shown for selected 
modes.

To evaluate the acoustic model, we compare the pressures 
on the source itself and on a surface that is some distance 
(0.88 m) away from the source. This is mainly dictated by 
the computational feasibility of the FE model, where the sur-
face at that distance is at the border of the FE enclosure. The 
enclosure must be large enough to absorb outgoing waves 
properly and small enough so that computational feasibil-
ity is still guaranteed using an impedance boundary. This 
means that for the valid frequency range, the distance of the 
absorption boundary must be at least one half of the largest 
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Fig. 5  Average (of absolute values) mobility in axial direction with visualized mode shapes at frequency peaks
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Fig. 6  Sound pressure per unit force comparison between BEM, DCM and FEM. Selected peak frequencies of the FRF (explained in Fig. 5) are 
evaluated on the black line for the emitting surface a and receiving surface f, where b–e correspond to configuration a and g–j correspond to f 
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wavelength away from the source and the elements of the air 
must be meshed at least with six elements per wavelength 
of the highest frequency to avoid numerical instability using 
linear shape functions [35]. The modes on the emitting sur-
face are evaluated at the black line in Fig. 6a. The pressures 
obtained from the baffled piston and the boundary element 
models are in very good agreement, see panels Fig. 6b–e. 
The finite element model gives more divergent results; this 
is well known in research as the enclosure in a finite volume 
faces several difficulties, such as boundary conditions at 
infinity (in our case we use absorption boundaries in Ansys) 
and mesh size of the elements, which limits the range of 
valid frequencies (in our case from 200–2000 Hz). The com-
parison looks even better when we evaluate the pressure on a 
line on the surface 0.88 m away from the source, see Fig. 6f. 
In panels Fig. 6g–j, they show very good agreement between 
baffled piston and BEM, and slightly varying results in FEM, 
due to boundary condition effects.

4.2  Ground effect considerations for acoustic model 
validation

We compared in Sect. 4.1 the three methods BEM, DCM 
and FEM in free-space conditions and observed a very 
good agreement, especially between BEM and DCM. Now 
we introduce more applicable conditions where ground 
reflections are considered. Since FEM is computationally 
too expensive to compare it further away with experi-
ments, we focus on the BEM and the discretized baffled 
piston.

4.2.1  Experimental setup

The experiment is realized in a hall with a height of 10 m 
and a concrete floor. The same railway wheel as mentioned 
in the vibrometric experiment is used and excited 20 cm 
above the floor (wheel center at a height of 0.68 m). This 
time we use a hammer instead of the shaker, since the shaker 
itself emits a significant noise level which interferes with the 
acoustic radiation of the wheel. Excitation is done in axial 
direction with the hammer of type PCB-086C03, which has 
a plastic tip for low frequencies (50–1000 Hz) and a steel tip 
for frequencies in the range from 1000 to 5000 Hz. We con-
struct a beam with two supports where 9 microphones (B&K 
4189) are mounted on and equally spaced every 0.2 m,  
see Fig. 7. With this configuration, we can measure the 
sound emission from the excited railway wheel at different 
heights and also shift the array of microphones 0.1 m to get a 
grid with finer resolution. This setup enables measurements 
of directivity. Measurements are conducted with LabVIEW 
using NI PXie-1071 and PXI-4498 for a measurement time 
between 2 and 4 s for the hammer using a sampling rate of 
25,000 Hz.

