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In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D)

medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide

in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical

transmission line, consisting of a series of inductors connected to ground through capacitors. The

capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that

couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a

coincidence condition for the frequency/wavenumber value corresponding to the intersection of the

branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium

features strong attenuation of wave motion as a result of the energy transfer towards the electrical

transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one

obtained through internal resonating units of the kind commonly used in metamaterials. However, the

distinct shape of the dispersion curves suggests how this energy transfer is not the result of a

resonance and is therefore fundamentally different. This paper presents the numerical investigation of

the wave propagation in the considered media, it illustrates experimental evidence of wave

transmission characteristics and compares the performance of the considered configuration with that of

internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion

properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to

investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and

broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical,

piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel

approach to smart materials.VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934202]

I. INTRODUCTION

Control of elastic waves with arrays of periodic piezo-

electric shunts for attenuating mechanical vibrations has

attracted increased interest. Most of the work has focused on

arrays with locally shunted piezoelectric elements aimed at

attenuating vibrations in structures.1–3 This paper reports on

an extension of the functionality of the unit cell of periodic

structures with piezoelectric elements. Here, the connectivity

of the unit cells is defined by the propagation of both me-

chanical and electrical waves. As we will show in this arti-

cle, this extension has a remarkable effect on the overall

dispersive properties of the resulting medium.

Two approaches for introducing forbidden frequency

ranges in the dispersion curves of solid media are extensively

reported in literature: phononic crystals (PC) and acoustic

metamaterials (AMM). In PCs, bandgaps result from4,5 peri-

odic modulations of the mass density and/or elastic constants

of the material resulting from the basis of the crystal (e.g., dia-

tomic materials4,6). Such band gaps exist for wavelengths on

the order of the unit cell size and can be complete,7 i.e., for

any direction of propagation, or partial, i.e., direction specific.8

In metamaterials, on the other hand, the inclusion of suitably

designed locally resonating units allows for sub-wavelength

modification of the dispersive properties of a medium, as

reported by Liu in the mechanical domain.9 Waves at frequen-

cies corresponding to wavelengths substantially larger than the

unit cell size can be attenuated by local resonators. However,

metamaterials comprising arrays of identical linear resonators

typically address narrow frequency ranges.10,17

Other interactions between modes can affect the propa-

gation of waves and induce attenuation. As discussed by

Mace and Manconi,12 mode veering and locking occur, due

to weak coupling between two modes, in the vicinity of the

crossing frequency of the uncoupled modes, leading to an

exchange of energy between them. The manifestation of one

phenomenon or the other depends on the product of the

group velocities of the interacting modes. A negative producta)andrea.bergamini@empa.ch
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yields locking, while a positive product yields veering. In

veering, two modes may approach each other, but instead of

crossing, they veer away and diverge. In locking two modes

with opposing slope, they interact by creating a pair of

attenuating waves12 with a reduced absolute group velocity.

In both cases, reduced transmittance can be observed in the

corresponding frequency range.

Both, PCs and mechanical metamaterials, as reported in

surveyed literature, consist of a mechanical medium, through

which waves propagate and interact with “inclusions” that

either scatter them to generate destructive interference at cer-

tain wavenumbers or that absorb and dissipate energy

through local resonances.11 The selection and modification

of the elastic components defining the properties of media

made of artificial atoms provide additional degrees of free-

dom in the design of these systems. In many of the reported

materials, the nature of the inclusions is purely mechani-

cal,7,9,14 while in some cases, adaptive materials are

exploited to modify the geometry of the unit cell,15 to tune

the properties of the locally resonating units,16–18 or to mod-

ify the connectivity of a PC.19 In the latter cases, what could

be defined as the electric moiety of the unit cell is self-

contained and only exchanges energy with the mechanical

moiety within the unit cell, thus it can be regarded as an

inclusion in the mechanical medium. The mechanical com-

ponent of the unit cell is the only pathway for the exchange

of energy with neighboring cells.

Additionally, electrical media are intensively investigated

objects in physics as well as in communication science, with

the lumped (or discrete) transmission line brought as a classi-

cal example for the investigation of electromagnetic wave

propagation in media made of artificial atoms. The effect of

electrical interconnection of the piezoelectric elements on the

dynamic behavior of a structure is explored by dell’Isola20–22

to control structural vibrations. There, multi-modal damping

is pursued by introducing multiple electrical degrees of free-

dom obtained by interconnecting the electrical resonators, and

determining the optimal tuning to address the eigenfrequen-

cies of a finite structure.

This work considers macroscopic media made of

“artificial atoms,”13 that comprise multi-material assemblies.

