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Abstract, For u long time arlificial intelligence tools were not used in pavement engineering, but their application is be-

goming more and more important, As opposed o olher suhjects ik pavement engineering this is not yet the case forinter-
layer bonding, The nim of this paper is to apply artificial inlelligence in fotm of artificial neural neiwork for knowledge
discovery framn pavement enginecring data in the fleld of intetlayer bonding, This means that the focus is on practical vse
of artificial nenral network and its application for datasets on interlayer bonding in order to find pattern within the datz
and (o predict certain interlayet bond properties. Tt was shown that artificial neural network techniques are suitable for de-
riving models from datasets and to predict interJayer shear bond ptoperties such as max shear force, deformation at max

sheat stress, and mzx shear stiffress,
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1. Imtroduction

in ordet to organise data and to discover knowledge from
data the so called knowledge discovery techniques with
artificial nenronal networks (ANN) were introduced in
the 19505, According to Fayyad (Fayyad et al. 1996;
Miradi 2009) knowledge discovery is the nontrivial pro-
cess of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data, ANN is a
mathematical, computational model thal simulates the
structure of biological neural netwarks. Tt consists of an
interconnected group of artificial neurons and process
information using a connectionist approach to computa-
tion (Haykin 1999).

The advantage of using ANN for modelling and data
evaluation lies in the fact that ANN is capable of pro-
cessing large amopunts of data sets. ANN determines a
model based on learning or training process, as oppased
to siatistical analysis, when a madel has to be developed
by tegression, Furthermore, in mosi cases, it is unlnowr
if the relativnship between the variables is linear or not.
Therefore, ANN being a non-linear statistical data mod-
elling tool, has a clear advantage over statistical linear
regression analysis. Although ANN does not deliver an
equation it is utilised to determine most critical and in-

fluencing variables. For many problems these influencing

variables are not known in detail or are ot completely
ussessable. In case of mulli regression analysis (MRA),
their knowledge is indispensable while ANN has the
potential to identify the most important ones. As op-
posed to other areas in science and economy, where
computational tools in the field of artificial intelligence
were used for discovering knowledge from an increasing
amount of data, this was rarely the case in pavement
engineering, Here, for a Jong period of time; data collec-
tion and evaluation was rather based on empirical or
statistical methods, In her thesis, Miradi (Miradi 2009)
performed an artificial inteDigence based knowledge
discovery study of data on asphalt road pavement prob-
lems, in particular, ravelling, cracking and rutting as well
as stiffness of cement treated bases, She showed that even
without special knowledge in asphalt pavement technol-
ogy the correct use of artificial intelligence iools leads to
meaningful results and findings,

The aim of this paper is to apply ANN for knowledge
discaovery [rom pavement interlayer bonding data covering
a key issug in pavertient engineering, As opposed ta Mira-
di’s thesis (Miradi 2009) which approached the problem of
knowledge discovery for asphalt pavements fram a math-
ematical side, this paper deals with the practical applica-
tion of ANN. Henge. it focuses on the practical use of
ANN and its application for datasets on interlayer bonding
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for determining pattern within the data and to predict
certain interlayer bond properties.

2, Problem description

ANN is valuable empirical substitules for conventional
physical models for analysing complex relationships in-
volving multiple variables provided that a sufficiently
large database is available. ‘I'he bond between asphalt
pavement layers is influenced by such a great variety of
different parameters or variables.

Clearly, the interlayer bond will depend on physical
and mechanical properties of the main constituents of the
asphalt mixturcs, the geometrical, chemical and physical
characteristics of the interface, the mechanical properties
of the pavement structure and the external factors that
affect the pavement structure nsclf, such as traffic and
climate. 'l'he characteristic values of the bond itself are
also heavily dependent on the way how they are deter-
mined, i.e, lesting methods and conditions. Table 1 pre-
sents a list of the variables which are expected to govern
the gencral behaviour af the bond. The list consists of 4
major variable sets which includes more than 20 different
main variahles.