4.2.2  Results

In order to make a valid comparison between experiments 
and simulations, ground effects are taken into account by 
introducing a term for the image source within Green’s 
function, the so-called half-space assumption. As described 
in [36], the expression for the Green’s function can be 
described in more general terms as

where RI = 0 for an infinite space and RI = 1 for a semi-
infinite hard boundary space. If the reflecting plane is the 
xz-plane, then R =

√
(x − xs)

2 + (y − ys)
2 + (z − zs)

2  and 
R� =

√
(x − xs)

2 + (y + ys)
2 + (z − zs)

2  are the distances 
between receiver and the source and receiver and the image 
source, respectively, with the receiver position r = (x, y, z) 
and source at position r� = (xs, ys, zs) . The half-space 
assumption is equivalent to a mirrored, virtual second source 
leading to the hard boundary condition of

which considers normal velocities equal to zero at the 
reflecting plane with coordinates rrp and normal vector nrp . 
Since the setup is built on a flat concrete floor, a reflection 
coefficient RI equal to one is a valid approximation. In a first 
analysis, the frequency response of the baffled piston, the 
BEM method and the experiment is obtained at a distance of 
2 m away from the wheel at a height of 1.5 m. The points are 
spaced equally every 0.2 m from 0.8 to –0.8 m along that line. 
The averaged value over the number of points per frequency 
is displayed for each method in Fig. 8. This shows that the 
peaks of the experiment (both magnitude and frequency) are 

(31)G(r, r�) =
e
jkR

R
+ R

I

e
jkR

�

R�
,

(32)v(rrp) ⋅ nrp = 0,

Fig. 7  Experimental setup for sound emission
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well captured by the simulation models. The overall noise 
floor of the experiment exceeds the simulation on a constant 
level, which is a common effect due to background noise 
which can be only eliminated in anechoic rooms. Despite 
the use of absorbing materials and measuring in a large 
hall, reflections are inevitable and perfect amplitude match-
ing therefore not possible. The reflections do not affect the 
frequency of the modal peaks and therefore it is still pos-
sible to identify them. As can be seen in Fig. 5, the shift 
between numerical model and experiment is increasing with 
frequency. Since the vibrational response serves as input for 
the acoustic model the shift in frequency is transferred to the 
acoustic domain. In order to get a better fit between simula-
tion and experiment, an intensive measurement of the wheel 
geometry is necessary, since changes in mass and radius due 
to wear alter the results. Further uncertainty is introduced by 
the Young’s Modulus of the steel which can vary between 
190 and 210 GPa.

One can recognize differences between BEM and DCM 
due to ground effects. This is caused by the different assump-
tions of these methods. The comparison can be seen more 
closely when visualizing the modes on a surface 2 m dis-
tance away with a width of 2.1 m, see Fig. 9. The vertical 
direction describes the height starting at the bottom of the 
concrete floor. Three resonance frequencies are selected 
and the occurring mode shapes are compared by including 
the half-space Green's function. Although the difference in 
magnitude is varying, it is possible to clearly identify the 
normalized modes visually for DCM and BEM and compare 
them to experiments. The visual agreement of the last mode 
between simulation (Fig. 9i, j) and experiment (Fig. 9k) is 
unsatisfactory because the resolution of the experiment can-
not reflect the level of detail of the emission pattern.

We separate the modes into two categories: “baffled” 
and “unbaffled” modes. We refer to a baffled mode shape 
when the outer rim of the wheel experiences significantly 
less vibration compared to the inner surface, leading to 
dominant emission from the wheel web and negligible 
edge radiation effects at the edges. One of these baffled 
mode shapes can be seen in Fig. 9h at 1623 Hz. The cor-
responding acoustic emission calculated with DCM (see 
Fig. 9e) excellently agrees in terms of emission pattern 
to the BEM and experimental counterparts (Fig. 9e, f, 
respectively). Even the unbaffled modes (Fig. 9d, l), where 
the rim experiences strong vibrations compared to the 
web, feature very similar acoustic radiation patterns (cf. 
Fig. 9a–c and i–k).

Figure 9 shows a good qualitative comparison of the 
prediction methods with experiments. Specifically, the pre-
dicted waveforms are consistent with each other and to the 
available experimental results. Regarding the latter, it should 
be pointed out that the resolution is not enough for the high 
frequency mode (Fig. 9k). In the following, we would like 
to quantitatively compare the acoustic prediction methods 
associated with the baffled and unbaffled modes in Fig. 9d, 
h and l.

