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The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical

solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell

operating temperature, the thickness of yttria stabilized zirconia thin films is reduced.

Often, these thin membranes suffer from mechanical failure and gas permeability. To

improve these mechanical issues, a glancing angle deposition approach is used to

grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of

the material flux direction during the deposition result in a dense, zigzag-like struc-

ture with columnar crystallites. This structure reduces the elastic modulus of these

membranes as compared to columnar yttria stabilized zirconia thin films as monitored

by nano-indentation which makes them more adaptable to applied stress. C 2015 Au-

thor(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4905578]

The ionic conductivity and mechanical stability of the electrolyte membrane of solid oxide fuel

cells (SOFC) and hence the final working temperature are important issues when operating a fuel

cell, in particular thin film based miniaturized SOFCs (µSOFC). The electrolyte yttria stabilized

zirconia (YSZ) is the standard ionic conductor1 used in fuel cell, being a brittle material due to its

high hardness.2 This point can become a concern for an early malfunction of devices due to cracking

of electrolyte membranes when implemented in µSOFCs as a result of the combination of a very

high hardness, high operating temperatures, film morphology, and growth induced strain.3–6 One

way to circumvent this problem is to modify the membrane’s morphology. YSZ thin films grown by

pulsed laser deposition (PLD) are known to exhibit a columnar morphology with diameters around

20 nm.7–9 This morphology is expected to follow the structure zone model of Thornton10 and could

be overcome by an increase of the deposition temperature. However, with the very high melting

point of YSZ above 2900 K,11 deposition temperatures of at least 1500 K would be required for a

significant change of the microstructure on technically relevant substrates. In addition, such a high

deposition temperature poses serious limitations on any available heating systems, in particular, for

a larger area deposition.

An alternative to modify the thin film morphology is to change the incident angle of the

materials flux which can result in a change of the crystallographic growth orientation as well as

materials’ density. This approach is commonly known as glancing angle deposition (GLAD) or
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sculptured thin films.12,13 Structuring is thereby achieved by varying the angle between the material

flux and the surface of the substrate. The microstructure of the growing thin film may then follow

the orientation of the material flux typically realized for directional deposition techniques such as

physical vapor deposition. For PLD, only a few attempts have been reported to prepare porous

carbon or perovskite thin films with a tilted columnar structure.14–16

Here, we present the sculpturing of YSZ thin films using PLD under variable angles with respect

to the substrate surface normal. We will show that the influence of the deposition angle changes the

microstructure and correspondingly the mechanical stability of these films. To achieve a glancing

angle deposition, the geometry of a conventional PLD setup was modified (see Fig. S1 supplemen-

tary material17) similar to studies reported by others.14–16 Instead of the typical orthogonal alignment

between the plasma plume expansion direction and the substrate surface (0◦ inclination), an arbitrary

angle can be set. For the presented experiments, the deposition angle of the substrate was fixed at

45◦ but the angular range from 0 to 90◦ has also been explored.18 Additionally, in-plane rotations of

180◦were performed to obtain a zigzag like growth morphology with the deposition stopped until the

rotation was completed. Other deposition parameters were fixed for the deposition of 3 and 8 wt. %

YSZ films: λ = 248 nm laser wavelength, 3 J/cm2 laser fluence, pulse length 25 ns, 1.4 mm2 laser

spot size, 1 Pa oxygen background pressure, c-cut sapphire substrates,19 a substrate temperature TS

= 600 ◦C, and 4 cm distance between the revolving cylindrical target and the center of the substrate.

Microstructural investigations were performed using a scanning electron microscope (SEM;

Zeiss Supra VP55 FE-SEM) and a transmission electron microscope (TEM; Jeol JEM 2000 FS).

The cross sectional SEM images (Fig. 1) were obtained by cleaving the samples parallel to the

grown zigzag structure after the sputter deposition of a 5 nm chromium layer to avoid charge

accumulation during the measurements. A cross-sectional SEM image of a 3YSZ thin film grown

with the conventional PLD geometry is shown as a reference in Fig. 1(a). The film has a columnar

structure parallel to the surface normal with an average column width of ∼20 nm as reported in

literature.7–9 By applying an inclination of 45◦ between the plasma plume and the surface normal,

the microstructure depicted in Fig. 1(b) was obtained. The columnar structure is preserved but tilted

towards the direction of the plasma plume with a column width similar to the reference sample.

