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Abstract A viscoelastic, compressible model is proposed

to rationalize the recently reported response of human

amnion in multiaxial relaxation and creep experiments. The

theory includes two viscoelastic contributions responsible

for the short- and long-term time-dependent response of the

material. These two contributions can be related to physical

processes: water flow through the tissue and dissipative char-

acteristics of the collagen fibers, respectively. An accurate

agreement of the model with the mean tension and kine-

matic response of amnion in uniaxial relaxation tests was

achieved. By variation of a single linear factor that accounts

for the variability among tissue samples, the model provides

very sound predictions not only of the uniaxial relaxation but

also of the uniaxial creep and strip-biaxial relaxation behav-

ior of individual samples. This suggests that a wide range

of viscoelastic behaviors due to patient-specific variations in

tissue composition can be represented by the model without

the need of recalibration and parameter identification.
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1 Introduction

The formulation and validation of a suitable constitutive

model for the human amnion is important to better predict

complex in vivo loading conditions. It represents the first

step toward the development of numerical simulation meth-

ods to address clinically relevant questions, as, for example,

potential structural weakening caused by prenatal surgery

(Devlieger et al. 2006; Beck et al. 2012) or increased rupture

risk associated with cervical opening or pelvic floor laxity

(Menon et al. 2015). Moreover, an appropriate model allows

detailed analysis of the results of mechanical experiments,

such as tests for the determination of tissue strength and frac-

ture properties.

Amnion, the inner of the fetal membranes (FMs), is a thin

and strong tissue in contact with the amniotic fluid (Bourne

1962; Mauri et al. 2013). In terms of mechanical proper-

ties, it is considered to be the determining structure (Oxlund

et al. 1990; Oyen et al. 2006) that surrounds and protects

the fetus during gestation. Recently, a comprehensive exper-

imental campaign has been performed to investigate the time-

and history-dependent behavior of the human amnion (Mauri

et al. 2015c; Perrini et al. 2015). The results of these uniaxial

and biaxial experiments confirmed the substantial relaxation

of the tension at constant strain reported for FM tissues in

previous studies (Lavery and Miller 1977; Oyen et al. 2004,

2005) along with the limited strain accumulation in creep

experiments also observed in other soft tissues (Anssari-

Benam et al. 2012; Grashow et al. 2006; Hingorani et al.

2004; Thornton et al. 2001). New microscopic insight (Mauri

et al. 2015b) revealed substantial thickness changes in uniax-

ial and biaxial extension which, together with the large lateral

contraction observed in uniaxial loading (Bürzle and Mazza

2013; Mauri et al. 2015c), imply that the human amnion is

able to considerably change its volume by changing its water
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content. Based on a combination of macro- and microscopic

results, it was hypothesized in Mauri et al. (2015c) that the

relaxation behavior can be separated into a short-term phase,

during which the tissue volume is reduced, water is expelled

and fibers reorient, and a long-term phase, which is char-

acterized by the dissipative, time-dependent behavior of the

fibers themselves.

Accordingly, a suitable modeling framework is required

in order to capture these compressible and time-dependent

characteristics. Only very few contributions have concerned

themselves with models of the time-dependent behavior of

FM tissue. A quasi-linear viscoelastic model was consid-

ered and found inadequate for amnion by Oyen et al. (2005).

Prévost (2006) suggested a formulation based on a multi-

plicative decomposition of the in-plane deformation gradient

into elastic and viscous parts, which was, however, not fur-

ther studied or compared to experimental data. In general,

a large number of viscoelastic theories have been proposed

or customized for various soft tissues (see, e.g., Ehret 2011),

including the mentioned quasi-linear (see Fung 1993) and

fractional-order viscoelastic models (e.g., Doehring et al.

2005), explicitly strain rate-dependent theories (e.g., Limbert

and Middleton 2004) or models with tensor or scalar valued

strain- or stress-like internal variables (e.g., Holzapfel and

Gasser 2001; Nguyen et al. 2007; Ehret et al. 2010). Time-

dependent behavior is also intrinsic to fluid-saturated porous

media, and the according multiphasic theory has been used

to rationalize the mechanics of soft tissues such as tendon,

cartilage or intervertebral disk tissues (Ateshian et al. 2004;

Atkinson et al. 1997; Ehlers et al. 2006; Jacobs et al. 2014).

The soft tissue model proposed by Rubin and Bodner

(2002) provides a versatile framework (Helfenstein et al.

