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ABSTRACT  29 

 30 

Climate change and anthropogenic pollution are of increasing concern in remote areas such as 31 

Antarctica. The evolutionary adaptation of Antarctic notothenioid fish to the cold and stable 32 

Southern Ocean led to a low plasticity of their physiological functions, what may limit their 33 

capacity to deal with altered temperature regimes and pollution in the Antarctic environment. 34 

Using a biochemical approach, we aimed to assess the hepatic biotransformation capacities of 35 

Antarctic fish species by determining (i) the activities of ethoxyresorufin-O-deethylase 36 

(EROD) and glutathione-S-transferase (GST), and (ii) the metabolic clearance of 37 

benzo(a)pyrene by hepatic S9 supernatants. In addition, we determined the thermal sensitivity 38 

of the xenobiotic biotransformation enzymes. 39 

We investigated the xenobiotic metabolism of the red-blooded Gobionotothen gibberifrons 40 

and Notothenia rossii, the hemoglobin-less Chaenocephalus aceratus and Champsocephalus 41 

gunnari, and the rainbow trout Oncorhynchus mykiss as a reference. Our results revealed 42 

similar metabolic enzyme activities and metabolic clearance rates between red- and white-43 

blooded Antarctic fish, but significantly lower rates in comparison to rainbow trout. 44 

Therefore, bioaccumulation factors for metabolizable lipophilic contaminants may be higher 45 

in Antarctic than in temperate fish. Likewise, the thermal adaptive capacities and flexibilities 46 

of the EROD and GST activities in Antarctic fish were significantly lower than in rainbow 47 

trout. As a consequence, increasing water temperatures in the Southern Ocean will 48 

additionally compromise the already low detoxification capacities of Antarctic fish.  49 
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 50 

 51 

INTRODUCTION 52 

 53 

Antarctica is one of the world’s most isolated and environmentally stable habitats due to its 54 

separation from other world oceans by deep-water current patterns and the Antarctic 55 

Circumpolar Current 1. Nonetheless, the Antarctic Ocean is impacted by man-made stressors 56 

as well, such as rising seawater and surface temperatures up to four degrees by the end of this 57 

century 2 -4 and the increase of chemical contamination of the Antarctic environment, 58 

particularly by persistent organic pollutants (POPs) 5-7. Additionally, expanding scientific 59 

activities, fisheries and tourism in the Antarctic can cause local contamination by organic 60 

chemical pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated 61 

biphenyls (PCBs), particularly around Antarctic research stations, at levels which are 62 

comparable to highly polluted marine sites in other areas of the world 5, 6, 7.  63 

These anthropogenic, lipophilic organic chemicals can be taken up via a physicochemically 64 

driven, passive partitioning of the chemicals from the water phase into the lipid phase of the 65 

organism and thereby bioaccumulate in the marine biota. The chemical body burdens, 66 

however, are mainly determined by endogenous biotransformation capacities of the exposed 67 

organisms. The main site of xenobiotic biotransformation in fish as well as in other 68 

vertebrates is the liver, where chemicals are processed and metabolized by enzymes 8. 69 

Particularly the biotransformation enzymes of the P450 families, such as CYP1A, are 70 

responsible for the conversion of lipophilic organic chemicals into more water-soluble 71 

metabolites (phase I metabolism) which, after conjugation to endogenous substrates such as 72 

glutathione or glucuronic acid (phase II metabolism) can be excreted via bile 8-10. In principal, 73 

biotransformation represents an adaptive detoxification process as it leads to reduced 74 

accumulation of toxic compounds in the organism. However, it can also result in a 75 
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toxification through the generation of highly reactive intermediates and metabolites 11. Yet, 76 

the elimination or metabolism rates for contaminants greatly vary between different fish 77 

species, which makes it difficult to define biotransformation capacities of individual sub-78 

orders or families of fish 12-15. Given the role of biotransformation in both toxicokinetics and 79 

toxicodynamics, knowledge about species differences is crucial when it comes to determine 80 

the toxicological sensitivity or tolerance towards xenobiotics of different fish species.  81 

The Antarctic ichthyofauna consists of highly endemic species, dominated by a single 82 

taxonomic group, the perciform suborder Notothenioidei. They account for about 35% of all 83 

known Antarctic fish species 16. In high Antarctic shelf areas the notothenioids form up to 84 

98% of the total fish abundance. They occupy a multitude of niches and inhabit benthic to 85 

epibenthic, semipelagic, cryopelagic and pelagic habitats 1. Their habitat temperatures 86 

typically range from -1.8 to 2°C 17. 87 

Notothenioid fishes are characterized by a variety of evolutionary adaptations to live in the 88 

permanently cold waters of Antarctica. Adaptations include, for example, an extreme 89 

stenothermy, the evolution of antifreeze glycoproteins (AFGPs) 18, and relatively high 90 

intracellular concentrations of lipids which may be used as energy stores 19, aid gas diffusion 91 

20 and play a role in buoyancy 21. These adaptations, however, also involve functional losses, 92 

such as the complete absence of red blood cells, or extremely low metabolic rates and narrow 93 

thermal tolerance ranges 22. The few stenotherm Antarctic fish analysed so far appear not to 94 

possess any abilities to compensate their aerobic metabolism in response to chronic warmth-95 

exposure 23, 24. Furthermore, the Antarctic clade of notothenioids lacks the heat shock 96 

response, which is considered to be one of the most conserved biological processes across 97 

evolution 25. So far, it is unclear to what extent the evolutionary adaptation of Antarctic fish 98 

has led to losses of genes and regulatory elements, which are essential for the adaptation to 99 

environmental changes 26. Until the beginning of the 20th century, the isolated Antarctic 100 

environment was largely unaffected by anthropogenic influences. The critical question 101 
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therefore is to what extent this evolutionary specialization may become a drawback in the 102 

capability of Antarctic fish to face the rapid changes in the Southern Ocean.  103 

 104 

While eurytherm fish possess the capacities to adjust enzymatic capacities during thermal 105 

acclimation 27, 28, the enzyme machinery of Antarctic fish is generally very limited in their 106 

thermal response, particularly when it comes to exposure to multiple ambient stressors 29, 30. 107 