Therefore, we look in Fig. 10 at the emission patterns of 
the modes with DCM and BEM and disregard the experi-
ments. We present simply the magnitude and directionality 
along one circular line with a radius of 2 m between −60◦ 
and 60◦ at different heights (0.1, 0.65 and 1.9 m). For the 
baffled mode at 1623 Hz, the agreement is excellent in front 
of the wheel (Fig. 10e) and slightly varying close to the floor 
(Fig. 10d) and at a large angle of 70◦ at 1.9 m (Fig. 10f), 
where even small edge radiation effects are dominating the 
wheel emission patterns and the assumption of the baffled 

(

Fig. 8  Averaged frequency response of the sound pressure normalized by the excitation force, using nine receiver points
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piston does not take into account the pressure distribution 
on the side of the wheels. For the unbaffled mode shapes, 
Fig. 10a–c shows that the directionality is well captured for 
the mode at 252 Hz but the magnitude is varying a lot, which 
is caused by the half-space assumption in DCM. The reason 
why the agreement of directionality is that good lies in the 
nature of its ring shape. For the unbaffled mode shape with 
strong directionality contributions due to four nodal lines 
at 1772 Hz, one can witness at all three heights that neither 
the magnitude nor the directionality pattern can be meet 
between the two DCM and BEM.

Finally, in order to highlight the edge radiation effect, 
leading to the different results of the baffled wheel mode 

at 1623 Hz and the unbaffled wheel mode at 1772 Hz, we 
perform the numerical experiment described in Fig. 11a. We 
consider a receiver surface (black) close to the reflective 
hard boundary (gray), to see how the waves propagate in 
axial directions away from the wheel. We investigate here 
only DCM and BEM. For the baffled mode shape, the emis-
sion pattern between DCM (Fig. 11b) and BEM (Fig. 11d) 
agrees very well whereas for the unbaffled mode shape the 
edge radiation reveals clear discrepancies between DCM 
(Fig. 11c) and BEM (Fig. 11e). These are especially visible 
close to the wheel (left) and close to the reflecting surface 
(bottom). This clearly highlights the limitations of the DCM.
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m height. In the first (a, e, i), second (b, f, j) and fourth (d, h, l) column, the results from simulation are shown at the frequency fn with 
n = {1, 2, 3} . The third column (c, g, k) illustrates the experimental results, caused at slightly varying frequencies ( f

1
= 263.75  Hz, 

f
2
= 1634 Hz and f

3
= 1701.25 Hz). The modes are normalized with respect to their physical quantity. The pressures (columns 1–3) [p

min
, p

max
] 

and the displacements [u
min

, u
max

] (column 4) of each mode map to the interval [0, 1]



Numerical modeling techniques for noise emission of free railway wheels  

1 3Railway Engineering Science

Fig. 10  Polar plots of the mode shapes presented in Fig. 9 showing the directionality along a line in 2.0 m distance away from the wheel surface 
corresponding to a height of 0.1 m (a, d, g), 0.65 m (b, e, h) and 1.9 m (c, f, i). The results from simulation are shown at the frequency fn with 
n = {1, 2, 3}
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4.3  Axle and effects on acoustic emission

In the previous sections, the results are shown using the 
normal velocities of the frontal surface of a wheelset. To 
better understand the importance of an entire wheelset, we 
investigate two different wheel geometries (single wheel and 
wheelset) and the boundary conditions. For experimental 
comparison, we introduce a standard passenger train wheel-
set with a radius of 0.48 m and a mass of 850 kg. The axle 
is equipped with two bearings, each weighing 60 kg, see 
Fig. 12.