The number and complexity of parameters influenc-
ing interlayer bonding makes it difficult to quantify the
contribution of the different parameters to the measured
bunding propertics and to find a physical model predict-
ing the interlayer shear bond properties such as max
shear force or max shear stiffness. Although ihe decrease
of the interlayer hond with increasing remperature is a
well-known fact, the influence of other factors (e.g. influ-
ence of tack coat, geometry of the intertace etc.) is eilher
unknown to a full extent or intensely debated among
researcherg and praclitioners (Romanoschi, Metealf 2002;
Uzan et al. 1978; Ziart, Khabiri 2007),

Another reason for the fact that ANN has not yet
been applied for the evaluation of interlayer bonding is
the lack of generally acknowledged and openly accessible
databases for interlayer bonding. Furthermore, openly
accessible databases are lacking interlayer bond long-
term performance data incuding information on tralfic
survey and payement conditon data, since the evaluation

of the shear bond between asphalt layers is usually de-
termined using cores, which are directly taken after con-
struction and before the road is opened to traffic,

3. Shear testing

Shear testing was done using the Tayer-Parallel Direct
Shear (L.PDS) test device (Fig, 1), LPDS is an Empa mo-
dified version of equipment developed in Germany by
Leutner being more versatile in geometry and more defi-
ned in the clamping mechanism (Raab, Partl 2008).

The specimens were conditioned 1n a climate cham-
ber for 8 h and all tests were conducted at a temperature
of 20 °C, From the LPDS test the shear force ¥ as a func-
tion of the vertical shear deformation w is obtained.

Nominal maximal shear stress, Le. the average shear
stress in the cruss section, is obtained by dividing the
max shear force by the cross section area of 1he specimen,

F.. 4F.. ny

s A dn
where I, - maximal force, kN; A — nominal crass.
section arca, mm® d — specimen dismeter, mm.
In addition 10 the max shear force, the max slope is.
used to define the max shear “stiffness” valtic Sia: as
follows (Raab, Partl 2008);

dr d’F 4’r .
Sy =——— aft ——=—=0 and —— <10, (2)
T w(F) T dw? dw? '
I Shear Force
Eﬂaﬁ&i #/ (Tesling Mach;\:)-__i
Preumat. |
Clamp
Specimen

(@=150min) |

Fig. 1. LPDS test device, schematic drawing (Raab, Partl 2008)

‘I'nhle 1. List of general variables influencing the intetlayer bond of asphalt pavements

Characteristics . =
- Shear testing condition
Mixture Binder Pavement
Mixfure type Binder Lype Type of pavement Temperatiite
Nominal max aggregate size  Penclration Layer thickness Detormalion rate
Aggregate gradation Softening Point R+B Alr void content Specimen size
Binder content STTRP values Tack cout T'est configuration
Sriffness Age
Adr void content T.ocation in the pavement
Traffic

Environmental conditions
Constroction conditions
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heavy vehicle traffic roads during that period of time. In
the course of the project only the bond between the sur-
face (layer 1) and the binder or base layer (layer 2) should
he evaluated,

Since the construction taok place before the Furo-
pean Standards became effective, all surface courses had

been constructed according the old Swiss Standard SN

640431a Asphalt Concrele, Conception and Requirements
(1988). Tig, 3 shows the location of all test sites in Swit-
zerland and Table 2 gives an overview of structures, imix-
tures and LPDS testing temperaturc [or all test sites,

The investigated asphalt pavements were cither new
constriictions or rchabilitations of layer L and layer 2.
Therefore, all surface (layer 1) and second layers (layer 2)
apart from three binder courses and one upper base layer
were totally new.