Considering the evolutionary adaptation and high stenothermy of physiological functions in 108 

these fish, knowledge about their xenobiotics metabolism capacities is a crucial point to 109 

determine their vulnerability to anthropogenic influences. Yet, no data exist on the thermal 110 

flexibility of the phase I and II enzymes or biotransformation rates of xenobiotics in Antarctic 111 

fish. 112 

 113 

The aim of the present study was to assess if highly stenothermal Antarctic fish can 114 

metabolize organic pollutants and at which rates, and if their biotransformation system has the 115 

plasticity to respond to rising temperatures. For our study, we chose four notothenioid fish 116 

species, two possessing red blood cells and two icefish species, which lack hemoglobin. The 117 

red-blooded, semipelagic marbled rockcod Notothenia rossii feeds on benthos and plankton 118 

21, the humped rockcod Gobionotothen gibberifrons is a benthic opportunistic feeder 17. The 119 

planktivorous mackerel icefish, Champsocephalus gunnari shows a rather active, bentho-120 

pelagic lifestyle, and the blackfin icefish, Chaenocephalus aceratus, is a rather sedentary 121 

form which is usually found resting on the sea floor and mainly feeds on fish when adult 31. 122 

These Antarctic species were compared to the well-studied rainbow trout of temperate 123 

latitudes (Oncorhynchus mykiss). Using a biochemical approach, we measured activities of 124 

representative enzymes for the metabolism of xenobiotics in phase I, i.e. CYP1A (measured 125 

as ethoxyresorufin-O-deethylase (EROD)) – and in phase II, i.e. glutathione-S-transferase 126 

(GST) in liver, the central organ for xenobiotic metabolism. The enzyme activities were 127 
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determined at the habitat temperatures of the experimental animals (Antarctic fish: 0°C, 128 

rainbow trout: 12°C) and during rising assay temperatures as a measure for the thermal 129 

flexibility of the enzymes in the different species. As enzyme activities are no direct measure 130 

of the actual metabolic capacities, we additionally examined in vitro rates of xenobiotic 131 

metabolic turnover. To this end, we conducted a substrate-depletion approach with liver S9 132 

fractions and benzo(a)pyrene (BaP) as prototypic substrate, as it is established for metabolism 133 

measurements with temperate fish species at habitat temperatures 32, and measured BaP 134 

metabolite production as well. The metabolic rate determinations were performed at the 135 

habitat temperatures of the experimental animals.  136 

 137 

 138 

MATERIALS AND METHODS 139 

 140 

Fish capture and handling 141 

 142 

Antarctic fish were caught with a 140 feet commercially sized bottom trawl down to 500 m 143 

during a four weeks cruise in March 2012 (ANT XXVIII/4) with the research vessel RV 144 

Polarstern. Sampling sites were between the Elephant Island - South Shetland Island region 145 

and the northern tip of the Antarctic Peninsula. Only fish netted alive and without any 146 

macroscopically visible damage were used for the sampling. Directly after capture, the fish 147 

were anesthetized and dissected immediately to avoid necrotic tissue alterations. The whole 148 

liver of each fish was sampled, transferred immediately to -80°C and stored there for further 149 

analyses in the home laboratory. The following, sexually mature, species were used in this 150 

study: C. aceratus (standard length 53-50 cm, weight 1206-1866 g, n = 4 females, n = 2 151 

males), C. gunnari (standard length 34-47 cm, weight 312-748 g, n = 6 females), G. 152 

gibberifrons (standard length 44-48 cm, weight 1214-1400 g, n = 6 females), N. rossii 153 
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(standard length 39-50 cm, weight 878-2972 g, n = 3 females, n = 3 males). No gender-related 154 

differences were observed in our measurements.  155 

As a reference organism, we used O. mykiss which were raised in outdoor, flow-through 156 

water systems of the Centre for Fish and Wildlife Health, University of Bern. Fish were held 157 

at ambient temperatures ranging from 10°C during winter to 19°C during summer on a natural 158 

day-night cycle. Fish were fed daily with commercial dry pellets, accounting for 1.5 % body 159 

weight. The experimental animals were all female, had an age of 18 to 25 month and a weight 160 

of 222.7-467.4 g (n = 6). Sampling took place in March 2014 at a water temperature of 12 – 161 

13 °C. Fish were anesthetized with ethyl 3-aminobenzoate methanesulfonate (MS222, 0.25 162 

g/l), and killed by severing their spinal cord. Livers were excised, immediately shock-frozen 163 

in liquid nitrogen and stored at -80°C for further analysis. 164 

 165 

Tissue preparation 166 

 167 

Frozen liver samples were ground under liquid nitrogen and then slowly homogenized on ice 168 

with a Potter-Elvehjem type homogenizer (Sartorius AG, Germany) in Tris buffer pH 7.4 at 169 

0°C containing 50 mM Tris, 250 mM Sucrose, 1 mM Na2-EDTA, 150 mM KCl, 1 mM DTT 170 

(dithiothreitol), 0.25 mM PMSF (phenylmethanesulfonyl fluoride) and 20% glycerol. The S9, 171 

cytosolic and microsomal fractions were obtained by three successive centrifugations at 172 

12.096g, 1°C, 20 minutes followed by two centrifugations at 100.000g, 1°C for 60 minutes 173 

each. The microsomal pellets were dissolved in Tris buffer (pH 7.4 at 0°C) containing 20% 174 

glycerol. Protein concentration in S9 (1.51 – 26.41 mg/ml), cytosol (0.93 – 18.08 mg/ml) and 175 

microsomal (1.43 – 14.71 mg/ml) fractions was determined after Lowry 33 using bovine 176 

serum albumin as standard. 177 

 178 

Biochemical assays 179 
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 180 

Cytochrome P4501A activity was assessed using the spectrofluorometric EROD 181 

(ethoxyresorufin-O-deethylase) assay following a modified protocol by Burke and Mayer 34. 182 

The assays were run at different temperatures from 0 to 21°C (Antarctic fish) and from 12 to 183 

