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Introduction

Past achievements suggest that columns providing

efficiencies in excess of a million plates in less than

1 day are within the grasp of current technology.

Georges Guiochon [4]

A good understanding of chromatography can only be

obtained by practical experience and a sound theoretical

background. The latter can hardly be conveyed without

mathematical equations. They allow us to play with the

mutual dependencies of column dimensions, particle size or

film thickness of the stationary phase, theoretical plate

number, peak capacity, flow rate relationships, analysis

time, and more [1]. Peak resolution is obtained by

combination of plate number, retention factor, and chro-

matographic selectivity expressed as relative retention.

The theoretical background, combined with some experi-

mental data, allows the prediction of peak patterns and

their optimization [2]. Thus, mathematics is indispensable

for the superior use of the possibilities offered by the

various chromatographic phase systems and the available

hardware.

Mathematical relationships can be visualized, and by doing

so the pleasure of insight can be increased. Out of the

numerous functions and relationships this paper only deals

with one question: what is possible in column liquid

chromatography if today’s instrumentation and column

hardware allow working at a pressure of 1000 bar and if the

user accepts an analysis time of one day? Is Guiochon’s

optimism (see his statement quoted above) justified? The

answers are sought by construction of plots which reach these

limits.

The benefit of the optimum flow rate

If an analyst is willing to invest 1000 bar and to wait for

one day it is obvious that the scenario yielding the

maximum separation power should be selected from the

various ones possible. It is a fact that any column performs

best if it is run at its optimum flow velocity, i.e., at the

lowest point of its van Deemter curve, resulting in the

maximum possible number of theoretical plates [3–5]. If

this condition is fulfilled the inevitable pressure limit will

define the optimum length of a column which is packed

with an optimum-diameter particular stationary phase.

(Note that this paper does not deal with monolithic phases.)

Deviations from the optimum flow velocity of the eluent

result in poorer separation performance:

& If the flow rate (or, strictly speaking, the linear velocity)

is lower than the respective van Deemter optimum,

distinct band broadening will occur, resulting in

reduced chromatographic resolution.

& If the flow rate is increased above the van Deemter

optimum the same effects will result, although to a

much lesser degree than in the case of too low a flow

rate. Nevertheless, the pressure drop will increase and

the plate number will decrease. Therefore the best

utilization of pressure with regard to the resolution
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power is obtained at the van Deemter optimum. If, with

a certain particle diameter, the resulting pressure is

lower than the maximum possible, a longer column can

be used, giving the best separation power for a certain

combination of particle size and pump model.

Therefore, and keeping in mind that commercial HPLC

pumps come with an upper pressure limit, the Halász and

Meyer plots shown in this paper represent columns used at

their van Deemter optimum (whereas the Poppe plots do

not do so directly).

Looking for theoretical plate numbers: the Halász plots

The plots published in 1982 by István Halász and Gerhard

Görlitz [3] did not attract much attention, probably because

the paper is written in German. The authors described the

underlying mathematics in detail, so it is not outlined here

again. It was necessary to define an empirical van Deemter

equation, and the one selected was:

H ¼ adp þ b=uþ cd2pu ð1Þ

with H = height of a theoretical plate, dp = particle diameter

of the stationary phase, and u = linear velocity of the

mobile phase. The constants a, b, and c depend on many

parameters of a certain separation system. Halász and

Görlitz selected:

a=1.5, b=6, c=1/16 for low-viscosity eluents (η

between 0.4 and 0.6 mPa s);

a=2, b=3, c=1/8 for high-viscosity eluents (η between

0.7 and 1.5 mPa s).

They constructed nomograms for isocratic separations with

the theoretical plate number N as the y-axis, the particle

diameter as the x-axis, and three sets of inclined lines

running through the graphs: one set for the column length L,

one for the breakthrough time (or hold-up time) t0, and a

third for the resulting pressure drop Δp. Here the plots are

re-drawn in order to avoid confusion with the symbols (the

authors used n instead of the now common N for the plate

number and δ instead of dp for the particle diameter); in

addition the 1000 bar line is highlighted and a horizontal line

indicating the resulting plate number is drawn.