Tig. 3. Location ol Swiss test siles (Raah, Partl 1949)

Table 2. New road pavemenls

Site Material LPDS esting temperamre
No, layer 1 layer 2 20°C 100
1 SMA 11 AC22 # *
3 SMA 11 AC 32 % ;
3 SMA 11 AC32 # .
4 SMA 11 AC 22 o .
5 SMA AC 22 b X
6 SMA 11 AL L6 * %
7 SMALL AC 22 # ¥
8 SMA 11 AC32 X —
] SMA 1 AC 16 t% X
10 ACI1I AC32 * *
11 HRA 1] AC 22 ® X
12 MA 11 MA 16 x X
15 PA 11 A 16 x *
14 SMA 11 AC22 ® =
15 ACT AC 32 S X
1e AU AG22 b -
17 AC 11 AC22 ® -
18 AC 16 ACID % =
19 AC16 AC1U ® —
20 A LL AC 16 * —

Mast pavement surface courses consisted cither of
mastic asphalt (SMA) or asphalt concrete (AC): 9 road
sections had SMA and 7 rvad sections had AC surface
courses (layer 1). In addition, three coring sites with special
surface courses, i.e. mastic asphall (MA), hot-rolled asphalt
(HRA) and porous asphalt (PA) were included. The sur-
face courses were placed cither on AC layers with a nomi-
nal max aggregate size of 10, 16, 22 or 32 mm or on MA
with & max aggregate size of 16 mm vach (layer 2).

‘The investigated asphalt pavements were either new
constructions or rehabilitations of layer | and layer 2.
Therefore, all surface (layer 1) and second layers (layer 2)
apart from 3 hinder courses and 1 npper base layer were
totally new. In two cases, pavements with new surface
courses on unknown old base and binder courses were
investigated. According to a hinder extraction analysis in
the lab, (he mixture type of these unknown layers was
evaluated to be most probably AC 10 according to the
Swiss standard SN 640431 Asphali Concrete, Conception
and Requiirements (1976), 1t is important to note, that the
composition of binder courses was equal to the composi-
tion of base courses since at that time the Swiss construc-
lion practise did not distinguish between binder and base
courses. In order to avoid confusion, all notations in
Table 1 are according to the new Swiss standard, SN EN
640430 Mastic Asphalf, Conception and Requirements,
2008 for asphall concrete and SN LN 6404471 Mastic As-
phalt, Conception and Reguirements, 2008, for MA.

All new asphalt pavement mixes of layer 1 and lay-
er 2 were analysed in the laboratory determining aggre-
gate size distribution, binder cuntent, Marshall values
(stability, flow, air void content) and standard binder
properties (penetration, softening point ring and ball).
Furthermore, the air void conteni of the pavement layers
{mean value) and the tack coat type were determined. For
this investigation, at each test sile, 4 cores were faken
directly after construction of the pavement or pavement
rehabililation. Trom these cores, interlayer shear tests
between the first and second layer were performed at
20 °C and 40 °C using the LPDS shear device. In addition
to the max shear force; max shear stress, shear defor-
mation at max shear sfress and max shear stiffness S were
determined for all cores.

5.2. LTPP Road dataset

For a long time, apart from lwe preliminary investiga-
tions in 1999 and 2001 on a limited databasc (Raab, Partl
1999; Stackert 2001), little performance data concerning
intcrlayer bonding were available, until in 2003 Empa
condiicted a long term pavement performance study on
the evaluation of interlayer bonding over time,

Based on the research project from 1999 (Raab, Fartl
1999) and the results obtained {roro more than 1000 cores
trom 20 different pavements, a decade later the long term
bending propertics of remaining 14 pavements could be
determined again. The bonding properties determined at
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whete dF - differential shear force; dw — differential shear
delormation,

In order Lo compare “stiflness” for different speci-
men diamelers, the shear reaction modulus Ko (Good-
man et al. 1968) is used:

2 3
at —‘g—z=0 and 4 3 <0,
dw” dw

= dr
may dw’ (T)

(3)

where dv — differential shear stress; dw - dilfcrential
shear deformation.