2010) to represent the mechanical behavior of collagenous

tissues (Mazza et al. 2005; Barbarino et al. 2011; Bürzle and

Mazza 2013; Weickenmeier and Jabareen 2014; Flynn and

Rubin 2014; Safadi and Rubin 2014) offering the possibility

to include dissipative, inelastic characteristics. In application

to FM tissues, Jabareen et al. (2009) used an elastic isotropic

formulation of the Rubin–Bodner (RB) model to represent

the uniaxial response of the amnion. An orthotropic exten-

sion with representative fiber families distributed within the

membrane plane was proposed by Bürzle and Mazza (2013)

to capture the response of amnion under uniaxial and biaxial

loads (Bürzle et al. 2013), and the extremely large trans-

verse contraction in uniaxial tension tests (Bürzle and Mazza

2013). In the present contribution, a compressible, viscoelas-

tic formulation of the RB model is used to rationalize the

time-dependent behavior of the amnion. The model is cali-

brated from uniaxial relaxation experiments and validated by

comparison with strip-biaxial relaxation as well as uni- and

equibiaxial creep tests (Mauri et al. 2015c).

Human biological tissues are characterized by large intra-

and inter-subject variability (e.g., Bürzle et al. 2013; Pierce

et al. 2015), and representative mean curves of the tissue are

usually obtained by testing of, and averaging over a large

number of specimens. This variability in human tissues is

not an experimental artifact, but rather an intrinsic and inte-

gral property of the material, viz. the healthy human tissue.

Material parameters describing the mechanical characteris-

tics of soft tissues such as FM (Jabareen et al. 2009; Bürzle

et al. 2013), aorta (Schriefl et al. 2015; Reeps et al. 2013)

and liver tissue (Mazza et al. 2007; Yarpuzlu et al. 2014)

have been correlated with histological or biochemical prop-

erties to understand effects arising from tissue heterogeneity.

In the present contribution, we propose a straightforward

modeling approach that includes the characteristic human

variability arising from the differences in tissue by a single

scalar “patient- or region-specific” parameter, and a set of

general “tissue-specific” parameters that holds for all tested

samples from different membranes.

2 Constitutive model

2.1 Kinematic framework

Let F = Grad χ(X, t) denote the deformation gradient of

the motion χ(X, t) of a particle with position X of a material

body in the reference state at time t = t0. Here and hence-

forth, the dependence of kinematic quantities on space and

time will not be explicitly indicated unless needed to distin-

guish between different events in time. The volume change

of infinitesimal volume elements at (X, t) is expressed by

J = det F, l = ḞF−1 denotes the spacial velocity gradient,

d = (l + lT)/2 is the symmetric rate of deformation tensor,

and the left Cauchy-Green tensor reads b = FFT. The colla-

gen structure in the tissue is represented by an even number

of N representative families of fibers whose axes are aligned

with the unit vectors M
i , i = 1, 2, . . . , N , in the reference

state. An affine transformation maps them onto the set of non-

unit vectors m
i = FM

i with length λ f,i = |mi |. Note that

collagen fibers are not expected to deform affinely with the

extracellular matrix; thus the families of fibers introduced in

these models represent the collagen network in a phenomeno-

logical sense. The temporal change of b and the vectors m
i

is given by the material time derivatives (cf. e.g., Holzapfel

2000; Rubin and Bodner 2002)

ḃ = lb + blT, ṁ
i = lmi , i = 1, 2, . . . , N . (1)

Due to dissipative mechanisms, the strains associated with

storage of elastic energy in the matrix and fibers, expressed

by the internal state variables be and m
i
e, respectively, may

differ from the total deformations. In line with the theory

outlined in (Eckart 1948; Rubin 1994a, b, 1996; Rubin and

Bodner 2002), the material rates of these kinematic quantities
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relating to the elastic deformations are expressed in a general

form by

ḃe = lbe + belT − a,

ṁ
i
e = lmi

e − a
i , i = 1, 2, . . . , N , (2)

where the symmetric tensor a and the vectors a
i represent

the rates of the inelastic deformations (cf. Rubin and Bodner

2002). Essentially, the expressions (2) represent evolution

equations for the Lie derivatives of the internal variables

and integration finally defines the history of be and m
i
e over

time. Particular representations of (2)1 and the tensor a occur

in theories of finite strain plasticity (see Simo 1992) and

viscoelasticity (see Reese and Govindjee 1998; Huber and

Tsakmakis 2000) based on a multiplicative decomposition

of the deformation gradient. More generally, and without

considering this decomposition, the terms a and a
i can

be specified in order to incorporate a particular dissipative

behavior. For example, in the original model by Rubin and

Bodner (2002) and recent extensions (Weickenmeier and

Jabareen 2014) (2)1 was defined so that dissipation occurs

due to viscoplastic isochoric deformations of the isotropic

matrix material. In contrast, the model presented herein

will employ forms of (2) to take into account dissipative

mechanisms arising from viscoelasticity associated with the

volumetric deformation of the matrix and the deformation of

the fibers. This is in agreement with the observations in our

recent study (Mauri et al. 2015c) that the temporal decay of

tension in relaxation tests can be separated into a short- and

a long-term phase, which were attributed to tissue volume

reduction and dissipative fiber behavior, respectively.