In Fig. 13c, we compare the experimental results of the 
above mentioned wheelset with attached bearings to a sin-
gle wheel using FEM without axle and fixed at the axis of 
symmetry by including a small hole with a diameter of 1 cm 
(illustrated in Fig. 13a). This was motivated by the work 

of [15], where the axisymmetric cross section of a single 
wheel is fixed at the axis of symmetry. With the exception 
of applying radial excitation instead of axial, the setup aligns 
with the one illustrated in Fig. 5. This reveals the strength of 
numerical modeling for investigation of different excitation 
profiles, since the force on the wheel consists of both axial 
and radial contributions. This comparison shows missing 
modes at low frequencies and additional modes not cor-
responding to the experimental setup. A minor frequency 
deviation is observable at the higher frequency range. Fig-
ure 13d compares the entire wheelset using FEA without 
supports to the experiments, also revealing differing modes 
at incorrect frequencies. By incorporating springs with stiff-
nesses of 700 MN/m, dampers with damping of 518 kNs/m 
and a connected point mass (60 kg) approximating stiff-
ness, friction and weight of roller bearings (illustrated in 
Fig. 13b), the results closely align with experimental data, 
see Fig. 13e. This finding strongly supports the notion that 
the axle and its boundary conditions play a critical role in the 
sound emission of railway wheels. As described in [13], the 
axle influences especially the modes with harmonic indices 
n = 0 (extension of the axle) and n = 1 (flexure of the axle). 
This leads to especially strong impact of the axle at frequen-
cies between 150 and 1500 Hz, see Fig. 14.

Using harmonic FE simulations as input, the differences 
are also apparent when using BEM with results projected 
onto a cylinder, see Fig. 14a. The results of the pressure in 
a point 7.5 m away and in 1.2 m height are shown. Notably, 
between 150 and 1500 Hz, the frequencies of the modes vary 
significantly. While one could argue that radiation efficiency 
from railway wheels is less significant in this range, an exact 

Fig. 11  Comparison of edge radiation effects: a schematic view of receiver surface (black) close to the reflective hard boundary (gray); b, d baf-
fled mode shape such as seen in Fig. 9 at 1623 Hz that can be well captured with DCM and BEM since edge radiation effects are not dominant; 
c, e unbaffled mode shapes such as seen in Fig. 9 at 1772 Hz that lead to strong edge radiation effects at the edges of the wheel and are dominant 
compared to baffled effects. A hard-space boundary condition considerably changes the results in the near field for unbaffled wheel modes

Fig. 12  Wheelset with roller bearings used for experiments
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Fig. 13  Impact of axle’s boundary conditions on wheel dynamics: a single wheel constrained at the axis of symmetry, b wheelset with mass, 
spring and damper elements at the axis, c the comparison of the experimental wheelset including roller bearings (black) compared to a single 
wheel in finite elements during point excitation in radial direction, d the comparison of the experiment compared to an entire wheelset, and e the 
entire wheelset constrained with dampers and a spring connected to a point mass
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model is essential for properly addressing the contact force, 
since it is heavily influenced by the dynamics of the wheel 
and rail and the roughness of both parts [1].

4.4  Computational complexity and discussion

By considering a railway wheelset, we investigate to what 
extent the discretized baffled piston considering DCM is 
applicable compared to other methods such as BEM and 
FEM. DCM and a discretized Rayleigh integral (DRI) are 
distinct concepts. The assumptions of DCM state that the 
vibrating surface can be discretized and split into the self- 
and mutual radiation impedance, as shown in Sect. 2.2.3. 
On the other hand, the baffled piston has geometrical limita-
tions. First of all, complex surfaces such as curved wheels 
cannot be taken into account and need to be projected on a 
flat surface. In order to assess the curved geometry effect 
on acoustic radiation, in Appendix A, we compare emission 
from a curved wheel to the emission from a cylinder. For 
the case of the railway wheel, this projection is still precise 
enough for comparing it to the performed measurements. 
Secondly, sharp edges around the wheel and therefore edge 
radiation effects are not considered, since a baffled piston 
is by its definition a 2D object. This makes it especially 
difficult for objects close to reflective surfaces. If the wheel 
is located close to a hard boundary, only baffled modes can 
still be modeled precisely enough. For unbaffled modes, the 
DCM method deviates significantly from the BEM solution.

