Non-contact bimodal magnetic force microscopy

J. Schwenk,1,a) M. Marioni,1 S. Romer,1 N. R. Joshi,1 and H. J. Hug1,2
1Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
2Department of Physics, University of Basel, CH-4056 Basel, Switzerland

(Received 18 December 2013; accepted 6 March 2014; published online 20 March 2014)

A bimodal magnetic force microscopy technique optimized for lateral resolution and sensitivity for small magnetic stray fields is discussed. A double phase-locked loop (PLL) system is used to drive a high quality factor cantilever under vacuum conditions on its first mode and simultaneously on its second mode. The higher-stiffness second mode is used to map the topography. The magnetic force is measured with the higher-sensitivity first oscillation mode. © 2014 AIP Publishing LLC.

http://dx.doi.org/10.1063/1.4869353

Magnetic Force Microscopy is a well-established tool to map stray fields emanating from domain structures in a magnetic sample. It can reach spatial resolutions down to 10 nm with a sensitivity sufficient to detect fractions of a monolayer of uncompensated pinned spins at ferromagnet/antiferromagnet interfaces.1 Most magnetic force microscopes (MFMs) use a two-passage method, where each line is scanned in a intermittent contact mode to measure the topography of the sample and subsequently with the tip lifted off the surface to record the magnetic signal.2,3 This measurement mode is robust and well applicable to samples with arbitrary topography, e.g., rough samples or patterned media. However, the intermittent contact mode is difficult to apply in vacuum required for high lateral resolution MFM as outlined in detail below. Recently, Li et al.4 reported a single passage method that makes use of bimodal cantilever excitation introduced by Rodriguez and Garcia.5 The cantilever was driven on its first mode at an amplitude of several tens of nanometers and simultaneously on its second mode at a much smaller amplitude. The first mode amplitude was kept constant by the feedback that controls the tip-sample distance, i.e., reflects the measured topography of the sample. The second mode amplitude and phase were used to record the magnetic signal. Note that for a scan of this kind to be carried out in a reasonable amount of time the oscillation amplitude must stabilize quickly at every point. Hence, very high cantilever quality factors are impractical. Therefore, work was performed in air, resulting in low quality factors of the cantilever, i.e., 120 and 500 on the first and second mode, respectively. Another interesting experimental approach suited for low quality factor cantilevers is based on narrow-band intermodulation atomic force microscopy.6

In our work, we developed a non-contact bimodal magnetic force microscopy technique which can take advantage of the higher sensitivities provided by high quality factor cantilevers. It is optimally suited for operation in vacuum or UHV for highest sensitivity and thus best spatial resolution.

Each spatial Fourier component of the magnetic stray fields decays exponentially with increasing distance z from the surface of a magnetic sample, \(H_z(k, z) = H_z(k, 0) \cdot \exp(-kz) \), where \(H_z(k, 0) \) is the stray field at the surface of the sample, and \(k = (k_x, k_y) \) with \(k = 2\pi/\lambda \), where \(\lambda \) is the spatial wavelength.7 Given a sufficiently sharp tip with an appropriately thin magnetic coating, high resolution imaging thus requires small tip-sample distances, correspondingly small oscillation amplitudes, and a high sensitivity for small forces or force derivatives.

We used a cantilever from Team Nanotec GmbH with an ISC (Improved Super Cone) high aspect ratio tip coated with about 8 nm Co. Such a thin magnetic coating leads to a correspondingly small magnetic moment. This is advantageous if soft magnetic samples are measured, but requires an excellent measurement sensitivity to detect the small magnetic signals arising from smaller spatial wavelengths of the stray field. The thermodynamic limit for the minimally measurable force derivative on the nth cantilever oscillation mode is given by

\[
\frac{\partial}{\partial z} F_z \bigg|_{\text{min}} = \frac{1}{A_n} \sqrt{\frac{4k_BT_k}{Q_n\omega_n}}.
\]

The force constant \(k_n \), and the resonance frequency \(\omega_n \) of the nth mode relate to those of the first mode as

\[
k_n = k_1 \cdot \left[\frac{z_1}{z_n} \right]^4 \quad \text{and} \quad \omega_n = \omega_1 \cdot \left[\frac{z_1}{z_n} \right]^2,
\]

with \(z_1 = \{1.8750, 4.6941, 7.8548, 10.9955, \ldots\} \).