Figure 1 shows the Halász plot for typical reversed-

phase separations using a mobile phase with viscosity

1.2 mPa s, a value selected by the authors probably because

it is somewhere in the middle of the viscosity range which

can occur with such analyses (pure acetonitrile has

0.4 mPa s at 25°C, mixtures of water and methanol have

a maximum of 1.6 mPa s). It is obvious that the plate

number obtained at 1000 bar (or at any given pressure)

increases with increasing breakthrough time: a long t0

opens the door to high resolving power. The longest t0 in

the plot is 10,000 s or 2.8 h. With 1000 bar a plate number

of 350,000 is obtained, using a column of 7.5 m length,

packed with a stationary phase of 6.6-μm particles and run

at its optimum flow rate. (These values can easily be

calculated by using the “ready-made” equations outlined in

Ref. [6].) However, if a maximum analysis time of 24 h is

allowed we only reach a maximum retention factor kmax of:

kmax ¼
tr;max � t0

t0
¼ 24� 2:8

2:8
¼ 7:6 ð2Þ

Therefore the maximum peak capacity, n [7], i.e., the

hypothetical number of peaks consecutively eluted with

resolution 1.0, is:

n ¼ 1þ
ffiffiffiffi

N
p

4
ln 1þ kmaxð Þ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:5 � 105
p

4
ln 8:6 ¼ 320

ð3Þ

The other Halász plot in the 1982 paper shows the more

favourable situation with normal-phase separations; Fig. 2

is the re-drawn representation of it. The mobile phase is not

aqueous, therefore the usual viscosities are markedly lower.

The authors selected a viscosity of 0.44 mPa s, typical for

dichloromethane, tetrahydrofuran, or ethyl acetate at 20°C

(mixtures of these solvents with hexane would result in

Fig. 1 Halász plot for an isocratic reversed-phase HPLC system, run

at the van Deemter minimum with a mobile phase of viscosity η=

1.2 mPa s. Any two variables can be selected, then the other three are

fixed and can be read off. Re-drawn and slightly modified after Ref.

[3]
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lower viscosities). With 1000 bar and again a breakthrough

time of 10,000 s or 2.8 h a theoretical plate number of

640,000 is obtained. The column has a length of 13 m and a

packing of 7.5-μm particles. As before, the kmax within 24 h

is 7.6, resulting in a peak capacity of 430.

It is easier to realize a million theoretical plates with a

normal-phase system than with an aqueous separation mode

such as reversed-phase, due to the lower viscosity of the

former. Is this possible within one day? The required

configuration can be extrapolated from Fig. 2 or calculated

by use of equations outlined in Ref. [6]. The breakthrough

time is 24,500 s or 6.8 h. The monstrous column should be

26 m long with a 10-μm packing. Within 24 h a kmax of 2.5

is possible, giving a peak capacity of 314 with Eq. 3. The

huge effort is not really worthwhile, because the more

modest 13-m column discussed above yields a higher peak

capacity.

Guiochon [4] presents an interesting equation which

defines the optimum particle diameter (Eq. (38) in his

paper):

dp;opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"hDmn opthminN

KΔP

r

ð4Þ

with:

ε total porosity of the column, for porous particles

around 0.7 (dimensionless)

η viscosity of the mobile phase, here 0.44 mPa s

Dm diffusion coefficient of the analyte in the mobile

phase, for small molecules in normal-phase solvents

approx. 4×10−9m2s−1 (in reversed-phase solvents

approx. 1 × 10−9m2s−1)

νopt optimum linear flow velocity of the mobile phase,

usually 3 (dimensionless) [8]

hmin minimum reduced plate height, often 3

(dimensionless) [8]

N number of theoretical plates, here 106

(dimensionless)

K column permeability, 10−3 (dimensionless); this is

the Kozeny–Carman factor [9]

Δp pressure drop, here 103bar or 108Pa

Equation 4 is, in fact, based on an old but important

paper by Knox and Saleem [10], however, these authors

used a nomenclature which is no longer in use.

