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Abstract. rQr 11 long time a.rlificial intelligence tonls were not used in pavement engineering, but their application i& bt:-

c:omillg inorc .ind mort: important. A:s opposed to other sub.it:clb In pavement engineerinK this is not yet the case for intcr-

la}'er bonding. The a.im o f this paper is to apply artificial inldligence in form of artificial neural nclwork for knowledge 

discovery from pavement engineering data !n the field of interlayer bonding, This means that the focus ls on practical us~ 

of arlifk lal neural network an<l its application for datasets on intt:rlayer bonding in order to find pattern within the dara 

ant] to predict certa in interlayer boud properties. Jt waA shown that artificial neural network techniques are Nuil~.ble for de-

riving modt lx from datasets and to prc<lic.t interlayer sbear bond propertie,~ such (IS max shear force, deformati.oJl at ma.'-

she~r stre~s, and max shear s tiffness. 

lrqwords: interlayer bond tesl devices, ar tificial neural network (ANN), .asphalt pllvements. 

l. lntroJuction 

l n order to organise. d ata and to discover knowledge from 
data the !\O called knowledge discovery techniques with 
artificial neuronal networks (ANN) were introduced in 
the 1950s. According to Fayyad (Fay~ad et al. 199<5; 
Mlradi 2009) knowledge discovery is the nontrivial pro-
cess of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data ANN is a 
mathemati.cal, computational model that simulates ttie 
stmcturc of biological neural networks. Tt consists of atl 
interconnected group of artificial neurons and process 
information using a connectionist approach to computa-
tion (Haykin 1999)_ 

The advantage of using ANN for nwdclling and data 
evaluation lies in the fact that ANN is capable of pro-
cessing large amounts of data sets. ANN determines a 
model based on learning or training process, ~~opposed 
to statistical 1:1nalysis, when a moc.\cl has to be developed 
by regression. Furthermore, io most cases, it is uuknown 
if the relationship between the variables is linear or no1. 
Thtrefote, ANN being a non-linear statistical data mod-
elling tool, has a dear advantage over statistical linear 
regression analysis. Although ANN does not deliver an 
equation H iR utilised to determine most critical and 11.l-
fluendng variables. For many problem s these influencing 
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variables are not known in detail oI arc not completely 
assessable. In case of multi regression analysis (MRA), 
their knowledge is i11dispensahle wh:Ue ANN has the 
potential to identify the most important ones. As op-
posed to other areas in science and economy, where 
computational tools in the field of artificial in telllgence 
were used for discovering knowledge from. an increasing 
amoUllt of data, this was rarely the case in pavcme.nt 
engineering. Here, for a long period of Ume.. data collec-
tion and evaluation was i-ather based on etuplrical or 
stalistical methods. ln .ber thesis, Mira.di (Miro.di 2009) 
performed an arHflcial intelligence based knowkdge 
disc.overy study of data on asphalt road pavement prob-
lems, in particular, ravelling, cracking and rutting as wcll 
as stiffness of cement treated basei;. She showed th.1t even 
without special knowledge in asphaJt pavement technol-
ogy the correct use of artificial inteJljgence tools leads to 
meaningful results and findings. 

The aim of this pape.r is to apply ANN for khowledge 
discovery from pavement interlayer bonding data covering 
a key issue in pavement engineering. As opposed lo Mirn-
di's thesis (Miradi 2009) which approached the problem of 
knowledge discovery for asphalt pavements from a math-
ematical side, this paper deals with the practical applica-
tion of ANN. Hence. i t focuses on the practical use of 
ANN and its application for datasets on interlayer bonding 
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for <lcterntiniog pattern within the data and to predict 
certain interlayer bond properties. 

~. Problem desctivtlon 

ANN is valuable empirical substitutes for conventional 
physical models for analysing complex relationships in-
volving multi,ple variables provi.ded that a sufficiently 
large datahase is available. The bond between .asphalt 
pavemen t layers ls lniluenced hy such a great variety of 
different patameter.s or variables. 

Clearly, the interlayer oond will depend on physical 
and mechanical properties of the main constituents oftl1e 
asphalt mixtures, the geometrical. clu~mical and physical 
cbaracteristiCR of the interface, the mecl1anical properties 
of the pavement structure .and the external factors that 
affect the pavement structure itsdf, such as traffic an<l 
climate. '!'he characlcrhtic vulues of I.he bond itself are 
al1w heiivily dependent on the way how they are deter-
mined, i.e. testing methodii and con<litfons. Table 1 pre-
sents a list of the variables which are expected to govern 
the ge11eral. behaviour of the bond. The list consists of 4 
major yar,jabk sets which includes more than 20 different 
main -variables. 