Such assemblies have the potential to include power-

transducing materials or even analog circuits. The novelty of

this contribution lies in the extension of the functionality of

the atoms with respect to media with piezoelectric inclusions

previously presented, by the addition of connectivity in the

electrical domain. This enables the simultaneous propagation

of energy in the mechanical and electrical domains. In this

contribution, we will discuss the effect of the interaction

between wave modes in the electrical and mechanical

domains on the propagation of mechanical waves in the pro-

posed hybrid medium.

II. HYBRID MEDIA

The medium investigated in this work is characterized

by periodicity in both the electrical and mechanical domains.

The mechanical component consists of an aluminum beam

(Fig. 1(a)) onto which piezoelectric elements are mounted.

The electrical component (Fig. 1(a)) is realized by combin-

ing inductors with piezoelectric elements serving the dual

purpose of capacitors in a lumped transmission line and elec-

tromechanical transducers offering an interface between the

electrical and mechanical moieties of the medium. The

resulting electrical medium is defined as a lumped transmis-

sion line. The periodicity of the mechanical moiety is spatial

as it is defined by the arrangement of the piezoelectric ele-

ments. Conversely, the periodicity of the electrical moiety is

defined not only by the inductance values of the lumped

transmission line but also by the spatial periodicity of the

FIG. 1. Hybrid electromechanical phononic crystal (hPC): A finite size sam-

ple of the proposed hybrid dispersive medium. Mechanical waves propagate

through the aluminum substrate on which piezoelectric elements are applied

(top of panel (a)). The electrical medium consists of the piezoelectric ele-

ments connected with inductive elements as shown in (b). The latter are real-

ized using an active circuit (bottom of panel (a)) that allows for easy tuning

of the inductance value, rather than with physical inductors. Panel (c) shows

the schematic of the unit cell, consisting of a mechanical, an electrical moi-

ety coupled by the piezoelectric element. Finally, panel (d) shows the cir-

cuit23 used to synthesize the inductors.
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piezoelectric elements on the aluminum substrate that form

the discrete structure of the electrical network.24

The appeal of a hybrid electromechanical dispersive me-

dium lays in the convenient modification of the properties of

the electrical moiety of the unit cell and thus of the disper-

sion modes through the use of electrical components. Given

the interaction between the two moieties of the hybrid me-

dium provided by the piezoceramic elements, we expected

the electrical medium to affect the propagation of waves in

the mechanical medium. As we will show, based on its dis-

persion properties, the system operates in a sub-wavelength

regime, i.e., the unit cell size is substantially smaller than the

length of the waves it affects. As such, it is deemed appropri-

ate to regard this system as an equivalent hybrid medium in

the metamaterial sense.25

Here, the inductive elements of the electrical component

are realized using an analog circuit described in Section III.

This choice for the realization of part of the electrical moiety

allows for accurate control of the value of the inductive ele-

ments and implies the integration of a tunable component

into the unit cell of the periodic medium. By changing the

value of the variable resistor Rtune (Fig. 1(d)), the inductance

value of the element can be set.

The interconnected electrical components of the me-

dium offer more complex dynamics than the previously pro-

posed unit cells with local resonators, by exploiting the

additional degrees of freedom. These added degrees of free-

dom enable modifying the unit cell symmetry in the electri-

cal domain by introducing features, such as a diatomic

lattice, comprising alternating inductances, or more complex

patterns. In this work, a monoatomic unit cell of the hybrid

medium, same inductance across all cells, is investigated and

compared to a monoatomic unit cell of the locally shunted

resonator. The same process is then repeated for a diatomic

unit cell, alternating inductances, of the hybrid medium.

III. METHODS

In the following, we describe the numerical and experi-

mental methods used for the investigations.