According to Eqs. (1) and (2) the sensitivity of a higher mode \(n \) is lower than for the first mode by \(z_n/z_1 \cdot \sqrt{Q_1/Q_n} \). The first mode is hence better suited for the measurement of the small magnetic forces. In order to obtain higher quality factors, our MFM (a modified Nanoscan hrMFM) with two phase-locked loops (PLLs) (Fig. 1) is operated under vacuum conditions. The first mode force constant of the cantilever, \(k_1 = 0.996 \text{ N/m} \) was calculated from the measured first mode resonance frequency, \(\omega_1 = 53'059.9 \text{ Hz} \), the length \(l = 225 \mu\text{m} \) and the width \(w = 35 \mu\text{m} \). The second mode force constant \(k_2 = 39.1 \text{ N/m} \) was obtained from Eq. (2), and the second mode resonance frequency was measured, \(\omega_2 = 327'850 \text{ Hz} \). In vacuum, the first and second mode quality factors were \(Q_1 = 40'268 \) and \(Q_2 = 17'205 \), respectively. Such high quality factors do not permit the excitation of the cantilever at a user-selected fixed frequency, but require PLLs to drive the first and second mode on their respective resonance frequencies (Fig. 1). The amplitude response of

a)Author to whom correspondence should be addressed. Electronic mail: johannes.schwenk@empa.ch.
The z-feedback adjusts the tip-sample interaction. The output amplitude is adjusted by a PI feedback (Amplitude Control 1) to keep the (first mode) oscillation amplitude constant, e.g., at 12 nm. The shift of the first mode resonance frequency, \(\Delta f_1^{(b)} \) predominantly reflects the long-range magnetic force. Consequently, if \(\Delta f_2^{(b)} \) is kept constant by the (fast) z-feedback, the output of the latter corresponds to the topography of the sample. The bimodal frequency shift of the first mode, \(\Delta f_1^{(b)} \), is not affected by the presence of the long-range magnetic force.

In bimodal operation conditions with large \(A_1/A_2 \)-ratios, the frequency shift versus distance curve \(\Delta f_2^{(b)} (z_{\text{tip}}) \) has a distance dependence closely resembling what would be measured without the first mode oscillation amplitude (\(\Delta f_2 (z_{\text{tip}}) \)). However, the frequency shift values are smaller at all distances. \(^{11}\) The second mode bimodal frequency shift \(\Delta f_2^{(b)} (z_{\text{tip}}) \) is thus also dominated by the short-range van der Waals force. Consequently, if \(\Delta f_2^{(b)} \) is kept constant by the z-feedback, the output of the latter corresponds to the topography of the sample. The bimodal frequency shift of the first mode, \(\Delta f_1^{(b)} \), reflects the long range magnetic force.