33°C (rainbow trout) in steps of 3°C. Measurements were carried out in water-cooled cuvette 184 

holders of the spectrophotometer or fluorescence spectrometer, respectively, controlled by a 185 

thermostat (Lauda, Königshofen, Germany). Each reaction mix consisted of 15 µl microsomal 186 

sample in 100 mM Tris-phosphate buffer (pH 7.4 at 0°C), 10 µM 7-ethoxyresorufin as 187 

substrate in a final volume of 1 ml. Reaction was started by adding 100 µM NADPH to the 188 

cuvette. The resorufin production was measured in duplicates during 20 minutes in a Perkin 189 

Elmer LS 55 (PerkinElmer Life and Analytical Sciences, Switzerland) at 544/590 nm 190 

excitation/emission wavelengths, respectively. Quantification was performed using a 191 

resorufin calibration curve from 0.078 to 10 pmol/ml and the activity was calculated as pmol 192 

resorufin generated per minute of reaction time per mg microsomal protein. 193 

Glutathione-S-transferase (GST) activity was assayed in the cytosolic fraction as described in 194 

Habig 35 and Harvey 36. The assay mixture contained 0.1 mg/ml final protein concentration, 195 

100 mM phosphate buffer (pH 7.4 at 0°C), 2 mM glutathione (GSH, reduced form) and 1 mM 196 

1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The increase in absorbance was measured 197 

for 10 min at 340 nm in a Helios alpha spectrophotometer (Thermo Fisher Scientific Inc., 198 

Switzerland) at different assay temperatures from 0 to 21°C in steps of 3°C. The 199 

concentration of CDNB-glutathione conjugate in the samples was calculated according to 200 

Beer’s law using a path length of 1 cm and molar absorption coefficient of 9.6 mM-1 cm-1. 201 

GST activities are given as nmol per minute reaction time per mg cytosolic protein. 202 

The total hepatic S9 cytochrome P450 (CYP) content was determined using the dithionite-203 

difference spectrophotometry method modified after Matsubara et al. 37 and Guengerich et al. 204 

38. Absorbance readings of CO-treated and sodium dithionite-treated S9 fractions were taken 205 
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at 420, 450 and 490 nm in a microplate reader (Enspire, Perkin Elmer Life and Analytical 206 

Sciences, Switzerland). Total CYP content was calculated according to Beer’s law using a 207 

path length (b) of 0.63 cm and a molar extinction coefficient (ε) of 91 mM-1 cm-1. 208 

 209 

In vitro benzo(a)pyrene (BaP) metabolism  210 

 211 

In vitro substrate-depletion experiments were conducted with S9 fractions following a 212 

modified protocol after Harris 39 and Johanning et al. 32. The BaP-incubation assay was 213 

performed in a 100 mM phosphate buffer containing 1 mM Na2EDTA, 0.72 mM NADPH, S9 214 

protein concentrations of 0.5 mg/ml and substrate concentrations of 0.5 – 2 µM BaP 215 

(incubation conditions: 0.5 µM BaP: C. aceratus; 1 µM BaP: C. gunnari, N. rossii; 2 µM: G. 216 

gibberifrons, O. mykiss). In preliminary experiments, we tested different protein 217 

concentrations, substrate concentrations and incubation times to assess the kinetics of 218 

substrate depletion for each fish species. We thus could establish assay conditions for a log-219 

linear elimination of BaP in Antarctic fish and rainbow trout. 220 

All S9 incubation assays were conducted at the physiological temperatures and pH of 221 

Antarctic fish (0°C, pH 7.4) and rainbow trout (12°C, pH 7.8). In the control assays, the 222 

reaction was immediately stopped after BaP exposure. Furthermore, heat-inactivated S9 223 

controls were run for quality control.  224 

In the first set of BaP incubations, we aimed to determine the BaP metabolism rate. For this 225 

purpose, the BaP depletion reaction was initiated by addition of BaP and stopped after 0, 10, 226 

20, 30 and 60 minutes by addition of five ml ice-cold acetonitrile. Each time point was 227 

sampled in duplicate. Afterwards, they were extracted and centrifuged at 10.000g, 4°C, 10 228 

minutes 39.  229 

In the second set of BaP incubations, we aimed to measure the BaP metabolites formed during 230 

BaP metabolism. S9 fractions (2 mg/ml protein) of O. mykiss, G. gibberifrons (red-blooded) 231 
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and C. gunnari (white-blooded) were incubated with 2 µM BaP and stopped after one hour, 232 

two hours, four hours and eight hours by addition of five ml ice-cold acetonitrile. The 233 

extended incubation period was chosen to obtain a sufficient amount of metabolites in the 234 

Antarctic fish, which were found to deplete BaP slower compared to O. mykiss. Each time 235 

point was sampled in duplicate. Afterwards, the samples were extracted 41: the organic phase 236 

was dried down under nitrogen, dissolved in acetonitrile and analyzed in the HPLC. 237 

Quantification of BaP in the samples (limit of quantification: 0.0695 ng/µl) was performed 238 

based on a BaP calibration curve with external eight standards, ranging from the analyte’s 239 

method detection level of 0.0625 to 8 ng/µl BaP/ 0.25 to 3171 µM BaP, respectively. For the 240 

BaP metabolites, a calibration curve with eight external standards between 0.0695g and 8 241 

ng/µl (0.25 to 3171 µM) was prepared for the following metabolites (obtained by MRI 242 

Global, Kansas City, Missouri, US and Aptochem, Montreal, Canada): Benzo(a)pyrene-trans-243 

7,8-dihydrodiol (7,8-diol); 3-Hydroxybenzo(a)pyrene (3-OH); 9- Hydroxybenzo(a)pyrene (9-244 

OH); Benzo(a)pyrene-1,6-dione (1,6-dione), Benzo(a)pyrene-6,12-dione (6,12-dione). 1,6-245 

dione and 6,12 dione both could not be detected during the measurements. The standard 246 

curves were linear for all substances. The detection limit for each substance was defined as 247 

the concentration that resulted in a peak three-times above the baseline (0.0626 ng/µl). 248 

Analysis was performed using a Dionex HPLC system (Dionex P680 HPLC pump, ASI-100 249 

automated sample injector, RF-2000 sample detector; Thermo Fisher Scientific, Switzerland). 250 