A. Numerical calculation of the dispersion curves of
the hybrid medium

We calculated the dispersion curves of the hybrid

medium using the finite element method (COMSOL

Multiphysics, V4.4) by analyzing the eigenfrequencies of the

unit cell modeled considering Floquet-Bloch boundary condi-

tions. A similar implementation, for a purely mechanical sys-

tem, is presented, for example, in Ref. 7. In the model of the

one-dimensional hybrid medium discussed in this work, peri-

odic boundary conditions were imposed on both, the mechani-

cal and the electrical moieties. For the mechanical moiety,

the Floquet-Bloch boundary conditions implemented by

COMSOL were applied to obtain urN ¼ ulNe
�iak, where urN

and ulN are, respectively, the mechanical degrees of freedom

on the right side and left side of the unit cell, k is the wave-

number, and a is the lattice constant of the hybrid phononic

crystal (hPC). For the electrical moiety, the periodicity was

implemented directly by imposing Eq. (1) using the Global

ODEs and DAEs physics of COMSOL. Equation (1) is

derived by first relating the voltage across the Nth piezoelec-

tric element, VN, and the voltages across the adjacent piezo-

electric elements VN�1 and VNþ1 through the Floquet-Bloch

boundary conditions as seen in Eqs. (2) and (3). Next, the rela-

tion between voltage and current in the unit cell leads to the

ordinary differential equation, Eq. (4). In the latter, L is the

value of the inductor in the unit cell, R is the value of the re-

sistor, IlN and IrN are the currents flowing in and out of the

unit cell (from left to right, see Fig. 2. Lastly, the currents IN
resultant from the charges qN on the top electrodes of the pie-

zoelectric elements are related through the first time deriva-

tive IN ¼ IlN � IrN ¼ _qN . Time, t, is taken into account

assuming harmonic oscillating charges (qN ¼ QN sinðxtÞ)

L€qN þ R _qN ¼ VNðe
�iak þ eiak � 2Þ; (1)

VN�1 ¼ VNe
iak
; (2)

VNþ1 ¼ VNe
�iak

; (3)

Lð _I lN � _I rN Þ þ RðIlN � IrN Þ ¼ VNðe
�iak þ eiak � 2Þ: (4)

The geometry of the unit cell was defined according to

the geometry of the experimentally investigated sample, see

Fig. 3. The lattice constant a for the monoatomic unit cell

was 10mm, the thickness hs of the aluminum substrate was

1.58mm, its width (out of plane dimension) b was 12.7mm.

The model is a 2D plane stress approximation. The out-of-

plane dimension b was an input parameter to COMSOL used

to scale the electrical charges. The piezoelectric element had

a thickness hp of 1mm, a length lp of 8.9mm, and width b of

12.7mm.

The material properties were the ones of aluminum

described in the COMSOL materials library (Es¼ 70GPa,

qs¼ 2700 kg/m3, �¼ 0.3), while the properties of the

STEMiNC SM112 implemented were the ones provided by

the supplier for the proprietary SM112 material (C11¼ 84GPa,

k31¼ 0.34, �T33/�o¼ 1600, qp¼ 7900 kg/m3). For the investiga-

tion of the monoatomic unit cell, a resistance R¼ 451X was

implemented in the numerical model to account for the meas-

ured average resistance in the experimental sample. The

selected values for the inductors and resistors, L and R, respec-

tively, were selected to obtain the desired crossing frequency.

For the monoatomic unit cell of the hybrid medium, an

inductance L¼ 0.37H, corresponds to a crossing frequency,

xc¼ 10 kHz, with the A0 mode of the mechanical substrate.

Similarly, for the monoatomic unit cell of the locally shunted

resonator, an inductance L¼ 0.16H, corresponds to a cross-

ing frequency, xc¼ 10 kHz, with the A0 mode of the me-

chanical substrate. In the case of the monoatomic cell, both

the local and hybrid systems were tuned to ensure mode

crossing at 10 kHz thus the difference in inductance values.

In the case of the diatomic cell, the inductance values

were kept the same for both the local and hybrid systems. As

a result, for the hybrid medium, L1¼ 1.3H, L2¼ 2.6H, and

R1¼R2¼ 0X, yielded a crossing frequency of the acoustic

electrical mode with the A0 mode in the vicinity of

xc1¼ 2.1 kHz, while the optical mode with the A0 mode

crossed around xc2¼ 5.2 kHz. For the local resonator case,
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the A0 mode was intercepted at the two resonant frequencies,

xc1¼ 2.5 kHz and xc1¼ 3.5 kHz, which correspond to the

two zero group velocity modes of the locally shunted LC cir-

cuits. Each piezoelectric element had a capacitance of about

1.65 nF.

We obtained the dispersion curves by solving the eigen-

value problem of the coupled system for the first three to five

eigenmodes while imposing k ¼ ½0… p

a
� in a parametric

sweep. As the imposed k-values are real, no solution was

found for spatially attenuated waves that would imply com-

plex wavenumbers, as in the case of mode locking.