Comparing the three models, the baffled piston is the 
least computationally expensive. Only a single circular 
plane is discretized into elements, so fewer elements are 
needed. Also, no additional computational effort is required 
for surfaces and normal vectors, since all elements have the 
same size and orientation. On the other hand, the boundary 

element model generally considers closed volumes and 
approximates more complex geometries with different types 
of meshes. This more than doubles the number of discretized 
surface elements and requires detailed calculations of sur-
face properties such as the normal vector and area of each 
element, but still reduces computational effort a lot com-
pared to the finite element method, which is computationally 
the most intensive method. Here, the entire volume must 
be discretized, and calculations in large distances become 
difficult as the number of elements increases considerably. 
For high frequencies, the mesh size must allow for at least 
six linear elements per wavelength. Considering the need to 
cover the standard audible range of railway wheels and roll-
ing noise (50–6000 Hz), this makes FE calculation impracti-
cal. In this work, the valid range of the finite element model 
is from 200 up to 2000 Hz. By simply comparing the models 
in this frequency range, one gets a clear impression of the 
respective computational effort. For calculating the pres-
sure for one frequency on the surface 0.88 m away from 
the source, the computational time for the baffled piston is 
approximately half the time taken for calculations of the 
BEM and less than 300 times the time taken for the FEM, 
see Table 1.

Fig. 14  Point pressure 7.5 m away and 1.2 m above the ground caused by a radial point force

Table 1  Computational power for one frequency

Method Nodes Time (s)

Baffled piston with DCM 3,720 38.7
Boundary element method 880 72
Finite element method 9,122,444 13,200



Numerical modeling techniques for noise emission of free railway wheels  

1 3Railway Engineering Science

5  Conclusions

We have studied the vibrational behavior and acoustic emis-
sion of a train wheelset. Detailed investigation of three math-
ematical models (baffled piston, boundary element method 
and finite element method) showed that the model of a 
vibrating disk mounted on an infinitely rigid baffle gives 
results comparable to BEM, as long as the system is subject 
to free-field conditions, meaning that the wheel emits into 
an open space without any reflective surfaces, and receiver 
points are located close to the central axis of the wheel. The 
thick web of the railway wheel acts like a baffle. As soon 
as reflections are taken into account, the edge radiation of 
the wheels has a significant impact on the final result for 
emitting wheel modes. This effect is amplified by the addi-
tion of a reflection plane, due to the proximity of the edge 
to the plane. The baffled piston model can therefore lead 
to significant modeling errors, since the edge radiation is 
not included there. Fluid–structure interaction in finite ele-
ments, on the other hand, is very time-consuming. Boundary 
conditions and mesh size require a large volume range to be 
valid for the entire frequency range from 50 to 2000 Hz. The 
limitation of the baffled piston is alleviated by the fact that 
a wheelset is in reality interacting with a rail, constraining 
the vibration at the edges. In future work, for precise results 

including scattering effects, the BEM is the most accurate 
method and therefore recommended. However, due to the 
time efficiency, DCM can be useful to get fast and acceptable 
results for lab experiments.

Appendix A

Considering the potential interest in understanding the 
effects of projecting the surface velocities of a wheel just 
on the frontal faces of a discretized baffle (DCM) or a 
flat cylinder (BEM), we compare the two models with an 
authentic curved wheel geometry using BEM. The results 
are gathered through measurements along a line positioned 
at the same height as the axle center and at a 2-m distance 
away, see Fig. 15a. It becomes apparent that the mode 
shapes are effectively captured. However, the wheel’s 
curved geometry considerably influences the magnitude 
and directionality, especially in proximity to the ranges 
furthest away from the center as seen in Fig. 15c, d and e.  
The magnitudes at peaks also demonstrate 10%–20% vari-
ations in cases of Fig. 15c, e. Despite these observations, 
the projection is capable of representing the modes and 
presents a suitable starting point when computational 
power is limited.