By this calculation we obtain the same value as from the

Halász plot, namely dp,opt=10 μm for the desired con-

ditions of 106 theoretical plates, realized with 103 bar.

With the more viscous reversed-phase system a million

theoretical plates with 1000 bar can be obtained under the

following conditions: a t0 of 81,000 s or 22.5 h, a column

of 36 m length, and a particle diameter of 11 μm. The

retention factor at 24 h is only 0.07, which means that no

useful peak capacity can be developed within an elution

time window of 1.5 h; n is a mere 17. The conditions would

be more favourable if an eluent with high acetonitrile

content would be used; pure acetonitrile has a viscosity of

0.37 mPa s at 20°C, i.e. even less than the 0.44 mPa s used

in the normal-phase Halász plot, giving better performance

than a dichloromethane–silica separation system.

The nomograms of Figs. 1 and 2 do not show the

ultimate limits of separation power. They are constructed on

the basis of a reduced plate height at the van Deemter

optimum of h=3; i.e. three particle diameters of the

stationary phase are equivalent to the height of a theoretical

plate. The best currently obtained values are h=2, resulting

in higher plate numbers per given column length. On the

other hand, many “everyday separations” show poorer

performance, broader peaks, and higher values of h.

The Halász plots make clear that small particles are

needed for fast separations but that they are not useful for

highest plate numbers if pressure is limited. This point is

also mentioned by Guiochon [4]. Equation 4 above shows

that dp,opt is proportional to √N or, inverted, that N is

proportional to d2p;opt. In addition, the pressure drop per unit

length decreases with increasing particle diameter, enabling

the use of longer columns.

For mutual consistency with the Halász plots, the

following Meyer and Poppe plots were calculated by using

the total porosities ε as proposed by Halász and Görlitz: ε=

0.70 for chemically derivatized porous silica (e.g. reversed

Fig. 2 Halász plot for an isocratic normal-phase HPLC system, run at

the van Deemter minimum with a mobile phase of viscosity η=0.44.

Re-drawn and slightly modified after Ref. [3]
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phases) and ε=0.82 for underivatized silica (normal

phases). Other numeric parameters, for example the van

Deemter constants or the viscosities, were also taken from

the Halász–Görlitz paper.

Looking for peak capacities: the Meyer plots

For the question discussed here, namely “1000 bar within

24 hours”, the Halász plots are not really ideal. First, the

maximum breakthrough time shown by them is 10,000 s,

resulting in a maximum retention factor of 7.6 although the

graphs could be expanded towards longer breakthrough

times. But a second fact is more important: the plots do not

show the best conditions for obtaining a high peak capacity.

Analysts want peak resolving power within a certain time

range, and this objective is better represented with the peak

capacity than with the plate number. In addition, the fact

that, in the normal-phase example, the million plates/26 m

column mentioned above yields a lower peak capacity

within 24 h than the 13 m column with 640,000 plates is

not intuitively obvious.

Therefore I developed the original Halász plots further

[6]:

& The x-axes of the graphs shown in Ref. [6] cover a

retention factor range of k=0–20, presented with a

maximum retention time of one hour. Therefore t0 is

60/(20 + 1) min=2.8 min. A kmax of 20 is somehow the

upper limit which makes sense in isocratic elutions

because the last peaks are broad and no longer high.

& The y-axis shows the peak capacity instead of the

theoretical plate number.

In addition to the Halász and Görlitz publication a plot for

reversed-phase gradient separations was also developed.

Reference [6] explains the necessary conditions for the

plots in detail.

Here, some peak capacity plots illustrating the 1000 bar,

24 h question are presented. The retention or gradient time

was expanded to one day and in the isocratic plots kmax is

again 20; therefore the breakthrough time is 24/(20 + 1) h=

1.15 h or 1 h 9 min.

Figure 3 presents the situation in reversed-phase sys-

tems. The peak capacity increases with increasing analysis

time (this is trivial) and reaches n=355 after 24 h if a

pressure of 1000 bar can be applied. The column is 3.8 m

long and is packed with a 5.4-μm phase, giving 235,000

theoretical plates at the van Deemter optimum with h=3.