100µl were injected onto a C18 reversed-phase column (Supelcosil LC-PAH C18, 150 × 4.6 251 

mm, 5µm, Sigma-Aldrich, USA). Measurement conditions were as follows: flow rate 1 252 

ml/min, 30/70 acetonitrile/water for 5 minutes, linear gradient to 85/15 acetonitrile/water in 253 

35 minutes, 85/15 acetonitrile/water for 10 minutes, return to 30/70 acetonitrile/water within 254 

10 minutes. Fluorescence was monitored at excitation/emission wavelengths 320/430 nm. 255 

 256 

Data analysis 257 
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 258 

The temperature coefficient Q10 was calculated for the temperature ranges 0-21°C (Antarctic 259 

fish) and 12-33°C (rainbow trout) according to the formula: 260 

Q10 = (enzyme activity (2)/enzyme activity (1))10/(T
2-T

1
) 261 

Arrhenius break temperatures (ABTs, the temperature above which the enzymatic activity 262 

fails to increase and/or drops off) of EROD and GST activities were determined following a 263 

method by 41, 42. The enzyme activities were log transformed and plotted as a function of 264 

temperature. The two linear regression lines that best fitted the data and with the least 265 

residuals were selected using Microsoft Excel (Version 2010, Microsoft Co.). The ABT was 266 

determined graphically via the intersection of these two lines. 267 

For the in vitro BaP metabolism analysis, the measured BaP concentrations of the S9 268 

incubations were log-transformed at each time point and then plotted against reaction time to 269 

develop a linear regression. Slopes from each species were compared for significant 270 

differences using a Student’s t test. The slopes were also used to calculate the first order 271 

depletion rate constant (ke) according to the following formula: 272 

 273 

Ke = -2.3 × Slope 274 

 275 

Ke was used to calculate the in vitro intrinsic clearance rate (CLIN VITRO, INT; ml*h-1*mg 276 

protein-1) per mg S9 protein 32. Liver weights were not available for all fish, thus the intrinsic 277 

hepatic clearance per gram of liver could not be calculated. All data were tested for normality 278 

(Kolmogorov-Smirnov) and homogeneity of variance. Significant differences (P < 0.05) 279 

between species were determined by analysis of variance (ANOVA, with Tukey Post-Test). 280 

Statistical analyses were performed with Prism 5, GraphPad Software (San Diego, USA). An 281 

ANOVA was conducted to exclude an influence on enzyme activities by gender differences 282 
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using the R-software (http://www.R-project.org/). Values are reported as mean ± standard 283 

error of the mean (SEM). 284 

 285 

 286 

RESULTS  287 

 288 

EROD and GST activities 289 

 290 

In the present study, we measured EROD activity at 0°C to obtain an insight into the CYP1A  291 

activities of Antarctic fish at their natural habitat temperatures around 0°C. In the Antarctic 292 

fish species analyzed in our study, hepatic EROD activity (in pmol*min-1*mg-1 protein) was 293 

highest in the two white-blooded species, C. gunnari (4.4 ± 1.5) and C. aceratus (3.4 ± 1.8), 294 

and slightly (non-significantly) lower in the two red-blooded species, G. gibberifrons (2.9 ± 295 

1.5) and N. rossii with 2.3 ± 0.4. The hepatic EROD activity of rainbow trout (15.4 ± 1.7, 296 

measured at 12°C) was significantly higher (ANOVA, Tukey Post-Test, P = 0.0034) than 297 

EROD activities of all Antarctic fish species at 0°C (Figure 1). The Q10 values between the 298 

EROD activities measured at 12°C in O. mykiss and at 0°C in the Antarctic fish were 6.5 for 299 

G. gibberifrons, 5.1 for the icefish C. aceratus, 4.6 for N. rossii, and 3.1 for the white-blooded 300 

C. gunnari. 301 

The activities of the phase II enzyme GST (all values given in nmol*min-1*mg protein-1), 302 

were highest for O. mykiss (178.0 ± 5.2, measured at 12°C). All Antarctic fish species 303 

displayed significantly lower GST activities (N. rossii 63.6 ± 2.6; G. gibberifrons 98.6 ± 20.2; 304 

C. aceratus: 22.5 ± 3.9; C. gunnari 34. 8 ± 10.3; ANOVA with Tukey Post-Test, P < 0.0001) 305 

than O. mykiss. The two white-blooded species and the red-blooded N. rossii had a 306 

significantly lower activity compared to the red-blooded G. gibberifrons (Figure 2). The Q10 307 

between the GST activities measured at 12°C in O. mykiss and at 0°C in the Antarctic fish 308 
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was highest in the two icefish species: 5.2 for C. aceratus, 3.6 for C. gunnari, N. rossii 1.7; G. 309 

gibberifrons 1.5. 310 

No significant difference were observed between the liver CYP450 content of rainbow trout 311 

and the Antarctic fish, or between the red- and white-blooded Antarctic species (ANOVA, 312 

Tukey Post-Test, P = 0.6189; Table 1). 313 

 314 

Thermal capacities of biotransformation enzymes 315 

In O. mykiss, EROD activities rose non-significantly (Linear regression analysis, P = 0.2036) 316 

with assay temperature from 12 to 33°C, while GST activities showed a significant increase 317 

with assay temperatures up to 33°C (Linear regression analysis, P < 0.0001) (Figures 3 & 4). 318 

In contrast, the Antarctic fish C. gunnari and the two red-blooded species, N. rossii and G. 319 

gibberifrons, showed stable EROD activities with rising assay temperatures until a moderate 320 

drop in enzyme activity between 3 and 6°C in N. rossii, 9 and 12°C in C. gunnari and 321 

between 12 and 15°C in G. gibberifrons (Figure 3). The EROD activity of the icefish C. 322 

aceratus displayed a sharp drop in enzyme activity between the 3 and 6°C assay.  323 

The Arrhenius plots of the GST activity revealed increasing enzyme capacities with rising 324 

assay temperatures in all four Antarctic fish species. The ABTs were lowest in C. aceratus 325 

and N. rossii between 12 and 15°C, and beyond 18°C in both G. gibberifrons and C. gunnari 326 