The number and complexity of paramcte.l.'.S Influenc-
ing interlayer bonding makes it difficult to quantify the 
contribution of the different parameters to the measured 
bonding properties and to find a physical model predict-
ing the interlayer shear bund properlics such as max 
shear force or max shear stiffness. Although ihe decrea.~e 
of the interlayer hond wilh increasing temperature is a 
well-known foct, the influence of other factors (e.g. influ· 
ence oJ tack coat, geometry of the interface etc.) is either 
unknown to a full extent or intensely debated among 
researcl1ers and practitioners (Ilomanoschi, Metc.'\lf 2002; 
Uzan et al. 1978; Ziari, Khabi.ri 2007). 

An.other reascro for the fact that ANN has not yet 
been applied for the evaluation ot interJaycr bon<ling fa 
the lack of generally acknowledged and openly accessible 
databases for interlayer bonding. furthermore, openly 
accessible databases are lacking interlayer bond long-
term performnnc1t data including information on ttufll~ 
survey and pavement condition data, since the evaluation 

of the sl1ear bond between asphalt layers is usually de-
ter.mined using cores, whieh are directly taken after con-
struction and before the road is opene<l to traffic.. 

3. Shear testing 

Shear testing was done using the l,aycr-ParalM Direct 
Shear (LPDS) test devic.e (J:l ig. 1), T.PDS ls an Empa mo· 
dified version of equipment developed in Germany hy 
Leutner heing more versatile in geometry and mo:re defi-
ned in the clamping mcd1anism (Haah, Partl 2008). 

The specimens were con<litioned in a climate cham-
ber for 8 h and all tests were conducted at a temperature 
of 20 °C. From the LPDS test the shear force r as a fun c-
tion of the vertical shear def or ma tlo n w is obtained. 

Nominal maximal shear stress. i.e. the aver.age shear 
stress in the cross section, is obtaim~d by dividing the 
ma.x shear force by the cross section area of tbe specimen. 

i; =F=-~ 
mn A - d2n ' (1) 

where Fmu - maximal force,_ kN; A - nominal cross 
section area) mmZ; d - specimen dlan:1< .. 1.er, mm. 

ln addJtlo.n to Lhe ma.x: shear force, 'the max slope is. 
used to define the m.ax shear "stiffness" vahi~ Si'llAX as 
follows (Raab, Part! 2008): 

. dP d2 F d3JI 
-'mu=-- at --2 =0 and --3 <0 . (2) · dw(P) dw dw 

l<ig. 1. l.PDS test device, schema lie drawing (Raab, Partl 20081 

'l\1ble 1. List of general varlabll!s influencing the interlayer otmd of asphalt pavement.~ 

Mixture 
Mixture type 
Nominal ma.x. aggregate size 
Agsrcgak gradation 
.l:lintler C\lntent 
Stiffness 
Alt void content 

Characteristm. 
l:!irulcr 

Binder type 
Penclration 
Softening .Point· R+B 
SllT\P values 

Pavement 
Type of pavement 
T ayer thickness 
Alr void content 
Tack cnat 
Ag~ 

Locution in the pavement 
T raffic 
Environmental conditions 
Com;tructioo conditions 

Sb~r testing conditmn 

Temperature. 
Deformation rate 
Specimen 1>i1.e 
'l'csl ctmfiguratlou 
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heavy vehicle traffic roads during that period of time. Jn 
the course of the project only the bond between the sur-
fat.:c (layer l) an<l Lhc binder or base layer (layer 2) should 
he evaluated. 

Since the construction took place before the Euro-
pean Standards became effective, all surface courses had 
been comiracted according the ol<l Swiss Standard SN 
640431a Asphalt Concreie, Conception and Requirements 
( 1988) . .Pig. 3 shows the location of all test sites in Swit· 
zerland arn.J Table 2 gives an overview of structures, mix-
tures ancJ LPDS testing 1emperaturc for all test sites. 

The investigated asphalt pavcmeJ1ts were either new 
cons1ru~tions or rehabilitations of layer l and layer 2. 
Therefore, all surface (layer 1) and second layers (layer 2) 
apart from three binder courses and one upper base layer 
were totally new. 

Fig. 3. Locatiou of Swiss ~t i;ites (.Raah, .Partl l ~!i~) 