2.2 Dissipative volumetric and fiber deformations

Applying the multiplicative decomposition of the deforma-

tion gradient into volumetric and volume preserving parts

(Flory 1961) so that F̄ = J−1/3F and, accordingly b̄ =
J−2/3b, the material time derivative of the left Cauchy-Green

tensor (1)1 has the form

ḃ = lb + blT = ˙
J 2/3b̄ = 2

3
J−1/3 J̇ b̄ + J 2/3 ˙̄b, (3)

where the two material time derivatives in (3) calculate as

J̇ = J

2
b−1 : ḃ = J trd, ˙̄b = lb̄ + b̄lT − 2

3
(trd)b̄. (4)

Equations (3) and (4) suggest that dissipation associated

with volumetric and isochoric deformations can be con-

sidered separately. As stated in the previous section, we

attribute the dissipation in the matrix exclusively to volu-

metric changes. This assumption implies that the material

rate of b̄e = J
−2/3
e be, i.e., the isochoric part of the internal

variable be, is identical to the one of the left Cauchy-Green

tensor given in (4)2. Hence,

˙̄be = lb̄e + b̄elT − 2

3
(trd)b̄e, (5)

whereas the rate of elastic volume change Je =
√

det be is

prescribed by

J̇e = Je trd − ΓM (6)

and differs from J̇ by the rate of dissipative volume change

ΓM, which is generally a function of all kinematic variables.

Thus, with (5) and (6) the rate of be is given by

ḃe =
˙

J
2/3
e be = 2

3
J−1/3

e J̇eb̄e + J 2/3
e

˙̄be

= 2

3
J 2/3

e (trd)b̄e + J 2/3
e

(

lb̄e + b̄elT − 2

3
(trd)b̄e

)

− 2

3
J−1/3

e ΓMb̄e = lbe + belT − 2

3
J−1

e ΓMbe. (7)

The comparison with (2)1 shows that the assumptions (5, 6)

lead to a special case of the tensor a of the form

a = 2

3
J−1

e ΓMbe, (8)

and, again, it is worth noting that particular forms of ΓM can

be obtained from classical theories of finite strain plasticity

and viscoelasticity (Simo 1992; Reese and Govindjee 1998).

The evolution law for the elastic component of the fiber

vectors (2)2 is subject to the requirement of invariance under

superimposed rigid body motions (Rubin 1994a). A pull-

back of the vector me to the reference configuration (the index

i is omitted for the sake of brevity) yields Me = F−1
me with

material time derivative

Ṁe = ˙
F−1me = F−1

ṁe − F−1lme. (9)

The Lie time derivative, see (Holzapfel 2000, Sec. 2.8, 5.3),

ṁe − lme = F(
˙

F−1me) is objective since for an arbitrary

orthogonal transformation Q = Q(t) superimposed onto the

current state of deformation, so that F+ = QF and m
+
e =

Qme, one verifies

F+(
˙

F+−1m
+
e ) = F+

Ṁe = Q (ṁe−lme) (10)

and, accordingly, invariance of the evolution equation (2)2

imposes that a likewise transforms as1
a
+ = Qa. In the

1 In Rubin’s work (Rubin 1994a, b, 1996), this is satisfied by dissi-

pative rates of the form a = Lpme, where the second-order tensor Lp

transforms as L+
p = QLpQT under superposed rigid body motions. The

approach in Eq. (11) is consistent with the particular choice Lp = ΓFI.
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following, the particular representations

a
i = Γ i

Fm
i
e (11)

are considered with scalar, objective functions Γ i
F of the kine-

matic variables b, be and all m
k
e , k = 1, 2, . . . , N .

2.3 Constitutive assumptions

Although generally inappropriate to depict the complexity

of nonlinear dissipative models, the image of a rheological

scheme with springs and dashpots facilitates understanding

the constitutive assumptions (see, e.g., Reese and Govindjee

1998; Huber and Tsakmakis 2000; Holzapfel 2000). In the

model presented herein, fibers can be imagined as parallel

viscoelastic “Maxwell-type” elements. Strain-energy stor-

age is only related to the length λe of the fiber vectors me.

The matrix is represented by two further, parallel compo-

nents: a spring depending on the total deformations (b) and

a “Maxwell-type” element, whose elastic part experiences

the deformations be. Restricting to a reduced set of invari-

ants (see, e.g., Ehret and Itskov 2007), this motivates a free

energy function of the form

Ψ = Ψ̂ (I, J, Ie, Je, λe,1, . . . , λe,N ), (12)

where Ψ is the free strain energy per unit reference volume

and the scalar arguments are given by

I = trb, J =
√

det b, Ie = trbe, Je =
√

det be,

λe,i = |mi
e|, i = 1, 2, . . . , N . (13)