B. Numerical calculation of the transmittance of a

hybrid phononic crystal

For the calculation of the transmittance of a finite hPC,

we modeled the experiment described in Sec. III C using

COMSOL Multiphysics V4.4. The dimensions of the mod-

eled beam were 1.58mm� 12.7mm� 800mm (t� b� l). In

the center portion of the structure, a hPC with unit cell size

of 10mm was added, consisting of 20 unit cells positioned

between 300mm and 500mm from the origin (left end of the

structure) as seen in Fig. 3. Each unit cell had a piezoelectric

element with the same dimensions as the ones used to calcu-

late the dispersion curves. We defined a perfectly matched

layer as the boundary condition at either end of the structure

to suppress the reflection of mechanical waves. We modeled

the inductive and resistive components using the electric cir-

cuit physics of COMSOL. The selected values for the induc-

tors and resistors, L and R, respectively, as well as for the

geometry of the unit cell and the material properties were the

same as for the calculation of the dispersion curves in order

to establish a direct correlation between the dispersion curve

of the hybrid medium and the transmittance of a finite hPC.

The mechanical transmittance of the hPC was calculated by

taking the ratio of the spatial average of the velocity

amplitudes, over a region with 100mm length, before and af-

ter the periodic arrangement

T xð Þ¼
va;out

va;in

¼
meanðvaðx;x2 500mm;600mm½ �;y2 0;hs½ �ÞÞ

mean va x;x2 200mm;300mm½ �;y2 0;hs½ �ÞÞ
�� : (5)

As depicted in Fig. 3, the system was excited mechani-

cally by a discrete force F(t) applied 150mm from the origin.

The steady state frequency response of the system was calcu-

lated over the frequency range of interest.

C. Experimental measurement of the transmittance
and dispersion of a hybrid phononic crystal

The system used for the experimental investigation of

the wave propagation through the hPC essentially matched

the system we investigated numerically. The mechanical

substrate was a 6061 aluminum alloy beam purchased from

McMaster Carr Supply Company. The piezoelectric ele-

ments SM112 PZT purchased from STEMiNC had the same

dimensions as the ones used in Secs. III A and III B.

However, a slightly greater width, b, of 13.1mm had to be

chosen since the product was unavailable in the specific

dimensions used for the numerical analysis. The piezoelec-

tric elements were positioned on the substrate with the help

of a custom made mask and fixated to it using conductive

two-component epoxy adhesive. The resulting structure is

shown in Fig. 1(a).

The inductive elements needed to implement the lumped

transmission line were realized using active analog circuits.

The term “active” refers to the fact that the response of the

system is obtained using three operation amplifiers, which

are active electronic components. Four reasons prompted us

to opt for synthetic inductors rather than physical inductors

made of wound conductors: (a) the physical components for

FIG. 2. Variables in the definition of

Floquet-Bloch boundary conditions in

the electrical domain.

FIG. 3. Overview and dimensions of

the investigated hPC with detailed

view of two unit cells. The dimensions

a, lp, hs, hp are detailed in the text.
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the realization of the needed inductivities are quite large and

heavy, (b) the tolerances of high quality inductors with large

inductance values are of the order of 5% to 10% of the nomi-

nal inductance value which was deemed not satisfactory for

this proof of concept. Further investigations on the robust-

ness of the system against variation of the L-value will be

carried out at a later stage. (c) Synthetic inductors are not

physically coupled to RF signals from the environment as

conventional inductors are and thus less prone to parasitic

effects. (d) The analog circuits can be easily interfaced to

digital devices by replacing the analog tunable resistor Rtune

with a digital potentiometer. This allows for the inclusion

digital devices—possibly offering central or distributing

computing capabilities—into the unit cell. The synthetic

inductors were realized using the circuit described in Ref.

23. As the operational amplifiers components used in the cir-

cuit were dual (so two OpAmp per integrated circuit) and 20

synthetic inductors were needed, the array was designed as

an array of 10 couples of inductors. The layout of one double

unit is shown in Fig. 4. Each inductor comprised three

OpAmps. One dual (OpAmp1A/B, in the figure) is com-

pletely part of one unit, while OpAmp2 is shared. The resis-

tivity value of the fixed resistor was 10 kX, the capacitance

of the capacitor was 10nF. The nominal resistivity of the po-

tentiometer Rtune was 50 kX. For OpAmp1, we used type

TL082CN, whereas for OpAmp2, we used type LM6172.

The array of inductors was powered by a laboratory power

supply delivering two channels with 67 … 15V relative to

ground. The average capacitance of the piezoelectric ele-

ments was hCpi 1.59 pF 6 0.05 pF. Accordingly, in order to

achieve characteristic frequency of the order of 10 kHz,

inductivity values of the order of L� 0.16H are needed. The

average resistivity of the 20 inductive elements tuned for a

coincidence frequency of 10 kHz was hRi¼ 451X6 86X.