Table 2. New road piivement.s 

Sile Material LP DS testing temperature 
No. layer L layer2 20"C JO "C 

1 SMA 11 AC22 x x 

2 SMAJ,I AC32 j'( / 

3 !-IMAll AC32 y x 
4 SMAll AC22 x x 
5 SMAll AC 2.2 x x 

6 SMA 11 AC 16 x x 
7 SMA 11 AC22 x x 
8 SMA 11 AC32 ;(. 

9 SMAil AC16 x x 
10 ACll AC32 x x 

11 HRA 11 AC22 x x 
12 MAJ1 MA16 x ~ 

13 PA 11 AC16 x x 

14 SMA 11 AC2:! >< 
15 AC11 ACJ2 x )< 

16 ACU AC22 x 
17 AC 11 AG22 x 
18 AC1 6 ACJQ x 
19 AC16 ACHJ y 

20 ACll AC16 x 

Most pavement surface courses consisted citller of 
mastic asphalt (SMA) or asphalt concrete (AC): 9 road 
sections had SMA and 7 road sections had AC surface 
courses (laye.r 1). In addition, three coring sites with special 
surface courses, i.e. mastic asphalt (MA), hot· rolled asphalt 
(HRA) and porous asphalt (PA} were included . The sur-
face courses were plact: <l either on AC layers with a Jlomi-
nal ma.x: aggregate size of 10, 16, 22 or 32 mm or on MA 
with a max aggregate size of 16 mm each (layer 2). 

The investigated asphalt pavement/I were either new 
coniit.ructions or rehabilitations of layer l and layer 2. 
Therefore, aTI surface (layer 1) and second layers (layer 2) 
apart from 3 bimkr courses and l upper base layer were 
totally new. lo two cases, pavements w ilh new surface 
courses on unknown old base and binder courses were 
investigated. According Lo a h inckr extraction analysis in 
the lab, lhe mixture type of tbese unk.t1own layers was 
evaluated io be iuost probably AC 10 according to the 
SwiM standard SN 640431 /\spha/t Concrete, Conception 
and Re:qufrements ( 1976). lt is important to note, that the 
composition of binder courses was equal lo lhe composi-
tion of base courses since at that time the Swiss construc-
tion practise did not distinguish between binder and base 
courses. In order to avoid confusion , aU notations in 
'rab.le l a.re according to the new Swiss standard, SN BN 
640430 .Mastic Asphalt, Conception and Requirements, 
2008 for asphalt concrete and SN HN 64044,1 Mastic: As-
phalt, Cnnceplion and Requirements, 2008, for MA. 

All new asphaU pavement mixes of layer 1 and 1ay-
cr 2 were analysed in the laboratory determining aggre-
gate size distrihution, binder content, Marshall values 
(stability, flow, air void content) and ,qtandard binder 
properties (penetralion, softening point ring and ball). 
Furthennore, tl1e air void conten1 of the pavement layers 
(mean. value) and the tack coat type were detamined. J:lot 
this invcsligation, at each test sile, 40 cores were taken 
directJy after cons1ruction of the pavement or pavement 
rehabilitation. Prom these cores, interlayer shear tests 
between the fusl and second layer were performed at 
20 °C and 40 °C using the LPDS shear device. lo addltlon 
to 'the max shear force, m a,"( shear stress, shear defor-
mation at rnax shear s tress and max shear stiffnesi; S wen: 
deterrru.nedfor all cores. 

5.2. LTPP Road dataset 

For a long time, apart from Lwo pre1i.m.inary ;ovestiga-
tions in 1999 and 2001 on a limjted database (Raab, Partl 
1999; Stockert 200J). little performance data concerning 
interlayer bonding were available, until in 2003 Empa 
conducted a long term pavement performance study oii 
the evaluation uf loterlayer bonding over time. 

Based on the research project from 1999 (Raab, l>artl 
1999) und the results obtained from more than 1000 cores 
from 20 different pavements, a decade later the long term 
hond.ing properties of remaining 14 pavements i:ould he 
determined again. The bonding properties determined at 
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where dF - differential shear force; dw - differential shear 
deformation, 

In order Lo compare "sti1Tness0 for different sped· 
men diamelcrs, the shear react.ion modulus Kmax (Good· 
ma11er.4[. 1968) is used: 

d'T: d 2T d3i 
KT{l~x=-() at - 2 = O and - :,i, < O. (g) d'At 1' dw dw 

where dt - differential shear stress; dw - dillcretltial 
shear deformation. 

4. Artificial neuronal networks in general 

An ANN is a biologically inspired computational model 
rnnsisting of several single units, artiadal neurons, con· 
nected with weighting coefficients (Ghaffari et al, 2006). 
This system is capable of recognizing, capturing and n1ap· 
ping patterns in a set of data due to t.hc high interconnec-
tions of neurons processlng information in parallel. A 
basic network is composed by t.hree or more layers (Fig, 2) . 
The first layer contains the input data while the last layer 
contain:. the output data. One or more layers known a$ 

hidden layers are placed between tl1e input and output 
layers. The aniving signals, called inputs, multiplied by the 
connection weights are 1 ~1 summed and then passed 
lhrough a transfer function to produce the output for that 
neuron. The activation function acts on the weighted sum 
of the ncmon1s inputs and the most commohly used func-
tion are si.gmoid and hyperbolic tangent functi.on. The way 
that the neurons are connected to each other has a signifi· 
cant impact on the operation of the ANN (Mart!tleZ, An· 
gelone 2010). Tht: most commonly ui;ed ANN is a feed 
forward ANN,, In this type of ANN each ilrti:flcial neuron is 
OllJy connected lo Uk artificial neuron in the next layer 
and lts output is fed forward to the nexl layer in the direc-
Lioo from input to output (Miradi 2009), 