(Figure 4). 327 

 328 

Biotransformation of benzo(a)pyrene (BaP) 329 

 330 

BaP depletion rate: The S9 substrate-depletion approach of BaP revealed a measurable, but 331 

low substrate (BaP) depletion by the S9 fraction of the Antarctic fish compared to trout 332 

(Figure 5). The slopes of the substrate depletion rate were similar between all four Antarctic 333 

fish species (Linear regression analysis, P = 0.6424), and significantly lower compared to 334 
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rainbow trout (Linear regression analysis, P < 0.0001). The depletion rate constant (ke; per 335 

hour) was highest in O. mykiss (measured at 12°C), about four times higher than in the red-336 

blooded Antarctic fish at 0°C (Table 2). Among the Antarctic fish, ke was two times higher in 337 

red-blooded Antarctic fish than in the two white-blooded species. The intrinsic clearance rate 338 

(ClIN VITRO, INT, ml*h-1mg protein-1) for trout (6.4) liver S9-fraction was four times higher than 339 

the highest ClIN VITRO, INT of the Antarctic fish (N. rossii, 1.8). It was lowest in the red-blooded 340 

G. gibberifrons and the white-blooded C. gunnari (Table 2). 341 

BaP metabolite formation: In O. mykiss, BaP metabolites firstly occurred after four hours BaP 342 

incubation. After eight hours BaP incubation, 7,8 diol levels were 0.52 ± 0.09 ng*mg protein-343 

1, 3-OH levels were 7.8 ± 1.5 ng*mg protein-1 and 9-OH 1.8 ± 0.5 ng*mg protein-1. From the 344 

two Antarctic fish species investigated, only C. gunnari showed 2.9 ± 0.07 ng*mg protein-1 3-345 

OH after eight hours incubation to 2 µM BaP. At time point zero of the incubation, BaP levels 346 

started with 108.2 ± 21.3 ng*mg protein-1 in O. mykiss, 78.7 ± 20.4 G. gibberifrons and 76.3 ± 347 

4.1 ng*mg protein-1 in C. gunnari, and were depleted to 21.7 ± 3.6 ng*mg protein-1 in O. 348 

mykiss, 83.14 ± 40.4 ng*mg protein-1 in G. gibberifrons and 70.2 ± 30.3 ng*mg protein-1 in C. 349 

gunnari (Figure 6). 350 

 351 

 352 

DISCUSSION 353 

 354 

Biotransformation enzyme activities 355 

 356 

In the first part of our study, we aimed to determine the activities of CYP1A (measured as 357 

EROD activity) and phase II (exemplified as GST activity) biotransformation enzymes of 358 

Antarctic fish, and compared them to enzyme activities of the model species O. mykiss. 359 

Importantly, we performed the measurements at the environmental temperatures of the 360 
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investigated species, i.e. -1.8 to +1°C for the four Antarctic species 42, and 12°C for rainbow 361 

trout. This is in contrast to the few previous studies which measured biotransformation 362 

enzyme activities of the Antarctic fish Chionodraco hamatus and Trematomus bernacchii at 363 

supraphysiological temperatures around 20°C 43-47. Also for temperate fish species it is known 364 

that water and assay temperature can drastically affect EROD activity and thus should be 365 

adjusted to the ecological temperature range of the experimental animal 48.Yet, the 366 

biotransformation enzyme activities measured in our study for the Antarctic fish are generally 367 

within the same order or magnitude compared to the few studies which dealt with 368 

biotransformation enzyme activities in red-blooded Antarctic fish so far 14, 44, 45, 47, 50. 369 

However, the low EROD thermal flexibility and ABTs of our Antarctic fish species reflect 370 

functional or structural limitations of enzyme at warmer assay temperatures 51. Thus, enzyme 371 

the EROD activities of Antarctic fish measured at room temperature may not mirror the actual 372 

physiological capacity of their xenobiotics metabolism system. When compared to rainbow 373 

trout, the EROD activities of Antarctic fish at their environmental temperature of 0°C are all 374 

significantly lower than the EROD activities of O. mykiss at 12°C.  375 

As most physiological reactions, such as enzymatic activities, follow the temperature 376 

coefficient (Q10). The simple Q10 relationship describes an uncompensated change of a 377 

physiological rate with a temperature change of 10°C,which yields Q10 values of two to three 378 

52. According to this relationship, enzymes of Antarctic animals  seem to work at lower 379 

speeds, simply due to their cold environmental temperatures. Thus, the usage of the Q10 380 

relationship can be a useful method to compare enzyme activities at their optimal temperature, 381 

to which they have been physiologically adapted. Yet, is has to be taken into account that a 382 

simple extrapolation of physiological rates between different temperatures according to Q10, 383 

cannot ultimately reflect enzymatic activities at temperatures, which lay outside their optimal 384 

thermal range.  385 

A comparison of the Q10 values between the EROD activities of O. mykiss (12°C) and of the 386 
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Antarctic fish (0°C) revealed high Q10 values above three. Such values indicate that CYP1A 387 

activities of Antarctic fish show no temperature compensation and are actually much lower 388 

than if trout EROD activities at 12°C were extrapolated down to 0°C. Thus, although 389 

Antarctic fish possess mechanistically fully functional enzymes at their habitat temperature, 390 

they seem to be incapable to overcome the decelerating thermodynamic effects of temperature 391 

in the Southern Ocean, similarly as it has been suggested for other aerobic enzymes in polar 392 

fish recently 53. Our EROD data, and particularly Q10 values between the Antarctic and 393 

temperate fish species therefore emphasize that Antarctic fish in fact possess extremely low 394 

CYP1A capacities at their habitat temperatures.  395 

In case of the GST activity, we measured similar activities in our rainbow trout compared to 396 

values reported earlier for O. mykiss at room temperatures (507-559 nmol nmol*min-1*mg 397 

protein-1, 54, 55). In case of Antarctic fish, we only found literature values on GST activities 398 

measured at 20°C in T. bernacchii, which are about two times higher (180-213 nmol min-1 mg 399 

protein-1
, 14, 56) than the GST activities of the red-blooded Antarctic species of our study, 400 

measured at 0°C. Despite the species difference between our and previous studies, the 401 

different GST activities are likely related to the assay temperature of 20°C used in these 402 

experiments. However, the difference in GST activity between our values at 0°C and the 403 

values of T. bernacchii around 20°C did not follow the typical temperature dependency of a 404 