The material time derivative of Eq. (12) yields in view of

Eqs. (2), (7) and (11),

Ψ̇ = ∂Ψ

∂ I
İ + ∂Ψ

∂ J
J̇ + ∂Ψ

∂ Ie
İe + ∂Ψ

∂ Je
J̇e +

N
∑

i=1

∂Ψ

∂λe,i
λ̇e,i

= ∂Ψ

∂ I
I : ḃ + ∂Ψ

∂ J

J

2
b−1 : ḃ + ∂Ψ

∂ Ie
I : ḃe

+ ∂Ψ

∂ Je

Je

2
b−1

e : ḃe +
N

∑

i=1

∂Ψ

∂λe,i
λ−1

e,i m
i
e · ṁ

i
e

=
[

2
∂Ψ

∂ I
b + 2

∂Ψ

∂ Ie
be +

(

∂Ψ

∂ J
J + ∂Ψ

∂ Je
Je

)

I

+
N

∑

i=1

∂Ψ

∂λe,i
λ−1

e,i m
i
e ⊗ m

i
e

]

: d

− J−1
e ΓM

1

3

(

2
∂Ψ

∂ Ie
be + ∂Ψ

∂ Je
JeI

)

: I

−
N

∑

i=1

λe,i
∂Ψ

∂λe,i
Γ i

F . (14)

For later use, we separate the Cauchy stress σ in matrix

(σM, σ Me) and fiber (σ Fe) parts. The Clausius-Planck form

of the second law of thermodynamics (see, e.g., Holzapfel

2000), can hence be written as

Jσ : d − Ψ̇ = J (σM + σMe + σ Fe) : d − Ψ̇ ≥ 0. (15)

Inserting Eq. (14) and assuming that the sum of all contri-

butions forming a scalar product with d vanishes (cf. Simo

1992; Rubin and Bodner 2002), we define the stress contri-

butions

σM = 2

J

∂Ψ

∂ I
b + ∂Ψ

∂ J
I,

σMe = 2

J

∂Ψ

∂ Ie
be + Je

J

∂Ψ

∂ Je
I,

σ Fe = 1

J

N
∑

i=1

∂Ψ

∂λe,i

1

λ e,i
m

i
e ⊗ m

i
e. (16)

The remaining part imposes the thermodynamic restriction

J−1
e ΓM

1

3
JσMe : I +

N
∑

i=1

λe,i
∂Ψ

∂λe,i
Γ i

F ≥ 0 (17)

that guarantees a nonnegative rate of local entropy production

(see, e.g., Coleman and Gurtin 1967; Holzapfel 2000).

2.4 Particular forms of the constitutive equations

Starting from the FM model by Bürzle and Mazza (2013),

we apply three major modifications: The matrix material is

assumed to be compressible and viscoelastic, and the repre-

sentative set of fibers, which was originally equally spaced

within the membrane plane, is given a small alternating

off-plane inclination ±ϑ . The unit vectors, defining the direc-

tions of the N representative fibers, thus read (Remark 1)

Mi = cos φi sin θe1 + sin φi sin θe2 + (−1)i cos θe3,

φi = π

N

(

i − 3

2

)

, θ = π

2
− ϑ. (18)

Moreover, the free energy representation (12) is specified

so that the viscoelastic matrix contribution depends only

on the volume change Je, i.e., it becomes independent of

Ie. This reflects the assumption that Je represents the vol-

ume change due to compression of the fluid contained in the

matrix, which is small due to the very low compressibility

of water (Remark 2). The free energy for this variant of the

RB model still reads (cf. Rubin and Bodner 2002; Bürzle and

Mazza 2013)

Ψ = μ0

2q
(eqg − 1), g = g1 + g2 + g3 (19)
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but compared to the original RB model (Rubin and Bodner

2002), the volumetric term g1 depends on the viscoelastic

volumetric deformations Je and is given by a penalty func-

tion for nearly incompressible hyperelastic materials (Simo

and Taylor 1982), in agreement with the just mentioned weak

compressibility of water. Moreover, g2 represents the contri-

bution of the compressible solid matrix and is hence given

in terms of the compressible neo-Hookean model (see, e.g.,

Holzapfel 2000). Finally, the affine fiber stretches in the

fiber strain energy were replaced by λi
e and the parameter

m̄3 = N m3 was introduced in order to make the material

law “independent” of the number of fiber families used to

establish a quasi-isotropic in-plane response. Hence g1, g2,

g3 read

g1 = g1(Je) = m1

[

(Je − 1)2 + (ln Je)
2
]

,

g2 = g2(I, J ) = m2 (I − 3) + m2

m5

(

J−2m5 − 1
)

,

g3 = g3(λe,i ) = m̄3

m4

1

N

N
∑

i=1

〈

λe,i − 1
〉2m4 , (20)

where 〈•〉 denote Macaulay brackets. In view of (16), the

Cauchy stress tensor σ = σMe + σM + σ Fe is thus given by

σMe = μ0eqg

J
m1

(

J 2
e − Je + ln Je

)

I,

σM = μ0eqg

J
m2

(

b − J−2m5 I
)

,

σ
i
Fe = μ0eqg

J

m̄3

λe,i

〈

λe,i − 1
〉2m4−1

m
i
e⊗m

i
e,

σ Fe = 1

N

N
∑

i=1

σ
i
Fe. (21)