Th.ere are many different Jearrii.ng algorithm~ hut 
the most common <lM Is the back propagation (Ghaffari 
et al. 2006), Fm hack propagation, two other parameters, 
.the.leam.ing-rate-and.thc-momantum-Go@f.€iGi€.F1l·need-t0·-
he defined. The learni.ng rate is an adjustable facLor that 
controls Lhe speed of the learning process_ The momen-
tum coefficient determines the proportion of the last 
weight change that is added lo the new weigM change. 
The following simplified relationship presented by Erb 
(1993) points out the effects of the~e two parameters on 
tlie weight adjustment: 

new weight cbaoge = ri error-r p (last weight change), ( 4) 

where fl - learning rate; ~ - momentum coefficient. 
An ANN is 1rained lo map a set of input data by ite-

nllivc ndjui;tment of the weights. 'l'here are two ma.in 
approaches for weight adjuument: online arid batch. The 
onlinc method modifies anJ updates the wejghts for each 
input da1a. while the batcb method tomputes the weight 
update for each inpul, dilta, but store$ these val\.l<!li <luring 

Fig. 2. scheniatic ofa three layer ANN with four neumas in tlit: 
input layer, three neurons u1 the hidden layer and one ncu rl•n 
in t:hc oulput layer (lvliradi 2009) 

one repetition through t.he training set At the cn<l, after 
all input c1a1a samples have been presented, all the cont· 
rihution.s an: added, and only then the weights wlll b~ 
upd~rted (Abraham 2005). 

Informatlon from in1mt data is fed for.ward through 
the network to optimi?.e ll1c weights between neurur1s. 
Optimization of the weigbt11 is nude by backward propa-
gation of the error during 1 raining or learning phase. The 
ANN reads the input and output values In !he training 
data set and changes t he value of the weighted links 10 
reduce the difference between the pn .. -clicted and target 
(observed) values. The error in prediction is minimized 
across many training cycles until network rea<.:hcs sped· 
tied l evcl of accuracy ( Gh affari et al. 2006). 

A basic architecture of an ANN with four nemon~ 
i.n the input layer, l.hrt't' neurons in the hi<lden layer and 
one neuron in the output layer is ptesenled lu f.ig. 2. 

5. Datasets 

As explained earlier, no sta.udard databases were availa-
ble. The datasets used for trus research were gathered 
over the years by the authors of this paper from two dif· 
feren! rest-arch project.~ on in situ data (Raab, Parll 1999, 
2008). Data can be divided into those from new pave-
ments ("New Road") nod performance data from old 
pavements. i<LTPP Road" is a. dalasct combination of data 
from new pavcmmts and pei:fonnnnce data from the 
same rl!aJis after 10 .YSill:_S. For bolh dataset.Lt.he sioglt__ _ 
results for max shear force, max shear stress, shear de-
formation at max shear torce and max shear stiffoess 
were determined. 

5,1, New Road datasd 

T.o tbe mi<l 1990s, the Swiss Federal Laboratories for ma 
terlals testing .ind research, Empa, was appolntcd by the 
Swiss Federal Road Office (ASTRA} to evalualc n sjmple. 
practice orien1ed and staodar<l able te.~t method for as-
sessing the interlayer b ond between the layers of .asphak 
pavements (Raab, Partl 1999). The test method was in· 
tended as a quality assurana: (QA) tool for inspection 
immediately after pavement construction. In the course 
of this reseaJCb project, a number of S"°iss pnvements, 
consuucted between 1993 and 1997 were inve-stigated, 
providing a repre.senl.alive selection of materials for 
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20 •c with the LPIJS of 14 remaioing high volume road 
pavements for the years 1993 to 1997 were compared to 
the vnlues for the same road pavements in 2006. 

Prom the remaining pavemen1s, seven had SMA and 
four AC surface courses. All three coring sites with sp~· 
dal su;face courses, i.e.. MA, HRA and PA could also be 
in duded. 

For most road sections the average daily traffic 
(ADT, vpd) and the percentage of heavyveh.ides (> 3,5 t) 
data wrue also available from Swiss Traffic Survey of2005 
anc.l from Swiss Pederal Office of Statistics of2006. 

Table 3 shows the remaining road sections with in-
formation on the material and the t.raftlc data. 