FIG. 2 summarizes MFM results obtained with different ratios of the first to second mode amplitudes in bimodal operation on a Pt(5 nm)/[Co(0.4 nm)/Pt(0.7 nm)]\(_{13}\)Pt(1 nm)/SiO\(_2\)/Si sample with perpendicular magnetic anisotropy. The second mode frequency shift \(\Delta f_2^{(b)} \) was kept constant at \(-6.8 \) Hz for all data shown here. An excellent separation of the magnetic and topographic signal is obtained for an \(A_1/A_2 \)-ratio of 44 (Figs. 2(a)–2(c)). The first bimodal frequency shift \(\Delta f_1^{(b)} \) data (Fig. 2(a)) shows the up/down domain structure typical for such a sample, while the output of the z-feedback (Fig. 2(b) operating on the second bimodal frequency shift \(\Delta f_2^{(b)} \) reflects the topography of the sample. The instrumental drift of the sample’s z-position becomes apparent as the image scanned from the topography images for (a) and (b), (c) and (d), (e) and (f), respectively. The amplitude of the magnetic image (first mode frequency shift) is \(6.8 \) Hz for all measurements. Note that the \(\Delta f \) or \(\Delta z \) values given in the images represent the displayed grey scales, and not the actual extrema of the image contrast. Thus, corresponding images can be directly compared. The red and blue circles in panel (d) mark the acquisition locations of the frequency-distance curves shown in Fig. 3.
bottom to the top and from the left to the right appears darker at the left and brighter at the right. After subtracting the “drift-plane,” the topography image, Fig. 2(c), reveals the granular structure of the polycrystalline sample with grain sizes around 20 nm and height variations of ±0.65 nm. The magnetic domains are faintly visible, however, (a contrast of about 0.1 nm) indicating that the separation of magnetic and van der Waals forces is not perfect.

Reducing the A_1/A_2-ratio from the initial 44 down to 22 (Figs. 2(d) and 2(e)), 11 (Figs. 2(f) and 2(g)), and 5.6 (Figs. 2(h) and 2(i)), the magnetic contrast in the z-feedback output images increases. To understand this, note that the bimodal frequency shift Δf_2 is smaller than the unimodal frequency shift Δf_2 because in bimodal operation the Δf_2 is averaged over the tip-sample distance range spanned by the first mode oscillation amplitude A_1. With smaller amplitude A_1 this averaging of the second mode frequency shift occurs over a smaller z-range. In that case Δf_2 is larger, closer to the Δf_2 that would be obtained in unimodal operation. For the data shown in Fig. 2, the z-feedback setpoint was kept constant at -6.8 Hz for all selected amplitudes A_1. Consequently, the z-feedback will increase the tip-sample distance if the first mode amplitude A_1 is reduced. At larger tip-sample distances the contribution of the longer-ranged magnetic forces to the frequency shift is more prominent, and the magnetic domain contrast becomes more apparent (Figs. 2(e)–2(i)) in the z-feedback output data. But since the z-feedback will partially have corrected for the spatially dependent magnetic forces, the magnetic contrast visible in the Δf_2-images (Figs. 2(d)–2(h)) is reduced.

We also acquired frequency shift versus distance curves simultaneously for the first and second mode, in the middle of a black and of a white domain (Fig. 2(d), points 1 and 2). We used oscillation amplitudes $A_1 = 6$ nm and $A_2 = 0.27$ nm. At $z_{tip} = 70$ nm, the contrast between the Δf_1 values obtained on the white (wd) and black domain (bd) corresponds to 5.9 Hz (blue-red arrow in Fig. 3(a)). 70 nm away from the sample, the change of the force z-derivative over the tip’s oscillation trajectory with the chosen oscillation amplitudes can then be neglected. Therefore, the small amplitude approximation, i.e., Eq. (4) holds and $\Delta f_2(wd) - \Delta f_2(bd) \approx [\Delta f_1(wd) - \Delta f_1(bd)] \cdot (x_1/x_2)^2 = 0.94$ Hz agreeing well with the experimental value of 0.89 Hz (black arrows in Fig. 3(a)). Because the second mode amplitude is small ($A_2 = 0.27$ nm), the second mode frequency shift Δf_2 is dominated by the van der Waals force at small tip-sample distances. Hence, the tip-sample distance required to correct between a magnetically attractive and repulsive signal is extremely small. Assuming that the magnetic forces at these two points have equal magnitudes but opposite signs, the average of the two Δf_1-curves is solely caused by the van der Waals interaction. Using the matrix inversion method described by Welker et al., the distance dependence of the van der Waals force $F_{vdW}(z_{tip})$ (depicted in Fig. 3(b)) can be extracted from the average frequency shift $\Delta f_2 - \Delta f_2(z_{tip})$. A model counterpart for this experimental van der Waals force is $F_{vdW}(z) = -c/(z-z_{off})^2$ with $c = 3.87 \cdot 10^{-27}$ Nm2 (Fig. 3(b), solid black line). The constant z_{off} is required because the zero-point of the z-scale in Fig. 3(a) is a priori unknown and an absolute zero-point can be defined to obtain $z_{off} = 0$.