Fig. 15  Comparison of projected frontal velocities onto the cylinder (BEM) and the discretized baffle (DCM) to a curved wheel (BEM) taking 
into account all surface velocities (both front and back side): a schematic view of the numerical experiment, and b–e sound pressure per unit 
force for selected frequencies



 L. Taenzer et al.

1 3 Railway Engineering Science

Acknowledgements The project was commissioned and supported by 
the funding of the Federal Office of Environment (No. 1337000438).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Thompson D (2009) Railway noise and vibration. Elsevier Ltd, 
Amsterdam

 2. Cui K, Qin X (2016) Numerical computation of wheel-rail impact 
noises with considering wheel flats based on the boundary ele-
ment method. J Vibroeng 18(6):3930–3940

 3. Liu K, Jing L (2020) A finite element analysis-based study on 
the dynamic wheel-rail contact behaviour caused by wheel 
polygonization. Proc Inst Mech Eng Part F: J Rail Rapid Transit 
234(10):1285–1298

 4. Thompson DJ, Fodiman P, Mahé H (1996) Experimental valida-
tion of the TWINS prediction program for rolling noise, part 2: 
results. J Sound Vib 193(1):137–147

 5. Thompson D, Squicciarini G, Zhang J et al (2018) Assessment 
of measurement-based methods for separating wheel and track 
contributions to railway rolling noise. Appl Acoust 140:48–62

 6. Hannema G, Tröbs H-M, Damme BV et al (2018) Validation of 
a FEM structure-borne sound radiation model for railway rolling 
noise. In: NOVEM 2018. Noise and vibration emerging methods 
(Ibiza, Spain)

 7. Jeong D, Choi HS, Choi YJ et al (2019) Measuring acoustic 
roughness of a longitudinal railhead profile using a multi-sensor 
integration technique. Sensors 19(7):1610

 8. Gutiérrez-Gil J, Garcia-Andrés X, Martínez-Casas J et al (2019) 
Mitigation of railway wheel rolling noise by using advanced 
optimization techniques. In: EngOpt 2018 proceedings of the 6th 
international conference on engineering optimization, Lisboa, 
Portugal, 17–19 September 2019. Springer, pp 1141–1153

 9. Morin B, Plummer CJG, Kalyanasundaram B et al (2023) A fast 
analytical tool to investigate effects of railway superstructure com-
ponents on track dynamics. In: The fifth international conference 
on railway technology: research, development and maintenance, 
(Montpellier). Elsevier, Amsterdam, pp 1–5

 10. Thompson D (1988) Predictions of acoustic radiation from vibrat-
ing wheels and rails. J Sound Vib 120(2):275–280

 11. Remington PJ (1976) Wheel/rail noise—Part I: characterization 
of the wheel/rail dynamic system. J Sound Vib 46(3):359–379

 12. Zhong T, Chen G, Sheng X et al (2018) Vibration and sound 
radiation of a rotating train wheel subject to a vertical harmonic 
wheel-rail force. J Modern Transp 26(2):81–95

 13. Thompson DJ, Jones CJC (2002) Sound radiation from a vibrating 
railway wheel. J Sound Vib 253(2):401–419

 14. Finnveden S, Fraggstedt M (2008) Waveguide finite elements for 
curved structures. J Sound Vib 312(4–5):644–671

 15. Fabre F, Theyssen JS, Pieringer A et al (2021) Sound radiation 
from railway wheels including ground reflections: a half-space 
formulation for the Fourier boundary element method. J Sound 
Vibr 493:115822

 16. Squicciarini G, Thompson DJ, Toward MG et al (2015) The effect 
of temperature on railway rolling noise. Proc Inst Mech Eng Part 
F: J Rail Rapid Transit 230(8):1777–1789

 17. Fingberg U (1990) A model of wheel-rail squealing noise. J Sound 
Vib 143(3):365–377

 18. Thompson DJ, Jones CJ (2002) Sound radiation from a vibrating 
railway wheel. J Sound Vib 253(2):401–419

 19. Cutanda Henríquez V, Juhl PM (2010) OpenBEM—an open 
source boundary element method software in acoustics. In: Pro-
ceedings of INTER-NOISE 2010. 39th International Congress 
on Noise Control Engineering : noise and sustainability, Lisbon, 
Portugal, 13–16 June 2010. Curran Associates, Inc., pp 1–10