Remarkably, the angle between the columns and the surface normal is found to be 36◦ ± 3◦ which

also holds for inclination angles >45◦ (see Fig. S2 supplementary material17). For other materials,

often an increase in the tilting angle of the sculptured structure can be observed with increasing

inclination.12,13 By turning the sample by 180◦ after half of the deposition, the column growth

direction was also turned in-plane by 180◦ (Fig. 1(c)). This zigzag structure can be repeated without

any degradation of the well aligned columnar structure, as can be seen in Fig. 1(d).

A closer inspection of Fig. 1(d) suggests that at least some columns continue to grow at the

kinks as single crystallites without any grain boundary and the grown structure has no or a very

reduced porosity as compared to conventionally grown YSZ. To examine this further, TEM images

of focused ion beam (FIB) cut lamella of an 8YSZ thin film were recorded for further clarification.

Lamellae were cut from the samples in a dual beam FIB/SEM (Zeiss NVision 40), a gas injection

system, and a micromanipulator MM3A from Kleindiek. Amorphous carbon was deposited by

e-beam and ion-beam to protect the thin film during cutting. The lamellae were polished to electron

transparency with currents from 13 nA down to 10 pA at 30 kV. An overview image of a double

layer zigzag structure is shown in Fig. 2(a). The arrow shows the growth direction of the thin film

with the numbers indicating (1) sapphire substrate, (2) YSZ thin film, (3) the chromium layer with

a small region of amorphous YSZ due to the FIB cutting, and (4) the amorphous carbon protection

layer. No pores were observed between the different columns or at the grain boundaries studied,

neither in the low nor in the high magnification analysis showing that the film has a dense structure.

This has been confirmed by samples cut at 90◦ to the zigzag structure showing no holes or pores, nor

grain boundaries at the kink. A high resolution TEM image of the region around the kink (dashed

line) of the zigzag structure is shown in Fig. 2(b). Apparently, all columns continue to grow through

the kink without any evidence of a discontinuous crystal structure. This is demonstrated in addition

in Figs. 2(c)-2(h) corresponding to the labeled white squares in Fig. 2(b). A comparison of the

2D Fourier transformed images of the same column before and after the kink ((e) and (g) as well

as (f) and (h)) demonstrates the continuation of the same crystallographic orientation. As for the
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FIG. 1. SEM cross sectional views of YSZ thin films grown under (a) perpendicular incidence of the plasma on the substrate,

(b)-(d) 45◦ of incidence with (b) no in-plane rotations, (c) one in-plane rotation by 180◦ after half of the deposition, and (d)

three in-plane rotations by 180◦ after each quarter of the deposition time. The cleaving of the samples was done in the

plane perpendicular to the plane spanned by the plasma propagation direction and the surface normal. Arrows indicate tilted

columns with no visible change in crystallinity or a grain boundary at the kink.

crystallographic orientation, only two types were found in the acquired TEM images. They show

a (100) out-of-plane orientation with in-plane orientations being either 8YSZ(001)∥Al2O3 (11.0) or

8YSZ(011)∥Al2O3 (11.0). Since the FIB cut lamella represents only a very small part of the whole

sample, XRD measurements were performed for a macroscopic analysis of the crystalline struc-

ture which coincides well with the presented microscopic observation (see Fig. S3 supplementary

material17).