The slightly more favourable situation, compared with

Fig. 1, for which a maximum peak capacity of 320 was

calculated, comes from the fact that this separation runs to a

higher kmax. But, as mentioned above, the separation time

or the retention factor cannot be expanded to just any

possible value because the peaks soon become flat and the

signal-to-noise ratio decreases.

Again, the normal-phase system yields higher peak

capacities than the reversed-phase one, namely 475 within

24 h (Fig. 4). This performance is obtained with a 6.6-m

column and 6.2-μm stationary phase at 1000 bar, giving

355,000 theoretical plates.

The column lengths calculated so far are huge compared

with those for the 10 cm or 25 cm lengths which are

common today. Long columns used in isocratic mode are

not the solution for the highest plate numbers or peak

capacities (maybe with the exception of preparative

separations with the objective of isolating one or a few

pure compounds) but gradient separations are needed.

Therefore, a one-hour gradient plot was developed in Ref.

[6]. Here it is expanded to one day (Fig. 5). The underlying

theory was developed by Uwe Neue [11]. For the plot a

wide %B range was selected, in fact the widest one which

makes sense, namely 0.9 representing the amount of B
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Fig. 3 Peak capacity plot for the same isocratic reversed-phase

conditions as in Fig. 1, however with a kmax of 20, thus t0 is 1.15 h.

On any point of a pressure line (solid) the resulting peak capacity and

the necessary column length (dashed lines) and packing diameter

(dotted lines) can be read off
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solvent changing from 10 to 100% (because a start at 0% B

is not recommended because most reversed phases do not

perform well under totally aqueous conditions). With

Neue’s values it turned out that the gradient run time

of the plot is 45 t0 [6], i.e. t0 is 0.53 h or 32 min for a

24-h separation.

A thousand bar, or any other pressure shown in Fig. 5, is

the maximum which occurs during the separation; because

the viscosity of the eluent changes during a gradient

separation the pressure will also change. The maximum

peak capacity obtained now is 870 with a 2.1-m column

and a 4.4-μm stationary phase.

A peak capacity of 870 may seem high. For complex

mixtures of analytes, however, this resolving power is still

somewhat disappointing. For separations which are not

especially optimized, the probability P′ of resolving all

components of a sample is given by [12]:

P0 ¼ 1� m� 1

n� 1

� �m�2

ð5Þ

with

m number of analytes present in the sample

n peak capacity

For a sample with 30 components, a peak capacity of

870 gives P′=0.39, i.e. the chance that all the compounds

can be resolved is not higher than 40%. This approach is

statistical in nature; therefore, the circumstances of a certain

separation can be more or less favourable than indicated

with Eq. 5. But it shows that a simple linear gradient even

on a column longer than 2 m gives no guarantee at all of a

successful separation. The way out of this problem lies in

clever coupling with mass spectrometry or in comprehen-

sive two-dimensional chromatography [13].

Figures 3, 4, 5 clearly show the immanent drawback of

one-dimensional separations: the peak capacity increases only

moderately with time. In all nine cases - three separation

systems run at three different pressures each - the peak

capacity after one hour is already 45% of the number one gets
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after 24 h. Note that this fact is also true for the gradient

approach. Why wait for one day if the capacity can be

increased in a shorter time even with a rather simple off-line,

non-comprehensive two-dimensional approach?

Looking for comparison: the Poppe plots

In 1997, Hans Poppe proposed a special type of plot which

can be used to compare the properties of different stationary

phases when used at a certain pressure [14]. Such a plot

does not pay special attention to the optimum flow rate but

it shows the performance of hypothetical columns of such a

length that a certain, selected pressure is needed to use

them. The subject is not straightforward to understand, and

Poppe gave only a cryptic description on how to generate

the plots. Nevertheless, they became astonishingly popular,

and other plots of similar “kinetic” types were proposed.

Detailed descriptions of the various possibilities and how to

draw kinetic plots can be found in papers by Desmet et al.

[15], Fountain et al. [16], and Neue [17].