Coring for tbe invcsligation of the long-tt:rm 
paveme11t pcrformatlce study was conducted a :fow me-
ters away from the original coring site. For every road 
section , 5 cores were taken inside ruid another 5 outside 
the wheel track. From these cores interlayer shei'\r tests 
between tht· first and second layer were perfcmnttd a.r 
lO °C using tbe LPDS shear device. ln addition to the 
max shear force, shcur stress and shear deformation as 
weU as shear stlffne:ss and shear reaction modulus weJ'e 
dctemiined for ull cores. 

6. Data prepar.1.tio11 

Before ANN calculations cun be conducted, the available 
data have to be prepared irt terms of variable selet..i!on, 
dat11 cleaning and d::tta scaling. In order to ptepnrc the 
available datase~ the input and output variables hove to 
be selected. 

The following output variables were chosen! 
- max shear force F"'·""' kN, which .is convct1cd i.nto 

the max nominal s)lear stress 'frn••• MPa; 
- she<\! deformntion at max shear stress w, mm; 
- max: shear stiffness Smax• kN/mm, which is con-

verted into lbe reaction modulus Kr .... , 
MP~/rnm•. 

Input variable selection is a key step since the choice 
of the variables influcmccs the quality of the ANN model 
prediction. Sometime~ il is possible that a variable see.ms 
to be important for the ANN software, while this impor-
1ance can physically not be explained and is opposed to 
findings in rcaUty. 'J'hen:fore, it is importani to rely not 
only on machf.ne-aided search mechanisms, but also on 
experimental knowledge and engineering judgement. 
Since the interlaye.t lm11d gcne1ally depends on two dif-
ferent layers, all \tarjahles of the mixtllrt: and binder char-
acteristics and some variables of the pavement character-
istics have to be multiplied by a factor of two. 

The input variable selection for ANN modelling of 
the data.bases was conducted using a feature selection 
mode inbuilt in the applied ANN software. When execut· 
ing an exhaustive search, temperature, aggregates passing 
through 2 mm and through 0.09 mm sieve of the second 
layer were detected to be the most important variables for 
tJ1e New Road dataset with a fitness of 56.1%. while the 

Table 3. Remaining road pavemcuts io. 2006 and traffic data 

Site Material Traffic 
No. layer I l\\yer 2 J\DT, vpd >3.5 t, % 

2 SMAl l AC32 nol available huscs 
3 SMAJI AC32 18 300 \l.8 

5 SMJ\ U AC22 31700 7.6 
6 SMA 11 AC16 \l4 990 4A 
7 SMAll AC 2.2 19 800 4.4 
8 SMA ll AC32 31 500 5.5 
10 AClJ ACJ2 77 890 Jl.l 

11 HRAJl i\.C22 9800 2.6 
12 MAJ1 MJ\ 16 32 700 7.6 

H J:IAil AC 16 31 500 4.fl 

14 SMA 11 AC22 28050 5.8 
15 ACll AC:32 64 230 8.2 
18 AC 16 ACIO 1101 iwailahlc not ~vn.ilahl(! 

19 AC16 AC lO notavailabk not availahlc 

combination of all input variables gained a fitness of 
55.6%. Tt was thcrcCo.re decided to take all 11 inplll varia-
bJcs, si nce in this way more information. could be rc-
tr.ieved using the response graph featun:. 

'l11e following additional inpu1 variables have to be 
take11 into account for I.he LTPP dataset: 

age, year: 
- /.\D1~ vp<.I; 
- percentage of heavy vehicles > 3.5 t, %. 
As opposed to the input variables for the New Hoad 

dataset the test temperature had to he excluded, since all 
pCTformance data for the L TPP dataset were 011ly determi-
ned for a tempcralui:e of20 °C. The binder content.s for the 
layers were not included because their range was very 
small and, the1cfor~. their evaluation did not give valuable 
information. The air void content was also neglected be-
cause the values for the LTPP Road were no1 comparable 
to lhe values of New Rnad. In the L'l'PP investigation air 
voids had been dcte.rmined for every single core, while for 
New Road the air void content represents a global value for 
the whole pavm1cnt:. Table 4 depicts all input variables for 
the New Road and the L 1'l'P Road dataset 

Another step in data preparatjon is data cleaning. 
Therefore the datasets are not allowed to contain missing 
dala and outliers. Jn cases of Ihissfog output <lata, the 
who)c row of data was eliminated in this research. In some 
cases, output data were only missing for one output pa-
nunetcr (such as shear stiffness). ln Lhis CMe, the data line 
was elim.inated for tbc evaluation of shear stiffness while it 
was used for the evaluation of shear force and shear de.-
formation. I)l case of missing inpul data (·variables) lt de-
pended whetbCT it was possibJe to insert data using values 
known from standards or guidelines, such as, mixture. 
characteristics or trafHc data, or whether the whole line of 
da.ra was diminated. Wro11g type values resulting from 
human error were ei1he.r currcL1ed or eliminaied. Outliers 
ore extreme cases such as, measurement t:'rrors or other 
anO'malies. Hence, each single outlier wa11 examined and it 