Two observations are notable: (i) The zigzag structure appears to be dense and without obvious

micro- or nanoporous structures in contrast to materials deposited either using PLD or other depo-

sition techniques.12,13,15,16 The reason for this difference is most likely related to the relatively

small inclination angle of 45◦ as compared to typically used angles >70◦. In addition, the expected

shadowing effect of the growing columns seems to be too weak to interfere with a dense growth due

to an enhanced surface migration of species at the high deposition temperatures. The gas tightness

of these films was verified by a successful implementation of zigzag structures as an electrolyte in

µSOFCs.18 (ii) The tilt angle of the columns is fixed at ∼36◦ for any inclination of the material flux

of ≥45◦ while columns grow nearly perpendicular to the substrate at inclination angles <40◦ (see

Fig. S2 supplementary material17). As reported by Pergolesi and co-workers, the free surface ener-

gies of the {001} and {111} facets of cubic YSZ are energetically closer than in doped ceria. As
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FIG. 2. TEM analysis of FIB cut lamella of a zigzag structured YSZ thin film (a) bright field-TEM overview image where

the growth direction is indicated by an arrow. (b) High resolution TEM image of the region around the kink indicated by a

dashed line. The labeling of the white squares corresponds to the following sub-figures. (c) and (d) High resolution TEM

analysis of two small regions, where crystallographic orientations are indicated. (e)-(h) 2D Fourier transformed images for

further illustration of the crystallographic orientations in the different regions of (b).

a consequence, nanocrystallites can exhibit both surfaces in thermodynamic equilibrium.20 In any

cubic lattice, the angle between these two surfaces is 54.7◦ and corresponds to the complementary

angle of the columns inclination. It is, therefore, expected that a crystal facet when grown as a

thin film orients itself according to one of the two possible orientations. Keeping the (001) growth

orientation fixed when growing columnar films, a {001}-plane in the crystalline structure is the

only solution for columns growing perpendicular to the surface. If tilted columns with a (001)

out-of-plane orientation are grown, the remaining crystal planes for the columns’ faces are the

{111} facets irrespective of the inclination. Thus, the possible angles of the columns are fixed at

either 0◦ or ∼36◦ to the surface normal, as verified by other deposition angles.17,18

The mechanical stability of YSZ thin films as free-standing membranes is very important. To

investigate the mechanical properties of zigzag structures, nano-indentation measurements were
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FIG. 3. Load-displacement curves of (a) 3YSZ and (b) 8YSZ thin films structured with different numbers of zig layers (0, 1,

2, and 4). The inset of part (a) shows the magnified part with a pop-in of the load-displacement curve of the conventionally

grown sample. In the supplementary material, all acquired P-h curves are shown for completeness in Fig. S4.17

performed with a load-controlled Berkovich-type nano-indenter Ubi (Hysitron). Mechanical prop-

erties, such as hardness H and reduced modulus Er, are extracted from the unloading part of the

load-displacement (P-h) curve using the Oliver and Pharr method.21 In order to avoid the influence

of the substrate in the measurement, the maximal penetration depth of the indenter was limited to

15% of the total thickness of the YSZ film with sample thicknesses ranging from 300 to 700 nm. For

each sample, 36 P-h curves were acquired with typical indentation curves depicted in Figs. 3(a) and

3(b) for 3YSZ and 8YSZ thin films, respectively. Clearly visible is the larger indentation depth at

maximum load for tilted structures compared to the conventionally grown samples. The hardness H

is defined as the ratio between the maximum applied force Pmax over the projected contact area Ap.

The reduced elastic moduli Er can then be calculated via Sneddon’s equation S = dP

dh
= 2βEr



Ap

π
,

where S is the slope of the initial part of unloading elastic curve termed stiffness, and β is a shape

correction factor set to 1.034 for a Berkovich indenter. Finally, if the Poisson’s ratio ν of the thin

film is known, the reduced elastic modulus Er can be converted to Young’s modulus E via

1

Er

=
1 − ν2

E
+

1 − ν2
i

Ei

, (1)

where the index i denotes the indenter’s material parameters (diamond indenter: Ei = 1140 GPa, νi

= 0.07).