The classical Poppe plot shows t0/N, the residence time

of the eluent in a theoretical plate, as a function of N. Both

axes are logarithmic, and the resulting curves look

parabola-like with the opening towards the upper left

corner of the plot. Each curve is valid for a certain particle

diameter and a certain pressure (plus a certain van Deemter

function, eluent viscosity, column permeability, and column

packing porosity) under isocratic conditions. Any point of a

curve represents a defined column length and linear flow

velocity which together, in combination with the other

variables, yield the desired or available pressure. The

curves have two asymptotes [4]:

& The vertical one marks the highest possible plate

number which could be obtained with the given

stationary phase if the column length reaches indefinite

length and the flow velocity approaches 0.

& The horizontal (leftwards) one marks the system

operating at indefinitely high velocity and a column

length approaching 0.

The curves do not show the column length at a certain point

or its corresponding flow rate. If an envelope is laid under a

set of isobars, a straight line with slope +1 is the result. It

touches the curves at their individual van Deemter optima

[18]. Breakthrough times can be represented as diagonal

lines with slope −1 (because log t0/N is just a function of

log N); therefore it is possible to show some of them in a

plot, and the position where a breakthrough line crosses a

Poppe curve marks the breakthrough time of the respective

hypothetical column.

Poppe plots allow the comparison of different types of

column packings, i.e. particle sizes or particulate vs.

monolithic stationary phases. They show, e.g., if a certain

plate number can be achieved with a given stationary phase

but the means to reach it are hidden.

The plots of Figs. 6 and 7 were obtained by spreadsheet

calculation as follows:

& The range of each curve was limited by the reduced

velocity: v was varied between 1 (too slow, unfavour-

able, upper right end of a curve) and 18 (far away from

the optimum velocity which is at approx. v=3, lower

left end of a curve). The reduced velocity is a

dimensionless characterization of the eluent velocity

and is defined as:

n ¼ udp
� �

=Dm ð6Þ

i.e. it is linked to the diffusion coefficient of an analyte

and the particle diameter.

& With the given particle diameter and diffusion coeffi-

cient it is possible to calculate u.

& The height of a theoretical plate H was obtained with

Eq. 1 and the variables given above.

& Two equations describing the column length can be

used to calculate N; the second one is derived from the

Kozeny–Carman equation [9]:

L ¼ NH ¼ N a � dp þ b=uþ c � d2p � u
� �

ð7aÞ
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Fig. 6 Poppe plot for isocratic reversed-phase systems. The black
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envelopes under the curves represent the positions of the van Deemter

optima. Three breakthrough time lines are also shown
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L ¼
Δp � d2p

1000 � " � h � u ð7bÞ

N ¼
Δp � d2p

1000 � " � h � u adp þ b=uþ cd2pu
� � ð8Þ

& t0 is calculated from Eq. 7b and the relationship t0 = L/u:

t0 ¼
Δp � d2p

1000 � " � h � u2 ð9Þ

& t0/N, the y-axis of the plots, is then a simple division.

Figure 6 is for reversed-phase systems and Fig. 7 is for

normal-phase ones. Particle diameters of 5, 10, and 15 μm

were selected, and 1000 bar (black lines) and 200 bar

(grey lines, for comparison) as pressures. Breakthrough

times of 1 h, 2.8 h (which gives a maximum retention

factor of 7.6 within 24 h as discussed above), and 24 h

(giving no eluted chromatogram within one day) are also

shown. It must be stressed that the axes present

logarithmic data; therefore the difference of the system

performances shown by the individual curves are much

larger than it may seem at first glance.

Both plots show clearly that “large” particles of the

stationary phase are needed to obtain high plate numbers,

as already mentioned above in the discussion of the

Halász plots. With the reversed-phase system of Fig. 6 it

is not possible to obtain a million theoretical plates with a

5-μm packing, even if a pressure of 1000 bar is available.

The same seems to be true for the normal-phase system

although it is more favourable, because of the lower

backpressure and the higher diffusion coefficient. Because

the upper end of every curve represents a reduced velocity

of 1, this point and all possible ones which would follow

towards the vertical asymptote are extremely unfavoura-

ble, because this is a region with much too slow a flow

rate and broad peaks with regard to the van Deemter

optimum.