The synthetic inductors and the piezoelectric are con-

nected using shielded cables to reduce RF interference. The

tested hPCs had a maximum of 20 active unit cells (shown in

Fig. 1(a)). Prior to performing transmittance measurements,

we tuned the inductors in each cell of the transmission line

to match the same frequency, thus also compensating for

minor deviations in the capacitance of the piezoelectric ele-

ments (of the order of 3%). The tuning was performed by

maximizing the voltage response across the piezoelectric ele-

ment, as the whole RLC resonator (i.e., the piezoelectric ele-

ment and the synthetic inductor in series) was excited with

an AC voltage signal at the desired frequency, while the unit

cell was disconnected from the others.

We excited the structure using an additional piezoelec-

tric element attached approximately 150mm from the origin,

i.e., in the same position where the discrete force was applied

in the numerical model. The piezoelectric element was

excited using a tone burst centered around 10 kHz with a du-

ration of four cycles. This kind of excitation allowed us to

bundle energy in the frequency range of interest while hav-

ing shorter measurement sequences than we would have

needed using a chirp signal. The low voltage tone burst sig-

nal was generated by an Agilent 33220A arbitrary waveform

generator and was amplified to a maximum of 50V using a

Trek PZD350 Dual high voltage power amplifier.

The out of plane velocity on the surface of sample was

measured using a Polytec PSV 400 scanning laser vibrome-

ter. The transmission properties of the hPC were calculated

based on velocity amplitude averaged over regions extending

100mm on either side of the hPC with a spatial resolution of

approximately 2mm. The velocity signal was acquired with

128 kHz sampling frequency. For each point, we measured

the response of the system to 25 consecutive tone burst sig-

nals to obtain reliable data. In Fig. 5, we report the velocity

spectra in the specimen as a function of the position. We car-

ried out a Fast Fourier transform of the time-domain data for

the out of plane velocity along the length of the sample to

obtain the frequency response. The numerical investigation

was carried out conceptually in the same way, except for the

fact that the behavior of the system was investigated in a fre-

quency response analysis, thus the data were directly avail-

able from the solution.

In Fig. 5, we can see that in the portion of the sample

occupied by the hPC, the velocity amplitudes are substan-

tially lower than in the portions left (upstream) and right

(downstream) of the hPC. This difference is due to the larger

mass and stiffness of the hPC compared to the neat substrate.

Accordingly, the recorded velocity amplitude is smaller for

obvious energy conservation reasons. As the wave packet

traverses the hPC, the change in wave velocity amplitude as

a function of frequency becomes visible, whereas in the

10 kHz region, where most of the energy is concentrated (as

shown by the high amplitudes upstream of the hPC), the am-

plitude is strongly reduced, leading to the very low velocity

amplitudes recorded downstream of the hPC for the coinci-

dence frequency of the electrical and mechanical modes, i.e.,

around 10 kHz. Further processing of these data can be car-

ried out to obtain an approximation of the mechanical com-

ponent of dispersion curves of the hPC. These dispersion

curves can be obtained as described in Ref. 29 and are shown

in Fig. 6. These plots display the region of interest around

the coincidence frequency of 10 kHz. While the absolute

value of the time-FFT is considered in the plots, complex

spectrum resulting from the space-FFT is considered. The

“waviness” in the real part of the dispersion curve, similar to

the S-shape observed in local resonators, points to interac-

tions between the mechanical and electrical modes. The

imaginary part of the dispersion curve is related to the spatial

wave attenuation.FIG. 4. Layout of a double inductor unit.
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IV. RESULTS AND DISCUSSION

A. Monoatomic unit cell

We shall now direct our attention to the behavior of a fi-

nite sample of the proposed hybrid medium, as observed in

experiments and multi-field numerical models. Then we will

elucidate it based on the dispersion curves of the infinite me-

dium. We will compare the response of the hybrid medium

to the one of the mechanical medium with locally resonant

piezoelectric inclusions,16,17 where the main difference is

that the piezoelectric elements are shunted to ground instead

to the neighboring piezoelectric elements.

We investigated, experimentally and numerically, the

transmission of mechanical waves through a finite sample of

the material consisting of 20 unit cells. The transfer function

for the structure was calculated from numerical and experi-

mental results, following the procedure described in Section

III. As previously mentioned, the synthetic inductors of both

systems (i.e., the hybrid medium and the array of local reso-

nators) were tuned so that the frequency at which the electri-

cal and the mechanical modes interacted, i.e., the

coincidence frequency, was centered around 10 kHz.