Finally, the dissipative rates ΓM and Γ i
F have to be defined

such that (17) is satisfied. Here, we suggest the simple rep-

resentations

ΓM = kM JαM tr(σMe),

Γ i
F = kFλe,i

∂Ψ

∂λe,i
= kFtr(Jσ

i
Fe) (22)

with three positive constants kM, kF and αM, and chosen

such that both the observed uniaxial relaxation and creep

responses could be captured. While the second of these equa-

tions represents a simple linear relation between the fiber

Kirchhoff stress and the inelastic rates Γ i
F , the first one entails

a power-law relationship between the volume change of the

tissue and the dissipative rate ΓM, which can be motivated

by drawing parallels with the fluid flow in porous media (see

the discussion Sect. 4.3).

Remark 1 The alternating off-plane inclination of the fibers

in (18) does not affect the in-plane quasi-isotropy obtained

with N families (cf. Bürzle and Mazza 2013). However, it

induces a slight asymmetry of the structure with respect to

the membrane plane. This is irrelevant if there is no shear

across the thickness, as usually assumed for thin membranes.

In the general case, this asymmetry can be avoided by tilting

the fiber families symmetrically in both directions, i.e., +ϑ

and −ϑ , thereby doubling their number.

Remark 2 We remark that small changes of Je do not imply

that the volume change of the tissue (J ) is small. Inserting

Eq. (6) into (4)1, one obtains

J̇ (t)

J (t)
= J̇e(t) + ΓM(t)

Je(t)
,

where time dependence has been indicated explicitly. With

J (0) = Je(0) = 1, this integrates to

J (t) = Je(t) e
∫ t

0 ΓM(s)/Je(s) ds .

and it becomes apparent that the tissue volume change

depends on both the current value of Je and the history of the

dissipative process.

2.5 Special case: compressible elastic formulation

The constitutive model established by Eqs. (18-21) contains

as a special case an elastic compressible model suitable to

account for the quasi-static behavior of the amnion. This

model applies if the timescale of observation is long enough

that the outflow of water has entirely ceased (Je → 1) yet

short enough that no substantial creep occurs in the fibers

(λe,i → λ f,i ). With these assumptions, it follows from Eqs.

(20) and (21) that

g = m2 (I − 3) + m2

m5

(

J−2m5 − 1
)

+ m̄3

m4

1

N

N
∑

i=1

〈

λ f,i − 1
〉2m4 , (23)

σ = μ0eqg

J

[

m2

(

b − J−2m5 I
)

+ 1

N

N
∑

i=1

m̄3

λ f,i

〈

λ f,i −1
〉2m4−1

(FMi )⊗(FMi )

]

. (24)

Multiplication of (24) by the current thickness of the mem-

brane yields a refined representation of the model by Bürzle

and Mazza (2013, Eqn. 10 therein). Similar to the latter, the

refined model yields accurate agreement with the tension

and lateral stretch responses in uniaxial tension and provides
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Fig. 1 Comparison of lateral in-plane (λ2) and out-of-plane (λ3)

stretches versus stretch in loading direction in uniaxial tension for the

incompressible model with planar fibers (Bürzle and Mazza 2013) and

the refined, compressible model with slightly inclined fibers together

with corresponding experimental data reported in (Bürzle and Mazza

2013; Mauri et al. 2015b). Parameters of the compressible model:

q = 2.96; ϑ = 9.51◦; m2 = 0.00228; m̄3 = 41.1; m4 = 1.27;

m5 = 0.463 (μ̄0 = 0.131 N/mm, see Sect. 2.7)

an excellent prediction of the equibiaxial tension response

(Mauri et al. 2015a). However, while the original, incom-

pressible model implies an increase in thickness in uniaxial

tension, the refined model agrees well with the reduction in

thickness observed by multiphoton microscopy (Mauri et al.

2015c) as illustrated in Fig. 1.

2.6 Numerical framework

The material model developed in Sect. 2 was implemented

in MATLAB (R2013a, The MathWorks, Inc.) to compute the

special cases of homogeneous uniaxial, strip- and equibiax-

ial tension under time-dependent loading, which necessitated

appropriate algorithms to compute the rate equations (2).

Procedures to integrate the evolution equations appearing

in RB type models have been developed in (Rubin 1989,

1996; Rubin and Bodner 2002), and recently by Rubin and

Papes (2011) and Hollenstein et al. (2013). The numerical

integration of the evolution equations (7) and (11) for me

and be follows the predictor–corrector scheme used to com-

pute the deviatoric elastic left Cauchy-Green tensor in (Rubin

and Bodner 2002, Appendix A). The recent modifications to

obtain the exact result in the case of zero dissipation (Rubin

and Papes 2011; Hollenstein et al. 2013; Flynn and Rubin

2014), which adopt the idea of a relative deformation gra-

dient from the configurations at time tn to tn+1 (see Simo

1992; Simo and Hughes 2000), have been included.