 20. Pritchard RL (1960) Mutual acoustic impedance between radiators 
in an infinite rigid plane. J Acoust Soc Am 32:730

 21. Arase EM (1964) Mutual radiation impedance of square and rec-
tangular pistons in a rigid infinite baffle. J Acoust Soc Am 36:1521

 22. Stepanishen PR (1978) Evaluation of mutual radiation imped-
ances between circular pistons by impulse response and asymp-
totic methods. J Sound Vib 59(2):221–235

 23. Schneider E, Popp K, Irretier H (1988) Noise generation in 
railway wheels due to rail-wheel contact forces. J Sound Vib 
120(2):227–244

 24. Hashimoto N (2001) Measurement of sound radiation efficiency 
by the discrete calculation method. Appl Acoust 62(4):429–446

 25. Kolber K, Snakowska A, Kozupa M (2014) The effect of plate 
discretization on accuracy of the sound radiation efficiency meas-
urements. Arch Acoust 39(4):511–518

 26. Bai M, Ih J-G, Benesty J (2013) Acoustic array systems: theory, 
implementation, and application. Wiley, New York

 27. Kirkup S (1998) The boundary element method in acoustics. Inte-
grated Sound Software, Hebden Bridge

 28. Pierce AD (2019) Radiation from vibrating bodies. Springer, 
Cham, pp 177–239

 29. Santoni A, Bonfiglio P, Fausti P et al (2016) Sound radiation effi-
ciency measurements on cross-laminated timber plates. In: Pro-
ceedings of the INTER-NOISE 2016. 45th international congress 
and exposition on noise control engineering. Towards a quieter 
future, (Hamburg), DEGA

 30. Strutt JW (2011) The theory of sound, vol 9781108032. Cam-
bridge University Press, Cambridge

 31. Skudrzyk E (1971) The foundations of acoustics: basic mathemat-
ics and basic acoustics, 1st edn. Springer, Wien

 32. Porter DT (2005) Self- and mutual-radiation impedance and 
beam patterns for flexural disks in a rigid plane. J Acoust Soc 
Am 36(6):1154

 33. Sha K, Yang J, Gan WS (2005) A simple calculation method for 
the self- and mutual-radiation impedance of flexible rectangular 
patches in a rigid infinite baffle. J Sound Vib 282(1–2):179–195

 34. Ansys Inc (2022) Theory reference ANSYS. 20th edn. Available 
from: https:// www. ansys. com/

 35. Langer P, Maeder M, Guist C et al (2017) More than six elements 
per wavelength: the practical use of structural finite element mod-
els and their accuracy in comparison with experimental results. J 
Comput Acoust 25(04):1750025

 36. Brick H, Ochmann M (2008) A half-space BEM for the simulation 
of sound propagation above an impedance plane. J Acoust Soc Am 
123(5):3418

http://creativecommons.org/licenses/by/4.0/
https://www.ansys.com/

	Numerical modeling techniques for noise emission of free railway wheels
	Abstract
	1 Introduction
	2 Numerical methods for sound radiation
	2.1 Harmonic finite element analysis for vibrational input data
	2.2 Sound emission in fluid domain
	2.2.1 Impedance
	2.2.2 Boundary element method
	2.2.3 Baffled piston model
	2.2.4 Finite element method


	3 Vibrational measurements and simulation
	4 Validation of radiation models with lab measurements
	4.1 Acoustic free-field radiation
	4.2 Ground effect considerations for acoustic model validation
	4.2.1 Experimental setup
	4.2.2 Results

	4.3 Axle and effects on acoustic emission
	4.4 Computational complexity and discussion

	5 Conclusions
	Appendix A
	Acknowledgements 
	References