4, Artificial neuronal networks in general

An ANN s a biologically inspired computational madel
consisting of several single units, artificial neurons, con-
nected with weighting coeflicients (Ghaffari et al 2006).
This system is capable of recognizing, capturing and map-
ping patterns in a set of data due to the high interconnec-
tions. of neurons processing information in parallel. A
basic network is composed by three or more layers (Fig, 2).
The first layer contains the input data while the last layer
contains the output data. One or more layers known as
hidden layers are placed between the inpul and output
layers, The arriving signals, called inputs, multiplied by the
connection weights are 19 summed and then passed
through a transfer function to produce the vutput for that
neuron. The activation function acts on the weighted sum
of the ncuron's inputs and the most commmonly used func-
tion are sigmoid and hyperbolic tangent function, The way
that the netrons are connected to each other has a signifi-
cant impact on the operation of the ANN (Martinez, An-
gelone 2010). The most commonly used ANN s a feed
furward ANN, In this type of ANN e¢ach artificial neuron is
only connected (o the artificial neuron in the next layer
and its output is fed forward to the next layer in the direc-
tien from input to output (Miradi 2009),

There are many diffevent learning algorithms but
the most common one is the back propagation (Ghatfari
et al. 2006). For hack propagation, two other parameters,

the learning rate-and.-the- momentum-coefficient- need-to-

be defined. The learning rate is an adjustable faclor that
controls the speed of the learning process. The momen-
tum coclficient determines the proportion of the last
weight change that is added to the new weight change.
The following simplified relationship presented by Lrb
(1993) points vut the effects of these two parameters on
the weigh! adjustment:

new weight change =1 error+ [ (last weight change), (4)

where 1) - learning rate; B - momentum coefficient.

An ANN is trained 1o map a set of input data by ite-
ralive adjustment of the weights. ''here are two main
approaches for weight adjustment: onling and batch, The
online method modifies and updates the weights {or each
input data, while the batch method computes the weight
update for each inpul data, but stores these values during

Fig. 2. Schematic of a three layer ANN with four neurons in the
input layer, three neurons in the'hidden layer and oie nenrin
in the oulput layer (Miradi 2009)

one repetition through the (raining set. At the end. after
all input data samples have been presented, all the comt-
ributions are added, and only then the weights will Be
updated { Abraham 2005),

Information from input data is fed forward through
the fictwork to optimize the weights between neutuns.
Optimization of the weights is made by backward propa-
gation of the error during training or learning phase. The
ANN reads the inpuf and output values in the training
dafa set and changes the value of the weighted links 1o
reduce the difference between the predicted and target
(observed) values, The crror in prediction is minimized
across many training cycles until networle reaches speci-
fied level of accuracy (Ghaffari et al. 2008),

A basic architecture of an ANN with four netirons
in the input layer, three neurons in the hidden layer and
one neuron in the oulput layer is presented in Tig. 2.

5. Datasets

As explained earlier, no standard databases were availa-
ble, The datasets nsed [or this research were gathered
over the years by the authors of this paper from two dif-
ferent rescarch projects on in situ data (Raab, Paril 1999,
2008), Data can be divided into those from new pave-
ments (“New Road”) and performance data from old
pavements. “LTPP Road” is a dataset combination of data
from new pavements and performance data from the
same roads afier 10 years, For both datasets the single

results for max shear force, max shear stress, shear de-
formation at max shear force and max shear stiffoess
were determined.

5,1, New Road dataset

In the mid 1990s, the Swiss Federal Lahoratories for ma
terials testing and research, Empa, was appointed by the
Swiss Federal Road Office (ASTRA) to evaluale a simple.
praclice priented and standard able test method for as-
sessing the interlayer bond between the layers of asphalt
pavements (Raab, Partl 1999). The test method was in-
tended as a quality assurance (QA) tool for inspection
immediately after pavement construction. In the course
of this research project, a number of Swiss pavements,
constructed berwegen 1993 and 1997 were investigated,
providing a representalive selection of materials for
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20°C with the LPDS of 14 remaining high vojume road
pavements for the years 1993 1o 1997 were compared to
the values for the same road pavemenis in 2006.