Q10 between two and three, but yields a Q10 around one. Thus, our GST data measured at 0°C 405 

indicate that the GST activity of Antarctic fish is much lower at ecologically relevant 406 

temperatures than expected based on room temperature measurements. 407 

Although the GST activities of the two red-blooded Antarctic species (at 0°C) were not 408 

significantly lower than the ones of rainbow trout at 12°C, the enzyme activities did not 409 

exactly follow the regular temperature dependency for biological rates. In fact, the Q10 410 

between N. rossii, G. gibberifrons and O. mykiss was below two and thus reflects that the 411 

GST activities of the two Antarctic species would be still lower than the ones of O. mykiss 412 
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also if their GST activities are extrapolated up to the values of O. mykiss at 12°C, and taking 413 

into account the generally low metabolic rates of Antarctic fish. The same holds true for the 414 

icefish, where the low GST activities at 0°C and trout GST activity at 12°C yields a Q10 far 415 

above two. This underlines the low absolute GST activities of icefish measured at their habitat 416 

temperature of 0°C and thereby their evolutionarily highly cold-adapted enzyme activities.  417 

However, it remains difficult to predict the actual detoxification capacities of the different 418 

Antarctic fish solely from their enzymatic activities under a single assay condition. In the 419 

second part of our study, we thus assessed the capacities of both EROD and GST as 420 

representatives for phase I and II metabolism in terms of their thermal flexibility. The 421 

activities of most metabolic enzymes usually follow rising assay temperatures until they reach 422 

their capacity or structural limit, which is represented by the ABT. Yet, subcellular systems, 423 

such as enzymes, but also organelles usually cover a wider range of thermal tolerance than 424 

those of the whole organism 57, 58. Therefore, enzymatic thermal limits frequently are beyond 425 

the critical, lethal temperature limits for the whole organisms and do not reflect actual 426 

metabolic capacities of an animal. Furthermore, thermal tolerance is highly correlated to the 427 

rate of warming. Acute temperature limits are usually higher than the chronic tolerance 428 

towards the warmth at both the cellular and organismic level 59, 60. Nevertheless, acute thermal 429 

profiles of (metabolic) enzymes and their ABTs can provide information on the general 430 

thermal sensitivities of differently thermally adapted fishes and potentially their general 431 

thermal acclimation capacities 61-63.  432 

In O. mykiss, EROD activities remained stable within the thermal range assayed in our study, 433 

which is typical for eurytherm species 64. In contrast, none of the Antarctic fish showed an 434 

increase of EROD activities with rising assay temperature, and only N. rossii, G. gibberifrons 435 

and C. gunnari could maintain EROD activities stable with rising assay temperatures until a 436 

steady drop in enzyme activity beyond the ABTs. Particularly C. aceratus displayed a very 437 

low thermal flexibility, which was visible in drastically decreasing enzyme activities with 438 
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increasing temperatures beyond the 3°C assay. Usually, most aerobic and anaerobic 439 

enzymatic activities increase with rising assay temperature in Antarctic fish 63, 65, but this 440 

relation appears not to hold true for EROD activities. Such high temperature sensitivities of 441 

EROD when compared to rainbow trout could be related to structural and functional 442 

peculiarities, e.g. in the protein tertiary structure 66, which then involve general functional 443 

failures of the enzyme towards warmer temperatures. The functional limitations in enzyme 444 

activities, which seem to occur just a few degrees above the physiological temperature limit 445 

of those Antarctic fish 67, clearly mirror the evolutionary adaptation to the cold and extreme 446 

stenothermy of these species, which most likely also transfers to the xenobiotic metabolism in 447 

Antarctic fish.  448 

 449 

The Arrhenius plots of the GST activity showed increasing enzyme activities with rising 450 

assay temperatures in all four Antarctic fish species and were generally less temperature 451 

sensitive than the EROD activities. Also the ABTs of GST in Antarctic fish were much higher 452 

compared to the ABTs of EROD, a clear sign for a higher thermal flexibility of the phase II 453 

than of the phase I enzymes.  454 

Earlier studies emphasize that the phase I cytochrome P450-dependent monooxygenase 455 

system is responsible for the oxidation of organic pollutants such as PAHs and PCBs 68, 69. 456 

Thus, it may be mainly the thermal inflexibility of cytochrome P4501A (reflected by EROD 457 

activity) that could limit the xenobiotics metabolism capability of Antarctic fish during future 458 

seawater warming and pollution. 459 

 460 

Yet, GST showed similar species differences in its thermal flexibility as the  EROD activities: 461 

ABTs were lowest in C. aceratus and N. rossii, and higher, i.e. beyond 18°C, in both G. 462 

gibberifrons and C. gunnari. Such species differences, as we observed them in the thermal 463 

flexibility of the detoxification capacities, can be also found in the tolerance of the whole 464 
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organism towards environmental changes. Previous studies document a comparably low acute 465 

and chronic heat tolerance in N. rossii 70, 71, which could be related to low thermal capacities 466 

of their oxidative metabolism 63. Also for the white-blooded C. aceratus an extremely low 467 

thermal tolerance is hypothesized, which is putatively related to the low hematocrit in this 468 

species 72. Thus, these two species appear particularly sensitive to ambient thermal influence, 469 

which is also reflected at the enzymatic level. In contrast, species like G. gibberifrons appear 470 

to possess a slightly higher thermal tolerance and a putatively higher physiological flexibility 471 

to environmental changes at the organismic level 72. The low thermal plasticity and high 472 

stenothermy of enzymatic function in species like N. rossii and C. aceratus could indicate that 473 

some species might be more at risk when it comes to multiple stressor exposure, such as 474 

warming and pollutants, in the future. Yet, the physiological mechanisms underlying such 475 

differences in thermal sensitivity between Antarctic fish are difficult to predict at present, and 476 