Taking into account that the deformation gradient F =
F(X, tn+1) calculates from the previously achieved value

Fn = F(X, tn) as F = Fn + �F, an elastic predictor can

be calculated, assuming that the whole deformation incre-

ment �F is elastic. To this end, the incremental deformation

gradient h = F(Fn)−1 is introduced and it is predicted that

F∗
e = hFn

e . With this, the estimator for be at n + 1 reads (cf.

Rubin and Papes 2011; Hollenstein et al. 2013; Flynn and

Rubin 2014)

b∗
e = hbn

e hT, (25)

independent of the size of the time step �t . By means of

numerical integration of the evolution equation (7), here by

the backward Euler method (Remark 4), the predictor can be

corrected as

be = b∗
e − �t

2

3
J−1

e ΓM be, (26)

which implies

be =
[

1 + 2�t

3Je
ΓM

]−1

b∗
e = κb∗

e , (27)

Je =
√

det be = κ3/2
√

det b∗
e = J n

e κ3/2 det h (28)

and yields the implicit equation for κ as

1 −
[

1 + 2

3

�t

κ3/2 J n
e deth

ΓM

]

κ = 0. (29)

to be solved similar as in (Rubin and Bodner 2002).

An analogous strategy is suggested to compute the evolv-

ing fiber vectors m
i
e. For the sake of clarity, the fiber index

i is omitted in what follows, but the same procedure applies

to all families of fibers. The elastic predictor is chosen as

m
∗
e = h m

n
e (30)

and, in regard of (11), the inelastic correction leads to

me = m
∗
e − �tΓFme

⇔ me = [1 + �t ΓF]−1
m

∗
e = νm

∗
e . (31)

Again, this yields the implicit equation for the scalar ν to be

solved

1 − [1 + �tΓF] ν = 0. (32)
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Finally, Eq. (31) yields the updated me and λe = |me|.
Applying this procedure to all N families of fibers delivers a

single value νi , for each fiber family, respectively.

Remark 3 Equation (6) could be integrated directly to obtain

Je at tn+1 and update be = J
2/3
e b̄ = J

2/3
e J−2/3b. With

predictor J ∗
e = (deth)J n

e and corrector Je = κ ′ J ∗
e one would

have to solve instead of (29)

1 −
[

1 + �t

κ ′ J ∗
e

ΓM

]

κ ′ = 0, (33)

which generally leads to another result for Je. The same

update would be obtained only if κ ′ = κ3/2. Inserting this

into (33), one obtains

1 −
[

1 + �t

κ3/2 J ∗
e

ΓM

]

κ3/2 = 0,

which differs from (29) by a factor of 2/3. However, with the

abbreviation z = (κ3/2 J ∗
e )−1�tΓM, Eqs. (29) and (33) can

be expanded in a Taylor series as

κ =
(

1 + 2

3
z

)−1

= 1 − 2

3
z + O(z2),

κ = (1 + z)−2/3 = 1 − 2

3
z + O(z2),

respectively, converging to the same result for z ≪ 1.

Remark 4 The implicit Euler method may be replaced by

other algorithms but care has to be taken that they satisfy the

concept of objective integrators (see, e.g., Rubin and Papes

2011; Hollenstein et al. 2013). For the present calculations,

which were free of superimposed rigid body motions by def-

inition, an efficient trapezoidal rule was applied, so that the

update y = yn+1 in Eqs. (26) and (31) was of the form

y = y∗ − (�t/2)(ẏn + ẏ) instead of y = y∗ − �t ẏ.

2.7 Parameter identification

All parameters were obtained by minimizing the weighted

least squares error between model and experimental mean

nominal tension and kinematic (contraction) responses from

the relaxation phase of uniaxial relaxation tests (R–U). To

this end, the model Cauchy stress σ (21) was converted to

nominal membrane tension T = H JσF−T, where H denotes

the thickness of the amnion samples in the reference state.

This is treated as an unknown and lumped with μ0 into a sin-

gle parameter μ̄0 = Hμ0, which has units of force per unit

length (cf. Bürzle and Mazza 2013). In accordance with this,

the parameters k̄M = kM/H and k̄F = kF/H were defined so

that the dissipative rates (22) and, correspondingly, the evo-

lution equations (2) become independent of the membrane

Table 1 Parameters

representing the fitting to the

mean relaxation curve under

uniaxial tension configuration

R–U

General parameters

μ̄0 (N/mm) 2.2153 10−3

q (−) 2.9215

Matrix parameters

m1 (−) 1.3677 10+1

m2 (−) 9.2900 10−5

m5 (−) 3.0456

k̄M (mm/Ns) 6.7596 10+1

αM (−) 5.655

Fiber parameters

m̄3 (−) 3.1863 10+1

m4 (−) 6.7908 10−1

ϑ (◦) 1.0907 10+1

k̄F (mm/Ns) 1.0166 10−4

thickness H . Finally, the principal tension responses T j ,

j = 1, 2, 3, were computed for the special cases of uniaxial,

strip-biaxial and equibiaxial tension in order to compare with

the experimental data. To this end, the experimental local

stretch or tension histories in loading direction were used as

input and the boundary value problems with corresponding

boundary conditions were solved numerically, including the

integration of the evolution equations (see Sect. 2.6). This

provided at each time point those principal stretches and ten-

sions which were not prescribed, and which were compared

to the available experimental responses.