From the remaining pavements, seven had SMA and
four AC surface courses. All three coring sites with spe-
clal surface courses, i.e. MA, HRA and PA could also be
included,

For most road sections the average daily traffic
(ADT, vpd) and the percentage of heavy vehicles (> 3.5 t)
data were also available from Swiss Traffic Survey of 2005
and from Swiss Federal Office of Statistics of 2006,

Table 3 shows the remaining road sections with in-
formation an the material and the traftic data,

Coring for the invesltigation of the long-term
pavement performance study was conducted a few me-
ters away from the original coring sile. For every road
section, & cores were taken inside and another 5 outside
the wheel track. From these cores interlayer shear tesis
between the firsi and second layer were perfarmed at
20 °C using the LPDS shear device. In addition to the
max shear force, shear stress and shear deformation as
well as shear stiffness and shear reaction modulus were
determined for all cores.

6. Data preparation

Before ANN calculations can be conducted, the available
data have to be prepared in terms of variable seleciion,
data cleaning and data scaling. In order to preparc the
ayailable datasets the input and output variables have to
be selected.

The following output variables were chosen:

—  max shear force Fra. kKN, which is converted into
the max nominal shear styess o MPa;

— shear deformation at max shear stress w, mumy;

—  max shear stiffness Suwe kN/mm, which is con-
verled into lhe reaction modulus  Kuas
MPa/mm?®,

Input variable selection is a key step since the choice
of the variables influences the qualily of the ANN model
prediction. Sometimes il is possible that a variable seems
10 be important for the ANN softwarc, while this impor-
{ance can physically not be explained and is opposed to
findings in reality, Therefore, it is important to rely not
only on machine-zided search mechanisms, hut also on
experimental knowledge and engineering judgement.
Since the interlayer bond generally depends on two dif-
ferent layers, all variables of the mixture and binder char-
acteristics and some variables of the pavement character-
istics have to be multiplied by a factor of two,

The input varieble selection for ANN modelling of
the databases was conducted using a feature selection
made inbuilt in the applied ANN software. When execut-
ing an exhaustive search, temperalure, aggregales passing
through 2 mm and through 0.09 mm sieve of the second
layer were detected to be the most important variables for
(he New Road dataset with a fitness of 56,1%, while the

Tahle 3. Remaining road pavemeuts in 2006 and traffic data

Site Material Traffic
No. layer [ layer 2 ADT, vpd >35t%
2 SMA 11 AC 32 potavailable huses

3 SMA 11 AC 32 18 300 9.8

b SMA 11 AC2Z 32 700 7.6

3] SMA L ACIE 94 990 4.4

7 SMA 11 AC 22 19 800 4.4

8 SMA 1] A 32 31500 55

10 AC11 ACI2 T7 490 11.1

11 HRA 11 AC 22 SR00 2.6

12 MA 11 MA 16 32 700 7.6

13 PA 11 AC la 31500 4.6

14 SMA 1L AC22 28050 5.4

15 AC 11 ACI32 64 230 8.2

18 ACI16 AC 10 notavailable  not ayalable
1% AC 16 AC 10 notavailable  nofavailable

combination of all imput variables gained a fitness of
55,6%. Tt was therefore decided 10 take all 11 input varia-
bles, since in this way muore information could be re-
trieved using the response graph feature.

"T'he following additional input variables have to be
taken into account for the LTPP dataset:

- age. year

~- ADY,wpd;

— percentage of heavy vehicles > 3.5 1, %.

As opposed 10 the input variables for the New Road
dataset the test iemperature had to be excluded, since all
petformance data for the LTPP dataset were only determi-
ned for a temperature of 20 °C. The binder contents for the
layers were not included because their range was very
small and, therefore, their evaluation did not give valuable
information. The air void content was also neglected be-
cause the values for the LTPP Road were nol comparable
to the values of New Road. In the L1PP nvestigation air
voids had been determined for every single core, while for
New Road the air void content represents a global value for
the whole pavement, Table 4 depicts all inpul variables for
the New Road and the LTPP Road dataset,