112 C. Raab et al. Utilisation of Artificial Neural Net1,1ork fur the Analysis of Interlayer ... 

'J'able 4. Jnput variable.~ fur New Roa<l and LTPP Road datasct..s 

Input variable.-:- New 'Road 
Temperature, T 
V<rid l , void conLc.nl <)flayer 1 
Void 2. void conrent oflayer l 
Bindei: 11 binder ronlcni of 
layer 1 
Hinder 2, binder cQntent of 
layer 2 
Aggregate passing through 
~ieve 8 mm, layer l 
Aggregate pas~ing throllgh 
&leve 8 mm, !ay1.T 2 
Aggregate rasslng through 
~ieve 2 mm, layer l 
Aggregare passing Lhruugh 
sieve 2 nun, la ya 2 
Aggregate passlng th.rcmgh 
sieve 0.0~ mm, layer 1 

Inpnr v.iriablcs I .'f PP Road 

Age 

ADT 

Percentage orh~avyvehi­
clca > 3.5 t 
Aggregak pa9sing through 
sieve 8 mm, layer l 
Aggregate pas8ing through 
sieve 8 mm, layer 2 
Aggregate passing 1hr1i ugh 
sieve 2 nun, layer 1 
Aggregate passing lhro1tJJh 
sieve 2 0101, layer 2 
Aggregate passing lhtough 
sieveO.O\lmm,la)'er I 

was deck.led to use or to eliminate t:he data. The applied 
software ohcn detected values for extreme cases and 
characterised them as outliers. Here, it was dedded to 
accept these data (e.g. high hinder and Low air void con -
tent. io case of mastic asphalt) when the given data weie 
consistenL wilh rcal.ity and then included in the evaluti-
tion. in other cases, unrcnsonably high or low data were 
either corrected when the corrcd value was available or 
clinunated when this W<lS not the case. 

Aftc1 data cleaning data scaling ls done. This is a 
procedure which allows eliminating any i.ncompatibility 
of data caused by the di£frrent measu.rement units, which 
affects the accuracy of the model. Data scal ing was do11e 
within a range of[- 1, l ] using Eqs (4-5). 

SF (SR.,,,. .. - SR min) , 
(xwitt -xm1n) 

(4) 

(5) 

where SF - scaling factor; SR.n:a - upper 6Caling range 
limit; SRmtn - lower scaling range limit; x - actual numer-
ical value; Xmax - o;ax actual value; Xm~' - min actual value; 
x.~ - scaled vaJ.u.e. 

Before ANN n1odel.llng, the dntaM b divided Jn two 
.~uhsets, the trairiing and the test set. The training set, 
about 85% of the dataset, is used for lraining and th.e test 
set, about 15% of the data, is used for \,csling the evaluated 
model. The software used in this research Jivides each 
J ataset into three suhsets: the training scl, the validation 
.set and the test set. '.1'l1e training set .is a part of lhc h1put 
datast:t used for neural network tr.ain\11g, Le. for the ad-
)U~troent of network weights. The validati.on set is a pa.rt of 
the <lata used to tune network topology or network param-
eters other than weights. For example, Jt is used to define 
the number of hidden units or to detect the moment when 
the neurn1 network performance started to deteriorate. The 

valida,ti()t:" set is used for calculating generalisation Loss and 
retaining the best network (the network with the lowest 
error on validation set) . The test set is a part of the dataset 
used only to test Ji ow well the neural .o.etwo~k will perform 
on new data 'l'he test set ls used after the netwotk is ready 
trained, to test what errors will occur during fuLu rc net-
work apptcation. The teat set ls not used during training 
and thus was consider.ed as new data cnlcrcd by the us~r 
for the· neural network applk.ation. ['l was also dccidcJ to 
separate a part of ·tJ1e dataset (about 1.0% of the data) to 
have nn additional test set) the so ca.Jled query set, which 
was used to query and validate the determined netw()rk. 
This was done prior to feeding the datasets into the ANN 
modelling procei;s, which 1ncans that sevcral lim.-s of data 
wnc excluded and put together in thf query set ffie. 

7. Modelling usinj; ANN 

7. l . New Road 

For all lhrcc output parameters the 11ame number of hid-
den layers was used. Since it was fountl that the result did 
uot differ too much when using different numbers of 
hidd~n neurons, the- min number 5, which gave a good 
prediction, was used. Batch buck propagation learning 
algorithms with a learning riltC of r1 = 0.2 and a momen -
tum coefficient of P = 0.9 was found lo give the best re-
sttlts. for th\: prediction of all three output parameters. 
The hyperbolic; tangent was d1osen as the activatioti 
function for both, hidden layer and output layer. 