The experimental curves were based on the measured

force per initial width of the samples, the optically deter-

mined in-plane stretch in loading direction λ1, the lateral

stretch λ2 (both evaluated in the central area of the speci-

men) and the thickness ratio λ3 of the membrane acquired

by multiphoton microscopy, see (Mauri et al. 2015c, b) for

details. Experimental data were obtained from mechanical

tests performed on term fetal membranes. Mean curves of the

relaxation uniaxial experiments, used for parameter identifi-

cation, were computed as explained in the “Appendix”. We

emphasize that the reconstructed loading was not included

in the objective function for parameter identification.

The initial values of the parameters μ̄0, q, m2,4,5, m̄3 and

ϑ followed from the values that had been identified for the

compressible elastic model described in Sect. 2.5. For the

remaining parameters k̄M,F and αM, which control the dis-

sipative behavior in the matrix and fibers, starting values

were chosen such that both the relaxation and creep response

were qualitatively captured. Minimization of the objective

function was performed based on the MATLAB routine fmin-

search. The parameter set obtained by this means is given in

Table 1.
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Fig. 2 Fit of the model to the mean relaxation response of the amnion

under uniaxial tension configuration (R–U). The experimental mean

and standard deviation are shown in gray, and the model in red. The

model is able to nicely represent the tension relaxation of the amnion

and its in-plane (solid line) and out-of plane (dashed line) kinematic

behavior

After identifying the parameters by adjustment of the

model to the mean relaxation curve, the model was com-

pared to each individual experiment in a second step, where

all parameters except the factor μ̄0 were kept constant. The

specimen-specific μ̄0 was determined by comparing one sin-

gle value from experiment and simulation. In the uniaxial and

strip-biaxial relaxation tests, this value was the peak tension

at the end of the (sample-specific) loading ramp. For uniaxial

creep tests, the value of λ1 at the beginning of the creep phase

was used. The so-obtained agreement between experiments

and simulations is illustrated in the next section.

3 Results

3.1 Mean relaxation response

The fitted volumetric time-dependent model is shown in

Fig. 2 and compared with the mean experimental data from

Mauri et al. (2015c). The proposed model formulation nicely

captures the large tension relaxation characteristic of the

amnion and its corresponding volume changes. The in-plane

contraction is slightly underestimated in the initial relax-

ation phase; however, this difference lies within the standard

deviation of the experimental results (gray shadow). The out-

of-plane stretch λ3 slightly increases in the first 0.5 s of

the very fast loading and finally reaches the long-term value

experimentally observed in Mauri et al. (2015c).

3.2 Sample-specific relaxation curves

The model response after adjustment of the parameter μ̄0 is

shown for each experimental curve in Fig. 3. Specimens with

a behavior in the variability spread are very well captured

with the fit of this single parameter. Note that the logarithmic

scale enhances the differences between model and experi-

ment in the loading phase of the relaxation tests and that

few experimental data points were available for the very fast

loading phase (<2 s) as a result of limitations in the rate of

image acquisition. Thus, the differences between model and

experiments in the loading regime are due to the fact that the

loading phase has not been considered during the parameter

identification of the model.

3.3 Prediction of uniaxial creep and strip-biaxial

relaxation experiments

This model calibrated with the uniaxial relaxation (R–U)

experiments is able to reproduce the very small creep accu-

mulation typical of soft tissues and reported for the human

amnion in Mauri et al. (2015c). The variability of the speci-

mens in the uniaxial creep experiments (C–U) could likewise

successfully be accounted for by adjustment of the parameter

μ̄0. We restrict in Fig. 4 to presenting the best and worst fitting

obtained, to demonstrate the robustness of this procedure. In

both cases, the model is able to capture the very small creep

strain accumulation in the loading direction and the corre-

sponding creep accumulation in the transverse direction—in

addition to the strong lateral contraction during loading. The

largest discrepancy between the model and the experimental

data occurs in the first part of the fast loading, similarly as

for the relaxation experiments.

The relaxation response of this model formulation under

strip-biaxial configuration (R–B) was also computed and

compared with the experimental data. In R–B specimens, the

biaxial state of tension was obtained by restraining the lateral

(but not thickness) contraction during uniaxial extension by

a large width-to-length ratio (see, e.g., Holzapfel 2000). Note

that the relaxation behavior in R–B tests is considerably dif-

ferent from the R–U case (Mauri et al. 2015c). In particular,

the tension level after 10 min drops to 53 % of the initial value

for strip-biaxial and to 46 % for the uniaxial configurations.