For comparison, we also plot exponentially decaying magnetic forces $F_{mag}(z) = F_0 \cdot \exp(-kz)$ for spatial wavelengths $\lambda = 2\pi/k = 200, 100$, and 20 nm. The constant F_0 has been adjusted so that the 200 nm plot reproduces the experimentally determined contrast $\Delta f_1(z_{tip}) - \Delta f_1(z_{tip}) = 5.9$ Hz at a tip-sample distance of 70 nm. Notice that the magnetic force arising from magnetization patterns with 20 nm spatial wavelength has a decay length similar to that of the van der Waals force. High-resolution MFM based on bimodal techniques is still possible, however, if the van der Waals force is much larger than the magnetic force arising from magnetic field features of small spatial wavelengths, i.e., if $\Delta f_2 - \Delta f_2(z_{tip}) \ll \Delta f_2 - \Delta f_2(z_{tip})$. Under this condition, a change of the magnetic force would be compensated by a negligible change of the tip-sample distance. Therefore, the z-feedback image still reflects the topography and the Δf_2-image shows the magnetic image.

For high-resolution imaging (Fig. 4), the tip-sample distance must be kept small. The latter can be estimated from the frequency distance curve (Fig. 3(a)) and the z-feedback
set-point $\Delta f_2^{(b)} = -6.8$ Hz that was used for the data shown in Fig. 4. A lower turning point tip-sample distance of 7.6 nm is found. Note, however, that the proper function of the z-feedback requires a low noise $\Delta f_2^{(b)}$ signal at a reasonable measurement bandwidth. Using Eqs. (1) and (4) we find a Δf_2-noise of 0.66 Hz in a 100 Hz bandwidth for the high quality factor $Q_2 = 17'205$ obtained in vacuum for $A_2 = 0.27$ nm. This noise must be compared with the second mode frequency shift obtained under bimodal operation. Hence, for typical quality factors obtained in air, a stable operation of the z-feedback on $\Delta f_2^{(b)}$, at a reasonable measurement bandwidth becomes challenging. This limits the application of bimodal MFM as proposed here to vacuum operation and reasonably small scan-ranges. To summarize, we have presented a non-contact bimodal magnetic force microscopy technique capable of obtaining highest resolution and sensitivity for magnetic stray fields under vacuum conditions. However (as is also the case for conventional, lift-mode operation), the topography will be partly visible in the first mode frequency shift and may easily be mistaken for small magnetic features. This is because magnetic forces will vary as the tip follows local topographical features. For example, the grain structure visible inside the white bits in the magnetic image Fig. 4(a) is not caused by variations of the local magnetic structure, but arises from local changes of the average tip-sample distance. However, in Fig. 4 in some locations (see for example the yellow box B with a height of 10 nm) the magnetic contrast changes from bright to dark from one grain to the next, although adjacent grains have the same topographical height. Such a contrast change must be of magnetic origin. Further, in some locations (see the parallel lines L) topographical features are visible that do not appear in the magnetic image. This indicates that a lateral resolution on the length scale of the grains, i.e., smaller than 10 nm could be obtained.

Support from Nanoscan and the financial support of CCMX, the Swiss National Science Foundation, and Empa is hereby gratefully acknowledged. We thank Eric Hudson for his valuable suggestions concerning this manuscript.