The dispersion properties of the metamaterial were cal-

culated numerically based on a unit cell of the very same

hybrid medium onto which Floquet-Bloch boundary condi-

tions were imposed. The k�x dispersion curves were calcu-

lated by imposing k ¼ ½0… p

a
�, where a denotes the spatial

periodicity of the system (i.e., the unit cell length) to cover

the first irreducible Brillouin Zone (BZ). The dispersion

properties of the system with locally resonant cells as well as

the interconnected medium were calculated, assuming the

same geometric and electrical parameters, except for the

connectivity of the electrical medium.

The dispersion curves of the system with locally reso-

nant cells and the hybrid medium can be compared to the

dispersion curves of the uncoupled mechanical system,

which is equivalent for both the dispersion of an LC circuit

and a lumped LC transmission line, respectively. As seen in

Fig. 7(a), an excellent correlation exists between the disper-

sion curves of the hybrid medium and the uncoupled modes

of the purely mechanical (open circuit over the piezoelectric

elements) and purely electrical (a lumped transmission line

with the same electrical parameters as in the hybrid medium)

media (Fig. 7(a)), calculated numerically and analytically.

The blue and red lines in Figs. 7(a) and 7(b) represent the

first and second modes of the media, respectively, and the

purple dashed and green dotted lines represent the dispersion

curves of the uncoupled electrical and mechanical modes,

respectively. The accuracy of the developed models could be

verified experimentally by comparing the predicted (dashed

red line in Figs. 7(c) and 7(d) and experimentally measured

(solid blue line) transmittance of the finite PCs.

Fig. 8 gives insight into the nature of the modes of these

dispersion diagrams. The displacement and electric field

mode shapes in the transverse direction were obtained from

the eigenfrequency analysis used to calculate the dispersion

curves. Mode shapes (IIa) and (IVa) are predominantly me-

chanical in nature. Accordingly, the—inhomogeneous—field

distribution in the piezoelectric element is dominated by the

direct piezoelectric coupling by virtue of which mechanical

strain induces a polarization of the actuator. Conversely,

modes (Ia) and (IIIa) are predominantly electrical as seen

FIG. 5. Wave velocity amplitude as a

function of frequency and location

along the sample, where the hPC with

20 interconnected cells occupies the

region between 300mm and 500mm,

from the origin, as defined in Fig. 3.

The amplitude, in arbitrary units is dis-

played by the color in the plot.

FIG. 6. Approximate k�x dispersion

data obtained from the 2D FFT of the

velocity data recorded in the hPC

region of the investigated sample.
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from the—homogeneous—electric field distribution across

the piezo element. Here, the piezoelectric elements are act-

ing as capacitors in the lumped transmission line. The field

in the piezo is dictated by the propagation of electric waves

along the electric moiety of the medium. These observations

are in line with expectations as the purple dashed curve cor-

responds to the transverse mechanical mode, while the green

dotted curve corresponds to the lumped transmission line

and after veering mode switching occurs.12

In the medium with locally resonant units, the piezoelec-

tric resonators contribute a k–independent, zero group veloc-

ity, mode that crosses several mechanical modes (Fig. 7(b)),

including the one related to the asymmetric A0 Lamb’s

waves of the plate, as presented, for example, in previous

work.26 As seen for the hybrid medium, the electric field dis-

tribution of modes shapes (Ia) and (IIa) in Fig. 8 indicates

that they are electrical and mechanical in nature,

respectively.

The comparison of the measured and calculated trans-

mittance curves reveals a good match (Figs. 7(c) and 7(d))

between experimental and numerical results (note the dB

scale) for both the hybrid medium and for the local resonator

system. While the local resonators cause a sharp and

pronounced dip in the transmittance of the system, the

FIG. 7. Transmittance and dispersion

curves of the media consisting of

monoatomic unit cells. The plots on

the left refer to the hybrid dispersive

medium, the ones on the right to the

arrays of local resonators. The curves

in (a) and (b) represent dispersion of

the first modes in the media. The

curves in (c) and (d) represent the pre-

dicted and experimental transmittance

of the finite PCs.

FIG. 8. The mode shapes (out of plane

mechanical displacement represented

by the shape, and electric field across

the thickness of the piezo represented

by the color distribution) in the figure

refer to the Roman numerals in Figs.

7(a) and 7(b). These mode shapes were

normalized by the root mean square

and the transverse electric fields were

plotted using a symmetric color range

from �1 to 1.
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interconnected system is characterized by a shallower but

broader response. Moreover, there is a good correlation

between the frequency range over which the electrical and

mechanical modes interact and the range over which strong

attenuation of the mechanical waves occurs (Figs. 7(a) and

7(b)). Since energy can propagate along the electrical moi-

ety, boundary conditions can be imposed in the electrical do-

main to modify the response of the system. The latter is an

additional feature that differentiates the hybrid medium from

the corresponding array of local electromechanical resona-

tors and underscores the potential of introducing an electrical

moiety. In the experimental set-up, damping material was

added at the extremities of aluminum beam hosting the finite

20 unit cell PC to increase damping and minimize mechani-

cal wave reflections at the boundaries as seen in Fig. 7(c). In

the numerical model, perfectly matched layers were imple-

mented at the ends of the beam to absorb mechanical waves.