Another step in data preparation is data cleaning,
Therefore the datasets are not allowed to contain missing
data and outliers. In cases of missing outpul data, the
whole tow of data was eliminated in this research. In some
cases, output data were only missing for one vuiput pa-
rameicr (such as shear stiffness). In this case, the data line
was eliminated for the evaluation of shear stiffness while it
was uscd for the evalualion of shear {orce and shear de-
formation, Tn case of missing input data (variables) it de-
pended whether it was possible to insert data using values
known from standards or guidelines, such as, mixture
characteristics or traffic data, or whether the whole line of
data was eliminated. Wrong type values resulting from
human error were either corrected or eliminated, Outliers
are extreme cases such as, measurement errors or other
anomalies. Hence, cach single outlier was examined and it
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'T'able 4, Input variables for New Road and TTPP Road datascls

Tnput vartables New Road Tnput variables I,TPP Road

Temperature, T

Vuid |, void content oflayer 1
Void 2, void content of layer 2

Binder 1, binder contend of
layer 1

Binder 2, binder content of
layer 2

Aggregate passing through
sieve 8 mm, layer 1
Aggregate passing throngh
sleve § mumy, layer 2
Aggregate passing through
sieve 2 mum, layer 1
Aggregare passing (hrough
sieve 2 mun, layer 2
Aggregate passing through
steve 0,09 mu, layer L

Age
ADT

Percenlage ol heavy vehi.
cles =35t

Agpregate passing through
sieve 8 mm, laycr 1
Aggregate passing through
sieve 8 mum, layer 2
Aggrepate passing through
sieve 2 mu, layer 1
Aggregate passing (hrough
sieve 2 mim, layer 2
Aggregate passing through
sieve (109 mmoy, laver |

was decided to use or to eliminate the data. The applied
software oflen detected values for extreme cases and
characterised them as oulliers, Here, it was decided to
accept these data (e.g. high binder and low air void con-
tent ia case of mastic asphalt) when the given data were
consistent with reality and then included in the evalua-
tion. In ather cases, unrcasonably high or low data were
either corrected when the correel value was available or
¢hinunated when this was not the case,

Alter data cleaning data scaling is donc. This is a
procedure which allows eliminating any incompatibility
of data caused by the different measurement units, which
affects the accuracy of the model. Data scaling was done
within a range of [-1, 1] using Egs (4-5):

¢ (SRuuge SRy ) , ()
Kingx X in )
Ny = SRmin + (x ~Xmin ,lS‘F ' {5)

whete SI' — scaling factor; SRy — upper scaling range
limit; SR, — lower scaling range limit: x - actual numer-
ical value; ¥y — Max aclial value! xmy — min actual vahie;
xy — scaled value,

Before ANN modelling, the dataset is divided in two
subsets, the training and the test set. The training set,
about #5% of the dataset, is used for {raining and the test
set, about 15% of the data, is used {or (csting the evaluated
model. The software used in this rescarch divides each
dataset into three subsets: the training sel, lhe validation
set and the test set. 'The training set is-a parl of the input
dataset used for neural network training, ie. for the ad-
justment of network weights. 'U'he validation set is a patt of
the data used to tune network tapology or network param-
eters other than weights. Por example, if is used to define
the number of hidden units or to detect the moment when
the neural networlk performance started to deteriotate, The

validation set is used [or calculating generalisation loss and
retaining the best network (the network with the lowest
crror on validation set). The test set is a part of the dataset
used only to test how well the neural network will perform
on new data, 'l'he test set is used after the network is ready
trained, to test what errors will occur during future net-
worle application. The test set is not used duting (raining
and thus was considered as new data enlered by the nser
for the neural network application, It was also decided 1o
separate a part of the dataset (about 10% of the data) 1o
have an additional test set, the so called query set, which
was used 1o guery and validate the determined network;
This was done prior 1o feeding the datasets into the ANN
modelling process, which means that several lines of data
were excluded and put together in the query sel file,

7. Modelling nsing ANN
7.1. New Road

For all three cutput parameters the same number of hid-
den layers was used. Since it was found that the result did
not ditfer too much when using different. mumbers of
hidden neurons, the min number 5, which gave a good
prediction, was uscd. Batch back propagation learning
algorithms with a learning rate of 1= 0.2 and a momen-
tumn coefficient of [} =0.9 was found to give the best re-
sults: for the prediction of all three output paramelers,
The hyperbolic langeut was chosen as the activation
function for both, hidden layer and output layer.