One million theoretical plates can be obtained on both

plots with either the 10-μm or 15-μm phase if 1000 bar can

be applied. The conditions are noted in Table 1. (Note that

these sets of conditions cannot be read off from Figs. 1 or 2

because they only show systems operated at their van

Deemter minimum.) Again, the normal-phase systems

allow faster separations which is represented by the fact

that their curves lie lower in the plot than the reversed-

phase curves–although breakthrough times of around 8 h

are anything but “fast”!

Conclusions

So-called ultra-high-performance liquid chromatography

(UHPLC) systems which allow pressures up to 1000 bar

are on the market now although most published UHPLC

separations are performed at lower pressures. They open

the way to higher theoretical plate numbers and peak

capacities than have been common so far. Nevertheless,

the speed of liquid chromatography is governed by the
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Fig. 7 Poppe plot for isocratic normal-phase systems. The represen-

tation is identical with that in Fig. 6 with particle sizes of 5, 10, and

15 μm. Both axes have the same scale as in Fig. 6 to show clearly that

normal-phase separations are faster (t0 is smaller) than reversed-phase

ones

System Breakthrough time (h) Reduced flow velocity Column length (m)

Reversed phase, 10μm 25.5 3.6 33

Reversed phase, 15μm 27.5 7.8 51

Normal phase, 10μm 8.4 2.4 29

Normal phase, 15μm 9.8 5.0 47

Table 1 Isocratic conditions for

106 theoretical plates if 1000 bar

can be applied (Figs. 6 and 7)
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rather poor, i.e. slow, diffusion coefficients of even small

molecules in solvents. If high pressures are applied it is

necessary to use rather coarse stationary phases, long

columns, and long analysis times in order to reach the

region of 105 to 106 theoretical plates. A critical overview

on 40 years of efforts towards this objective was given by

Guiochon [4]. With regard to high peak capacities it is

absolutely indispensable to work with gradients [19, 20].

Even then a peak capacity of 1000 is not really

satisfactory for mixtures of 100 compounds, because of

the laws of statistical resolution probability. Possibilities

of improving the situation are:

& Working at higher temperature shifts the van Deemter

curve to the right because the diffusion coefficient of the

analytes increases. Because most separations are per-

formed at too high a flow velocity with regard to the van

Deemter minimum, increasing the temperature (while

holding the flow rate constant) usually results in higher

plate numbers because the system is now closer to the

optimum. In addition, the pressure drop is reduced.

(However, note that the backpressure at the van Deemter

minimum is not affected by temperature [21].) Sandra

and Vanhoenacker obtained 200,000 theoretical plates

or a peak capacity of 900 for analysis of tryptic

digests by coupling eight columns of 25 cm length,

packed with 5-μm reversed-phase material and operated

at 60°C [22]. Their instrumentation allowed a maximum

pressure of 600 bar but the column system was not

exhausting this limit. Normal-phase systems are more

advantageous than reversed-phase ones. High-

temperature HPLC, especially the approach with super-

heated water [23], is most promising.

& Use of monolithic columns. Their backpressure is much

lower than with traditional, packed columns [24].

However, so far it is not yet possible to produce long

monoliths, therefore their number of theoretical plates is

limited. The gateway to Guiochon’s dream of a million

plates within one day could be monolithic phases

prepared in microbore tubes [4, 25].

& Performing demanding separations with comprehensive

two-dimensional HPLC which is the silver bullet to

obtain high peak capacity [11, 26].

Personally, I am not very optimistic that “a million plates in

less than 1 day are within the grasp of current technology”.

There is a gap between the demands of all kinds of

“fingerprint analysis” (in environmental and the various

types of “omics” research) and the limits set by diffusion

coefficients and pressure problems (including the limita-

tions of material strength and the problem of heat transfer

within a HPLC column [27]). Even if one million

theoretical plates or a peak capacity of 1000 could be

available in everyday work, the search for the highest

performance would not come to an end. More and more

peaks would be visible in complex samples, the mass

spectrometer would still prove that there is peak overlap,

and generations of researchers could devote their skills to

finding better separation and identification techniques.
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