To achieve this same effect along the electrical domain,

reflections were minimized through impedance matching of

the lumped transmission line. Assuming the line to be loss-

less, the characteristic impedance is defined as Zo ¼
ffiffiffi

L
C

q

,

where L is the inductance value and C is the capacitance of a

piezoelectric element. A reflection-free lumped LC transmis-

sion line can then be achieved by terminating the line with a

resistance Ro¼ Zo. By eliminating the wave reflections from

the electrical line, the transmittance response becomes

smoother as the anti-resonance peaks disappear, as shown in

Fig. 7(c) by the solid green curve.

B. Diatomic unit cell

To further exploit the wave attenuation capabilities of

the hybrid dispersive medium, where the electrical moiety

has the potential to be readily modified, we introduce a dia-

tomic cell characterized by alternating inductance values.

All material and geometric parameters are kept unchanged

with respect to the previously studied monoatomic unit cell,

except for the unit cell length which is now 2a to account for

the doubling of the spatial periodicity. To better appreciate

the response of the diatomic cell of the hybrid medium, we

will again compare it with the response of the corresponding

diatomic local resonant cell. As expected, the system with

locally shunted piezoelectric elements and alternating in-

ductance values yields two narrow attenuation peaks in the

vicinity of the frequencies corresponding to each inductor,

see Fig. 9(b). The diatomic local resonant shunts are charac-

terized by two k-independent, zero group velocity, modes

which interact with the mechanical modes of the aluminum

substrate. These regions of interaction between the mechani-

cal and electrical modes correspond to the frequency ranges

of energy exchange as seen for the array of local resonators

with identical inductors.17

Conversely, the diatomic cell of the hybrid medium has

a more complex response. Fig. 9(c) shows the calculated

transmittance for a finite hPC consisting of 10 diatomic unit

cells, each comprised two piezoelectric elements and two

inductors. In the figure, we notice two regions of increased

attenuation. The gray shading in Figs. 9(a) and 9(c) shows

the qualitative frequency correspondence between these

higher attenuation regions and the regions where veering

and/or locking are observed in the dispersion curves. The

smaller inductance governs the position of the optical mode,

which has a negative group velocity as seen in Fig. 9(a), and

thus also controls the location of the locking. As discussed in

Ref. 12, this leads to an exchange of energy between the

modes that increases as they approach the wavenumber and

frequency at which they would cross, if veering did not

occur. In the present system, as opposed to the one discussed

in Ref. 12, one of the two modes interacting has an electrical

FIG. 9. Transmittance and dispersion

curves of the media consisting of dia-

tomic unit cells. The plots on the left

refer to the hybrid dispersive medium,

the ones on the right to the arrays of

local resonators. The curves in (a) and

(b) represent dispersion of the first

modes in the media. The curves in (c)

and (d) represent the predicted trans-

mittance of the finite PCs.
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character. The exchange of energy between the two modes

explains the attenuation of the mechanical waves that propa-

gate through the medium. In the second case (locking), the

group velocities of the two modes are opposite in sign.

Again, Ref. 12 offers a physical interpretation of the process

that leads to the attenuation of the mechanical waves in the

system. For locking modes, it is shown that in the frequency

region of interest, no real values of the wavenumber describe

the system. Waves with a purely imaginary wavenumber are

said to be evanescent, i.e., to exponentially decay in ampli-

tude over space.30

The transmittance curve in Fig. 9(c) is calculated

based on a lossless transmission line, where the resistivity

of the line is zero. The large number of attenuation peaks

in the latter can be attributed to the small number of unit

cells, where degeneration of modes due to the occupation

of the same frequency by multiple modes of the finite

transmission line leads to multiple peak splitting, with the-

oretically as many peaks as existing degrees of freedom.

At a higher frequency, an additional attenuation peak is

visible corresponding to the locking of the electrical opti-

cal mode and the mechanical A0 mode (line connecting I

and IV in Fig. 9(a)).