so far we have no indications for a relation to the absence or presence of hemoglobin or their 477 

trophic position. 478 

 479 

Metabolism capacities for xenobiotics 480 

 481 

The actual biotransformation rates in Antarctic fish are completely unknown so far. Here, we 482 

used a substrate-depletion approach in hepatic S9 fractions as a proxy for the metabolism 483 

capacity of the intact fish, as demonstrated by Johanning et al. 32 and Laue et al. 73, with BaP 484 

as a model substrate.  485 

The slope of BaP depletion in rainbow trout, measured in S9 fractions of frozen liver tissue 32, 486 

is in a comparable range to the values measured in the present study. Our results demonstrate 487 

that also Antarctic fish possess a capacity for xenobiotic metabolism at their physiological 488 

optimum temperature, although the rates are very low. This is in agreement with the finding 489 

of the EROD measurements on the absence of cold compensation. The presence of xenobiotic 490 
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metabolism capacity in Antarctic fish species is also suggested from the findings of Yu et al. 491 

74 on the presence of PAH metabolites in the bile of N. gibberifrons exposed to Diesel Fuel.  492 

 493 

In a comparison of the depletion rate constants (ke; per hour) and the intrinsic clearance rate 494 

(ClIN VITRO, INT) of the Antarctic species to those of rainbow trout, the rates of the former are 495 

significantly lower than in O. mykiss. Even when the higher metabolic rates of O. mykiss are 496 

considered, a down-extrapolation of the clearance rates of rainbow trout using a Q10 of two 497 

would reveal three to seven times lower clearance rates in Antarctic fish compared to trout.  498 

Such low BaP biotransformation rates are furthermore mirrored by the low EROD activities 499 

in the Antarctic fish. A calculation of the BaP to EROD rates revealed a BaP/EROD rate of 500 

2.4 for O. mykiss, 1.6 for N. rossii, 0.7 for G. gibberifrons, 1.2 for C. aceratus and 0.4 for C. 501 

gunnari. In other words, in comparison to rainbow trout, the BaP metabolism per unit EROD 502 

activity is only half as efficient in N. rossii and C. aceratus than in O. mykiss, three times 503 

lower in G. gibberifrons and six times lower in C. gunnari. Furthermore, our data on the high 504 

thermal sensitivity and putatively low structural flexibility of the EROD and GST activities 505 

corroborates our findings of generally low detoxification capacities in Antarctic fish. 506 

 507 

Among the Antarctic fish, ke was two times higher in red-blooded Antarctic fish than in the 508 

two white-blooded species. This is a first indicator on species differences in xenobiotic 509 

metabolism within the Antarctic fish species that could be related to their physiological 510 

differences. Thus, the intrinsic clearance rates, which express BaP metabolism per mg S9 511 

protein and allows for comparing the metabolic capacities per S9 protein, was two orders of 512 

magnitude higher in C. aceratus when compared to C. gunnari, and three-times higher in N. 513 

rossii compared to G. gibberifrons.  514 

 515 
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In temperate fish species, biotransformation of BaP are frequently related with their tissue 516 

CYP content and biotransformation enzyme activities 10. However, the CYP content of our 517 

rainbow trout were not higher than in the Antarctic fish, and the review by Livingstone 10 518 

reports a total CYP content in liver of temperate fish of 322 + 35 pmol mg-1, which lies in the 519 

range of the Antarctic fish we measured in our study. Our data therefore show the general 520 

presence of the detoxification enzymes that, however, do not necessarily parallel the actual 521 

biotransformation capacities of the detoxification enzymes, as we demonstrate with the BaP 522 

metabolism rates of the Antarctic fish.  523 

 524 

The toxicity of BaP can be attributed to the reaction of BaP metabolites formed. Our studies 525 

on the metabolite formation of O. mykiss, the red-blooded G. gibberifrons and the white-526 

blooded C. gunnari showed that rainbow trout produced all three analyzed metabolites at 527 

substantial levels (3-OH: 32.9 % of total BaP metabolites, followed by 9-OH (7.9 %) and 7,8-528 

diol (1.9 %)). In contrast, the metabolite formation rates of the Antarctic fish species were 529 

mostly below detection level. The only exception was C. gunnari, where 6.8 % of 3-OH was 530 

produced. Similarly, other animal species, including rainbow trout, form 3-OH as the major 531 

metabolite during BaP metabolism 75, 76. 532 

CYP1-mediated EROD activity is usually highly correlated to BaP metabolism, such as the 533 

formation of 7,8-diol that is mainly catalyzed by CYP1A1. The BaP/EROD rate, which was 534 

lowest in G. gibberifrons, thus parallels our findings of absent BaP metabolites in this species. 535 

Interestingly, the BaP/EROD rate was even lower in the icefish C. gunnari than in G. 536 

gibberifrons, Yet, it showed the formation of 3-OH. The lack of correlation between EROD 537 

activity and BaP metabolite formation in this species suggests that also other CYP isoforms 538 

may be involved in BaP metabolism in this icefish species 77. In sum, the low or absent 539 

metabolite formation corroborate our findings from the BaP depletion measurements, i.e. that 540 
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metabolic capacities of the Antarctic species are very low, when compared to temperate fish 541 

species. 542 

Finally, our data emphasize that the measurement of the actual metabolism rates for 543 

xenobiotics, rather than single measurements of phase I or II enzyme activities, are an 544 

important and valuable tool to determine the physiological susceptibility of Antarctic fish to 545 

organic pollutants.  546 

 547 

In summary, both red- and white-blooded Antarctic fish species investigated herein possess 548 

lower biotransformation enzyme activities as it would be expected considering the typical Q10 549 

relationship in comparison to temperate fish. Importantly, future climate warming is expected 550 

to increase the levels of contaminants in the Southern Ocean. This will concomitantly result in 551 

an increasing diffusion of lipophilic xenobiotics into the tissue of Antarctic fish. Our data, 552 

however, revealed no capacity of Antarctic fish to increase their biotransformation enzyme 553 

activities with warmer temperatures. Such low detoxification enzyme activities and the 554 

limited thermal plasticity of those enzymes will consequently result in a relatively higher 555 

bioaccumulation of xenobiotics in the tissues of Antarctic fish compared to temperate species. 556 