Prom ¥igs 4- 6 it bec9111cs dear that for the outpu1 
vari<~ble max shear force Fmax and max shear stiffness 
Sma:x a good prediction is possible, w:bile the ANN compu-
tation of the output variable, shear deformation w ai F ma:a., 
does not lead to a. mo<lcl, whicl1 is ahle to predict its-values 
in a sufficient way. In case of the output variables force and 
stiffness the linear regressio1\ codf.icients values R2 of 0.9tl 
.and 0 .. 85 give a good pr.edi.ction of P,11>U<. and Smax anct tJie 
slopes of the regression lines ar.e dose to L 

Regarding the output variable shear deformation w at 
F;uax -a-lin%!!-G<:>:r:r~Latien-in-fue-farm-·y-=-a.\t·+ b whh-b a.U· · -· -
and Lhct1.>fOJ'C a prediction of the values is not possible. 

7.2. L TPP ro~ad 

Agah1, for a ll three output parameters the same number 
of hidden laycts was ust:<l. Since il was found that the 
result d id not differ t.oo much when using different num-
bers of hidden neurons, lhc min number 5, vvhich gave a 
good predictior1, was used. Batch back propagation learn-
ing algorithms with a )earning rat I.': of t] = 0.4 and a mo· 
mentum coefficient of P=0.9 was found to give the hest 
results for the prediction of all three o utput parameters, 
The hyperbolic tangent was chosen as the actiwtion 
function for both, hidden layer and output layer. 

Figs 7-':J give the result of ANN modelling and show 
the prediction for the output variables using the query 
files for validating the determined n~twork. 
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The ffndi.ngs for the LTPP dataset arc similar. For 
the output variable fl mu:.. and Smax a prcdi<.iion is possi-
ble with R..2 values o:f 0.75 and 0.74. For this database even 
the prediction for the output variable shear deformation 
w at Fruax is possible, although the &2 value with 0.52 is 
clearly not very bigh .. This finding can he contributed to 
the facl that with age the deformation at .t;na:c hecomes 
smaller and Lhe distinction betWeen the new and aged 
values becomes clearer. 
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For the linear regression the findings are similar. l:<or 
all regression lines a slope very close to l is found,. alt-
hough the lioear regression coefficients R2 are not high. 
For Fma.'{ and Smex they receive values of 0,66 for training 
and 0.72 for testing. In case of the shear deformation at 
Fm:l.k., R2 is very lnw (0.09 for Lraining and 0.22 for testing). 

It is int~rcsting to note, that in the LTPP daw. as 
opposed to the New Roa<l <lata, a weak correlation for the 
ma.x shear deformation at Fm~x can be found. This corre-



114 C. Raab et al. Utilisation of Artificial Neural Network for the Anti1ysis of Interlayer ... 

lation might be.attributed to the fact that in case of L'l'.PP 
data, over;ill the shear deformation data are lying within a 
less wide range and the amount of similar or comparable 
dnta (new/old) incveased. 

Similar statements are made for LPTT dataset 
(figs 8-10). However, here Fmnx and Smux show only 
weak. correlations with R2 values of 0.58 an<l 0.67. while 
the R~ of tbe linear correlation for the shear defmmation 
is only 0.50, partly due to the fact that, for physical reason 
again, the regression line was fmced through th_e origin 
of the axis. On the other han<l. the slope of the linear 
regression line was for all outpuL variables dose. to J. 
That the prediction for LTPP Raad is not so good com· 
pared to New Road is explained by the fact that LTPP 
Rund is a comb.ination of 1wo datasets which dillcr re-
garding the time of testing. 

8. Discussion 

The applieq sofM~e offers the possjbility to analyse 
ANN results by using the so-called response gr.aphs, 'l'he 
response graph displays the response of the model output 
by varying one of the varinblcs, while keeping the other 
input variable(> constant.. The constant value for ·each 
variahle is the mean value of that vru-iable in the d<itaset. 

Fig. 10 gives the response graphs for New Road 
showing the input variables "Temperature" and" Ak vol.d 
content ofJayer 1 and layer-2", ltwas decided to show the 
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response graphs for .rm.,. and slllaJ<. since here physical 
dependencies are known best: 

As shown in Hg. l Oa, the Fmnx and S,uax decrease 
with Increasing temperature from 2.0 °C to 40 QC. 'rhe 
same .applies for the Fmax and Smax: wi.th increasing air 
voi<l content of lnycr 1 (Fig. JOb). 