From Figs 4-6 it becomes clear that for the output
variable max shear force F_,, and max shear stiffness
S @ good prediction is possible, while the ANN compu-
tation of Lhe vutput variable, shear deformation wat F, .
does not lead Lo a model, which is able to predict its values
in a sufficient way. In case of the output variables force and
stiffness the lingar vegression cocfficients values R of (.94
and 0,85 give a good predictionof F,,, and S, and the
slopes of the regression lines are close (o 1.

Regarding the output variable shear deformation w at

max

Fim -alinear-correlation-in-the-form-y—=ax+ b with-b=0--— -

and therefore a prediction of the values is not possible,

7.2. LTPP road

Again, [or all three output parameters the same number
of hidden layers was used, Since it was found that the
result did not differ too much when using different num-
bers of hidden neurons, the min number 5, which gave a
good prediction, was used, Batch back propagation learn-
ing-algorithms with a learning rate of =04 and a mo-
mentum coefticient of B=0,9 was found to give the best
results for the prediction of all three output parameters,
The hyperbolic tangent was chosen as the activation
function for both, hidden layer and output layer.

Tigs 7-9 give the result of ANN modelling and show
the prediction for the output variables using the query
files for validating the determined network.
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The findings for the LTPP datagsel are similar. For
the output variable [, and §,,, a prediclion is possi-
ble with R&? yalues of 0.75 and 0.74, For this databasc even
the prediction for the output variable shear deformation
wal F,. is possible, although the #* value with 0.52 1s
clearly not very bigh. This finding can be contributed to
the fact thal with age the detormation at F_ becomes
smaller and Lhe distinction between the new and aged
values becomes clearer,
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Eor the linear regression the findings are similar, For
all regression lines a slope very close to 1 ig found, alt-
hough the linear regression coefficients R* are not high,
For F.. and S they receive values of 0.66 for training
and 0.72 for testing, In case of the shear deformation at
. R*is very low (0.09 {or Lraining and 0.22 for testing).
IL is imtercsting to noic, that in the LTPP dats, as
opposed to the New Road data, a weak correlation for the
max shear deformation at F,_ can be found. This corre-

FmaL
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lation might be attributed to the fact that in case of L'L'PP
data, averall the shear deformation data are lying within a
less wide range and the amount of similar or comparable
data (new/ecld) increased.

Similar statements are made for LPTT dataset
(Tigs 8-10). However, here F___ and S show only
weak correlations with R? values of 0.58 and 0.67, while
the R* of the linear correlation for the shear deformation
is only 0.50, partly due to the fact that, for physical reason
again, the regression line was forced through the origin
of the axis. On the other hand, the slope of the linear
regression line was for all outpul variables close to 1.
That the prediction for LTPP Road is not so good com-
pared to New Road is explained by the fact that L'ITP
Road 15 a combination of two datagets which differ re-
garding the time of testing,

8, Discussion

The applicd soliware offers the possibility 1o analyse
ANN results by using the so-called response graphs. 'he
response graph displays the response of the model vutput
by varying one of the variables, while keeping the other
input variables constant. The constant value for each
variable is the mean value of that variable in the dataset.
Pig, 10 gives the response graphs for New Road
showing the input variables “Temperature” and “Air void
content of layer 1 and layer 2, Tt was decided to show the

response graphs for T and S, since here physical
dependencies are known best.

As shown in Fig, 10a, the I and S, decrease
with increasing temperature from 20 °C 1o 40°C, The
same applies [or the F,,, and S, with increasing air
void coment of layer 1 (Fig, 10b).