Complex environmental stressor interactions such as climate warming and pollutants may 557 

therefore make Antarctic fish much more susceptible to anthropogenic contaminants than it 558 

can be expected for fishes from temperate zones. In conclusion, our study highlights the 559 

importance of considering the distinct biotransformation rates and metabolism capacities of 560 

Antarctic fish for future assessments of the actual risk of these fish towards anthropogenic 561 

pollution and warming.  562 

 563 

 564 

FIGURES 565 

 566 
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 567 

Figure 1. Hepatic microsomal EROD activities of Antarctic fish (white bars) vs. trout (black 568 

bar) measured at the fish’s habitat temperature of 0 or 12°C, respectively. Red-blooded: N.r., 569 

Notothenia rossii, G.g., Gobionotothen gibberifrons; white-blooded: C.g., Champsocephalus 570 

gunnari, C.a., Chaenocephalus aceratus; O.m., Onchorhynchus mykiss. N = 6 per species, 571 

data are means ± SEM. a Significantly different from O.m., p < 0.05 (ANOVA, Tukey Post-572 

Test). 573 

 574 

 575 

Figure 2. GST activities determined in liver S9 fractions of Antarctic fish (white bars) and 576 

trout (black bar) measured at the fish’s habitat temperature of 0 or 12°C, respectively. Red-577 
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blooded: N.r., Notothenia rossii, G.g., Gobionotothen gibberifrons; white-blooded: C.g., 578 

Champsocephalus gunnari, C.a., Chaenocephalus aceratus; O.m., Onchorhynchus mykiss. N 579 

= 6 per species, data are means ± SEM. a Significantly different from O.m., b significantly 580 

different from G.g., p < 0.05 (ANOVA, Tukey Post-Test). 581 

 582 

 583 

Figure 3. Arrhenius plots for EROD activities of Antarctic fish and rainbow trout. Red-584 

blooded: N.r., Notothenia rossii, G.g., Gobionotothen gibberifrons; white-blooded: C.g., 585 
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Champsocephalus gunnari, C.a., Chaenocephalus aceratus; O.m., Onchorhynchus mykiss. 586 

Open and closed circles represent data below and above the Arrhenius break temperature 587 

(ABT), respectively. Values are means ± SEM (n = 6). 588 

 589 

 590 

Figure 4. Arrhenius plots for GST activities of Antarctic fish and rainbow trout. Red-591 

blooded: N.r., Notothenia rossii, G.g., Gobionotothen gibberifrons; white-blooded: C.g., 592 

Champsocephalus gunnari, C.a., Chaenocephalus aceratus; O.m., Onchorhynchus mykiss. 593 
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Open and closed circles represent data below and above the Arrhenius break temperature 594 

(ABT), respectively. Values are means ± SEM (n = 6). 595 

 596 

 597 

 598 
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Figure 5. Biotransformation of benzo(a)pyrene (BaP) by Antarctic fish and trout liver S9 599 

fractions. Red-blooded: N.r., Notothenia rossii, G.g., Gobionotothen gibberifrons; white-600 

blooded: C.g., Champsocephalus gunnari, C.a., Chaenocephalus aceratus; O.m., 601 

Onchorhynchus mykiss. Measured concentrations of BaP are plotted as log-transformed 602 

values and used for linear regression analysis. Incubation concentrations: 0.5 µM BaP: C. 603 

aceratus; 1 µM BaP: C. gunnari, N. rossii; 2 µM: G. gibberifrons, O. mykiss. Grey circles 604 

denote heat-inactive S9 of trout (O.m. inact.), heat-inactive values of Antarctic fish are not 605 

displayed for simplification (n = 3 per species and time point (mean ± SEM), each individual 606 

was measured in duplicates). 607 

 608 

 609 

Figure 6: Benzo(a)pyrene (BaP) metabolites in liver S9 fractions of O. mykiss (black bars), 610 

C. gunnari (white bars) and G. gibberifrons (grey bars). Metabolites were determined after 8 611 

hours incubation with 2 µM BaP. 7,8-diol: Benzo(a)pyrene-trans-7,8-dihydrodiol; 3-OH: 3-612 

Hydroxybenzo(a)pyrene; 9-OH: 9- Hydroxybenzo(a)pyrene. N = 3 per species (mean ± 613 

SEM). a Significantly different from O.mykiss, b significantly different from C. gunnari., p < 614 

0.05 (Paired t-test/ ANOVA, Tukey Post-Test) 615 

 616 
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TABLES 617 

 618 

Table 1. Cytochrome P450 (CYP) content of S9 fractions of Antarctic fish 619 

Species CYP content (pmol CYP*mg S9 

protein-1)a 

O. mykiss  119.3 ± 22.5 

N. rossii 295 ± 126.5 

G. gibberifrons 186 ± 8.0 

C. aceratus 305.9 ± 123.8 

C. gunnari 157.2 ± 41.9 

CYP = Cytochrome P450; values are presented as mean ± SEM, n=4-6. a Significantly 620 

different to O. mykiss (ANOVA, Tukey Post-Test, P < 0.05) 621 

 622 

Table 2. In vitro depletion and intrinsic clearance rate of benzo(a)pyrene (BaP) by rainbow 623 

trout and Antarctic fish liver S9 fractions 624 

Species ke (1/h) Intrinsic hepatic clearance rate  

ClIN VITRO, INT, (ml*h-1*mg protein-1)* 

O. mykiss 0.0412 ± 0.002 6.431 ± 0.56 

N. rossii 0.0110 ± 0.003 1.747 ± 0.43* 

G. gibberifrons 0.0113 ± 0.009 0.522 ± 0.16* 

C. aceratus 0.0049 ± 0.002 1.203 ± 0.31* 

C. gunnari 0.0045 ± 0.001 0.616 ± 0.18* 
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Ke = depletion rate constant; data are presented as mean ± SEM. * Based on four replicate 625 

determinations. a Significantly different to O. mykiss (ANOVA, Tukey Post-Test, P < 0.05) 626 
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