T11c situation gets different, for the air void conte.nt 
oflayer 2, wh_erc an 1ncl'.'ease in air void content goes wjtb 
an jncrcasc of Fcnax and Smax (Fig, 10c) . While the first 
two findings are in agreement with practical experience, 
the fmdi.ng that the shear force increases with Lu.creasing 
ait void Gontent oflayer 2 is debatable. Here, the range of 
air void content is probably too small for determining a 
clear dependency and one .bas to keep in mind that the 
increase ln shear force is .also quite small. Regarding the 
air void content (hg. 10b)1 another explanation is found 
in the difference between Jayer 1 and layer 2. The di.ffc:=-
rcncc in air void content of the layer l is mainly based on 
differences ill the asphalt concept. with mastic asphalt 
having very low air void content on the one hand and 
porous asphalt haying very high air void content oo the 
other hand. The air wid content of the layer 2 Hes within 
a clearly defined range since these iayers are all construc-
ted a~cording to 1he concept of asphalt concrete. In case 
Qfthe air void content oflayer 2, other cffecls of rough-
ness and interlock could be dominan~. Fig, 11 gives the 
n:~pons..: graphs for LTPP Road showing the input varia-
bles ADT, vehiGles ~ 3,,.5 t and age. 
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As shown in Fig, 1 la, the shear force decreases with 
increasing ADr. The same applies for increasing percent-
age of heavy vehicles (Fig. 111>), The situation gets <liffer-
e11t, when looking at the age, whexe an increase in opera-
tion time of 10 years leads to .an increase of shear force 
and shear stress (Fig. l lc). The fmcliogs for the ADT1 the 
percentage of heavy vehicles and the age are in agrce.men1 
with ptactical experience. 

The results iti a papct by RaAb (Raab, Partl 2008) 
clearly state11 that while the nominal ¥ •. u Qf intact pave-
ments increases with age or 011eraliort time, very l1igh 
levels of avt-ragc daily traffic. and high percentages of 
heavy vehicles can lead to pavement deterioration com~ 
bincd with n decrease in shear force 1md shear stress. In 
this investigation it was found that very high levels of 
average daily traffic and high percentages of heavy vehi-
cles can cause damage to the pavement, which results in a 
decrease of shear forces and stresses mainly in the wheel 
path. In most cases pavement deterioration j(i visible 
(ruts, cracks), but when the pavement lS :subject.eel to wry 
hlgh levels of ADT over a iong period of tim.e, sb~11r 

propt.'flics were fouod to decrease without the pavement 
showing visible defects. 

9. Conclusions 

The results prcs~oted in !his paper support the following 
conclusions: 

1. ANN techniques am a valuahle tool to derive 
mod.el~ from datasets and to predict interlayer shear. 
bohd propcr1ies such as max shear force, deformation at 
max shear stress, and mAA ~hear stiff11e&s. 

2. The prediction of quality cind accmacy of var.i-
ous interlayer bond properties is different. Max shear 
fotce and shcl\r stress a.re predicted best, followed by max 
.shear. stiffness, while shear deformation at max shear 
stress is a less representative Qf the bond property. 

3. Engit1eering judgement and practical knowledge 
arc lndispensable whtm clloosing tbe important variables 
for using the artificial neurtmal networks technique. 
Therefore, plausibility check~ are necessary. 

4. According to the findJngs of this research, It is 
tl!commended to create additional mdepcndent query 
lest files. ln order to have the mosl .reliable output, the 
data for these query files must be chosen randomly, but 
taking into ac.counr every inve:;tigated characteristic, such 
as di:ff crent materials. different temperatures or iuterme-
diatc layers etc. 

5. Regarding New Road dataset the be!IL predic-
tions was found for the output para.meter "max shear 
fo rce.., followed by the "mruc shear sti!fness" with linear 
regression coefficient values Ri of 0.94 and 0.85 for the 
query test set. A prediction for the ma.~ shear defor· 
mation was not possible, since the deformation data 
seemed to be Loo diverse with.in the database. 

6. The response graphs for "temperatHre" and "a:i.r: 
void layer 1'0 lhe predicted ma.x shear forces are in good 

agreement with practical experience, and findings from 
other research, while for "ail' void layer 2" a connection 
with practical experience was more difficult. 

7. Fo.r LTPP Road dataset, a combinaiion of New 
Road With i·ts pcrforma11Ce data a prediction of max shear 
force and ma.x shear stiffness is not as accurate as for the 
New Road dat.aset. This results in linear regression coeffi-
cient values R2 of 0.58 and 0.62. The prediction for the 
shear dt:formation even becomes better than for New 
Road dataset (R-. = 0.42), 

8. The response graphs for I .TPP Road dataset for 
the prediction of the n1ax sht>ar force support flndings 
that aging and tratTicking has u positive effect on the max 
shear force, while the pavement dett:dorates, leading to a 
decrc-ase in shear force when the average daily traffic and 
the percentage of heavy vehicles become~ very large. 
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