The situation gels different, for the air void content
of layer 2, where an increase in air void content goes with
an inerease of F, and S (Fig, 10c). While the first
two findings are in agreement with practical cxperience,
the finding that the shear force increases with increasing
ait void content of layer 2 is debatable. Here, the range of
air void content is probably too small for determining a
clear dependency and one bas to keep in mind that the
increase in shear force is also quite small. Regarding the
air void content {Fig. 10b), another explanation is found
in the difference between layer 1 and layer 2. The diffe-
rence in air void content of the layer 1 is mainly based on
differences in the asphalt concept, with mastic asphalt
having very low air void content nn the one hand and
poroué asphalt having very high air void content on the
other hand. ‘'he air void content of the layer 2 lies within
a clearly defined range since these layers are all construc-
led according to the concept of asphalt concrete. In case
of the air void content of layer 2, other cffects of rough-
ness and interlock could be dominant, Fig, 11 gives the
response graphs {or LTPP Road showing the input varia-
bles ADT, vehicles > 3.5 t and age.
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Ag shown in Fig, | 1a, the shear force decreases with
increasing ADY. The same applies for increasing percent-
age of heavy vehicles (Fig, 11b), The situation gets differ-
cit, when looking at the age, where an increase in opera-
tion time of 10 years leads to an increase of shear force
and shear stress (Fig, 11c). The findings for the ADT, the
percentage of heavy vehicles and the age are in agreement
with practical experience.

The results in a paper by Raab (Raab, Partl 2008)
clearly states that while the nominal K of intact pave-
ments increases with age or operation time, very high
levels of average daily traffic and high percemtages of
heavy vehicles can lead to pavement deterioration com-
bined with a decrease in shear force and shear stress. In
this investigation it was found that very high levels of
average daily traffic and high percentages of heavy yehi-
cles can cause damage to the pavement, which results in a
decrease of sheat forces and stresses mainly in the wheel
path. In most cases pavement deteriorativn i visible
(ruts, cracks), but when the pavement is subjected o very
high levels of ADT over a long period of time, shear
properiies were found to decrease without the payement
showing visible defects.

9. Conclusions

The results presented in this paper support the following
conclusions:

1. ANN techniques are a valuable tool to derive
models from datasets and to predict interlayer shear
bond properties such as max shear force, deformation at
max shear siress, and max shear siiffness.

2. The prediction of quality and accuracy of vari-
ous interlayer bond properties is different, Max shear
force and sheur stress ate predicted best, followed by max
shear stiffness, while shear deformation at max shear
stress is a less representative of the bond property.

3, Engineering judgement and practical knowledge
arc indispensable when choosing the important variables
for using the artificial neuronal networks techmiqgue.
Therefare, plausibility checks are necessary.

4, According to the findings of this research, il is
recommended to create additional independent query
test files; In vrder to have the most reliable output, the
data [or these query files must be chosen randormly, but
taking into account every investigated chavacteristic, such
as different matcrials, different temperatures of interme-
diate layers etc.

5. Regarding New Road datasct the best predie-
tions was found for the output parameter “max shear
force” followed by the “max shear stiffness” with linear
regression coefficient values R* of 0.94 and 0.85 for the
query tesi set. A prediction for the max shear defor-
matian was not possible, since the deformation data
seemed to be too diverse within the database,

6, 'The response graphs for “temperature” and “air
void layer 17 the predicied max shear forces are in good

agreement with practical experience, and findings from
other research, while for “air void layer 27 a cannection
with practical experience was more difficult.

7. For LTPP Road dataset, a combination of New
Raad with its performance data a prediction of max shear
force and max shear stiffness is not as accurate as for the
New Road dataset, This results in linear regression coeffi-
cient values R? of 0.58 and 0.62. The prediction for Lhe
sheat deformation even becomes better 1than for New
Road dataset (R* = 0.42),

8. The response graphs for 1.TPP Road dataset for
ihe prediction of the max shear force suppart findings
that aging and trafficking has a positive cffect on the max
shear force, while the pavement deteriorates, leading to a
decrease in shear force when the average daily traffic and
the percentage of heavy vehicles becomes very large.
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