It is known that YSZ has a strong anisotropy with respect to its Poisson’s ratio.2 While it has

a value of ν > 0.8 for the [100] direction it is close to zero (|ν| < 0.1) for the [111] and [110]

directions. Since the presented thin films are highly oriented, an average Poisson’s ratio for the

calculation of the Young’s modulus is in this case not very meaningful as it is commonly done for

polycrystalline samples.22 Therefore, the derived reduced elastic moduli counting for indentation

modulus and Poisson’s ratio evolutions are plotted in Figure 4(a). Straight columns have a strongly

preferential (100) out-of-plane orientation, whereas tilted structures show in addition a partial (111)

orientation with a much higher degree of mosaicity, i.e., a structure with a slightly tilted (100)

orientation. Since YSZ is a strongly anisotropic material, elastic properties are expected to be

orientation dependent and thus exhibit different values for straight or tilted structures. For 3YSZ, a

ratio E

1−ν2 of ∼310 GPa is measured independent of the microstructure and thus of the orientation.

For 8YSZ, a slightly increased value for E

1−ν2 has been determined for straight columns as compared

to 3YSZ, whereas for the zigzag morphology the values are systematically lower. Compared with

results obtained on bulk single crystals,2 the microstructure of the samples described here reduces

the influence of the anisotropy on the elastic modulus.
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FIG. 4. (a) Hardness and (b) the ratio E

1−ν2 of 3YSZ and 8YSZ thin films with different numbers of zig layers (0, 1, 2, and

4). The error bars indicate the 2-sigma region of the 36 single measurements as extracted from the measurements shown in

Figure S4.17

Looking now at the measured hardness for samples with a preferential (100) and (111) orien-

tation, the hardness is homogeneous for straight columns for both 3 and 8YSZ thin films (Fig.

4(b)).2 When introducing the tilted structures, the hardness decreases significantly which strongly

suggests that tilted interfaces and/or grain boundaries seem to act as less efficient obstacles to plastic

deformation. The analysis of whether this is, e.g., related to the nature of the grain boundary or

simply related to the inclination of the boundaries with respect to the loading axis is beyond the

scope of this paper.

For YSZ P-h curves, a typical feature of a so-called pop-in was found (see inset of Fig. 3(a)).

The pop-in was present in most of the P-h curves of films with straight columns and appeared

within a range of 500-900 µN. This corresponds to a very high von Mises stress, estimated to be

about 17 GPa, and is considered to be in the order of the theoretical stress values for YSZ. For

films with tilted columns, no pop-in appeared in any P-h measurement. Usually, the appearance

of a pop-in in a P-h measurement is associated with a low dislocation density in monocrystals.2

For straight columns, they appear at a penetration depth of ∼20 nm which corresponds to a contact

area of approximately 60 × 60 nm2 which is larger than the average width of a single column (see

Figs. 1 and 2). Therefore, it is not obvious how this reoccurring feature correlates with the film

microstructure. However, with the larger mosaicity and hence a higher degree of disorder for zigzag

structures, the absence of a pop-in structure in P-h curves seems to be consistent.

In summary, it is demonstrated that the orientation of columnar grains of PLD grown YSZ

layers can be modified by changing the angle between the material flux and the substrate. The

maximum average angle of these tilted columns is, however, limited to ∼36◦, the angle between

the crystallographic orientations of (111)c and (001)c which shows the lowest free surface energies

among the low index surfaces of YSZ. The transition from vertically aligned columns to the tilted

columns occurs in a narrow range around 40◦-45◦ between material flux and substrate normal. Layers

of tilted columns with opposite tilt (rotated in-plane by 180◦) can be grown on top of each other

without any loss of crystalline order. The columnar grains do not show a discontinuity at the kink

even on an atomic scale. Furthermore, the PLD grown thin films are found to be highly dense

and gastight18 with an ionic conductivity like conventionally grown YSZ, an important prerequisite

for µSOFC applications. 3 and 8YSZ films with tilted columns result in a lower hardness (∼35%)

and a lowering of the ratio E

1−ν2 by ∼10% as compared to conventionally grown YSZ films. The

number of tilted layers (up to 4) was found to play only a minor role, in particular, for 3YSZ. This

study demonstrates that mechanical properties of YSZ films can be tuned and optimized in a simple

approach which could be beneficial for free standing membranes for an improved adaptability to

thermally induced strain.
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