Analogously to a diatomic spring mass system, where

the masses of the optical mode oscillate out of phase with

equal amplitude for the wavenumbers at the boundaries of

the considered wavenumber range,27,28 k ¼ ½0; p
a
�, the electric

field mode shapes of the optical mode (Figs. 10(IIIa) and

10(Va)) of the interconnected diatomic inductance cell also

exhibit equal amplitude but inverse polarization. Moreover,

the unit cell displacements engendered by such fields agree

with the imposed periodic boundary conditions. For the long

wavelength limit (location V in Fig. 9(a)), the mode shape

displacements on the left and right hand side of the unit cell

are equivalent (Fig. 10(Va)). Likewise, for the short

wavelength limit (location III in Fig. 9(a)), the deformations

engendered by the electric fields are such that the displace-

ments on the left and right hand sides of the unit cell have

equal amplitude but opposite direction (Fig. 10(IIIa)).

Furthermore, the modes corresponding to the mechanical

curves can be readily identified by the inhomogeneous distri-

bution of the electric field over the piezo elements (Figs.

10(Ia) and 10(IVa)). Lastly, the acoustic mode (location II in

Fig. 9(a)) is characterized by equally polarized uniform elec-

tric fields (Fig. 10(IIa)).

In contrast with the hPC, Figs. 9(b) and 9(d) show the

transmittance and dispersion plots for the corresponding

locally resonating system. Due to the lack of electrical con-

nectivity between the elements of the PC, no degeneration of

the attenuation peaks is observed. This results in two neat

attenuation peaks corresponding to the interaction of the k-

independent electrical modes III and the lower frequency

parallel mode going through II in Fig. 9(b) with the mechani-

cal A0 mode (curves I–IV). These attenuation peaks display

substantially larger amplitude than those in Fig. 9(c), but

over a much narrower frequency range. The modes displayed

in Fig. 10(Ib) through 10(Vb) also confirm the different char-

acters of the calculated modes as well as an effect of the dia-

tomic nature of the unit cell on the electrical mode.

V. CONCLUSIONS AND OUTLOOK

In the presented hybrid medium, we have introduced

additional electrical modes that interact with the mechanical

modes of the medium to exploit veering and locking, as elu-

cidated by using numerical models and analyzing the nature

of the modes. Indeed, the frequency range at which strong

attenuation of mechanical waves traversing the hybrid me-

dium is observed, coincides with the range of frequencies at

which veering or locking of electrical and mechanical modes

FIG. 10. The mode shapes (out of

plane mechanical displacement repre-

sented by the shape, and electric field

across the thickness of the piezo repre-

sented by the color gradient) in the fig-

ure refer to the Roman numerals in

Figs. 9(a) and 9(b). These mode shapes

were normalized by the root mean

square and the transverse electric fields

were plotted using a symmetric color

range from �1 to 1.
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in the dispersion diagram is observed. The effect of these

phenomena on the propagation of mechanical waves in a

sub-wavelength regime, which can be of special interest in a

number of engineering applications, has been shown numeri-

cally and experimentally.

The integration of a mechanical and electrical moiety,

consisting of a simple analog circuit, to create a hybrid me-

dium allows for the adaptation of both the mechanical and

the electrical expression of its dispersion properties by

exploiting the tunability of the electric impedance. The elec-

trical moiety is realized by a simple analog circuit and fur-

ther offers an ideal interface to digital devices (e.g., by

integrating digital potentiometers), such as central or distrib-

uted computing units. In the presented medium, we can thus

state that an analog circuit is an integral part of a material. In

this sense, we claim that the hybrid medium represents a

demonstration of the hardware element of a new class of

smart materials comprising mechanical, analog, and—poten-

tially—digital electric elements, with tunable and program-

mable properties.

APPENDIX: ELECTRICAL AND MECHANICAL MODES

OF THE hPC

In our description of the nature of the wave propagation

modes shown in Figs. 8 and 10, we stated that mode shapes

on the mechanical dispersion curves display an—inhomoge-

neous—electric field distribution in the piezoelectric element

as they are dominated by the direct piezoelectric coupling by

virtue of which mechanical strain induces a polarization of

the actuator. Conversely, mode shapes on the electrical dis-

persion curves display a homogeneous electric field distribu-

tion as the piezoelectric elements are primarily acting as

capacitors in the lumped transmission line.

To verify these statements, we studied numerical models

of two unit cells without periodic boundary conditions under

structural and electrical loading states. The strain fields of

the mode shapes at the long and short wavelength limits

reveal that the deformations can be approximated by bending

moments (higher bending for short wavelengths). Hence, the

first unit cell was subjected to bending moments applied at

the edges to approximate the deformation of a wave traveling

though it (Fig. 11(a)). The second cell was subjected to a

potential difference on the piezoelement to simulate the con-

verse piezoelectric effect (Fig. 11(b)). The deformations and

electric field distributions are in line with the expectations.
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