Similarly as for the C–U data, the best fit and worst fit are

reported in Fig. 5. Although, the model seems to overesti-

mate slightly the nominal tension in the long-term regime,

the overall fit is very good for a model calibrated with only

uniaxial relaxation data.

The specimen-specific parameter (μ̄0) is reported in

Table 2 for all considered experiments, showing a variabil-
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Fig. 3 The value of the μ̄0 parameter is shown for each R–U specimen. The agreement between experiments and model fitting is remarkable,

especially considering that the local stretch during relaxation (λ0) varies significantly among specimens (from 1.07 to 1.22)
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Fig. 4 The in-plane stretches under uniaxial creep configuration (C–

U) are shown for the best and worst model fit. The reported curves

include the initial loading up to the constant creep force
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Fig. 5 The best and worst fits are shown for the tension relaxation

under strip-biaxial configuration (R–B)

Table 2 Specimen-specific parameter μ̄0 for all membranes

Specimen Membrane μ̄0 [N/mm]

S1 M1 0.0051099

S2 M1 0.0086409

S3 M1 0.0090991

S4 M2 0.0021045

S5 M2 0.0012331

S6 M2 0.0007733

S7 M2 0.0000609

S8 M3 0.0038194

S9 M3 0.0062780

S10 M4 0.0089720

S11 M4 0.0045275

S12 M4 0.0069782

S13 M5 0.0006646

S14 M5 0.0014564

S15 M5 0.0003088

S16 M5 0.0013915

ity in the same order of magnitude of the experimental

curves. Notably, its value is also visibly affected by the

origin of the membrane, see, e.g., M1 and M2, indicating

that the distribution of the parameter (μ̄0) includes both

the inter- and intra-subject variability of the healthy human

amnion.
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4 Discussion

4.1 Large tension relaxation but very small creep strain

accumulation

This volumetric viscoelastic model based on the framework

proposed by Rubin and Bodner (2002) was developed to cap-

ture the macroscopic and microscopic mechanical behavior

of the human amnion as reported in Mauri et al. (2015c).

The large volume reduction observed experimentally moti-

vated the compressible formulation of the viscoelastic model.

The 11 parameters contained in the model were fitted to

the relaxation response under uniaxial tension configuration

(cf. Table 1 and Fig. 2) and used to predict the response of the

uniaxial creep (Fig. 4) and strip-biaxial relaxation (Fig. 5)

experiments. The viscoelastic behavior of human amnion,

especially the interrelation of large tension reduction dur-

ing relaxation and the very small strain accumulation during

creep, is encompassed in this model. This interrelation is a

characteristic of many soft biological tissues (Thornton et al.

2001; Lakes and Vanderby 1999) and is missing in the quasi-

linear viscoelastic (QLV) formulation (Thornton et al. 1997;

Haslach 2005; Oyen et al. 2005; Sopakayang and Vita 2011;

Anssari-Benam et al. 2012).

Although this model remains phenomenological, elastic

and dissipative effects can be associated with matrix and

fiber components, based on insights gained with detailed

experimental investigations. The present formulation is able

to capture the two mechanisms suggested in Mauri et al.

(2015c) for the time-dependent behavior of the amnion, i.e.,

a short-term relaxation response related to fiber alignment

and water outflow from the matrix on the one hand, and a

long-term relaxation related to dissipative fiber behavior on

the other one. The coupling between the matrix and the fibers

is very strong and determines the resulting equilibrium in the

model.

This approach allowed the formulation of a simple model

able to reproduce the compressible and time-dependent

behavior of human amnion under different multiaxial loading

conditions in both relaxation and creep states.

4.2 Inter- and intra-subject variability

Large variability between specimens has typically been

observed in previous investigations of the human amnion

(e.g., Jabareen et al. 2009; Bürzle and Mazza 2013) and is

reflected by the scatter of the specimen-specific parameter

(μ̄0). Khwad et al. (2005) reported a similar inter- and intra-

patient variability in the value of FM strength, which is even

larger if specimens of the cervical region are considered. This

variability is intrinsic in the material inhomogeneity and cor-

relates with the amount of collagen in the tissue (Bürzle et al.

2013). We believe that the variability in mechanical response
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0
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0
 [
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Fig. 6 Distribution of the modeling parameter μ̄0 within different

patients. Parameter values are reported for each membrane (M) as mean

± standard deviation

is induced by a different amount of mechanically significant

material in the specimen, rather than by differences in its

internal organization and microstructure. This hypothesis is

in agreement with the results of the renormalization proce-

dure proposed in Mauri et al. (2015c), where the relative

shift of the curves is neutralized by the normalization of the

curves at the common peak force and would also explain the

very small variability observed in the normalized curves of

the relaxation data (Mauri et al. 2015c; Oyen et al. 2004).

Correspondingly, the differences between specimens can be

explained in the proposed modeling formulation by one sin-

gle parameter μ̄0 = Hμ0, which is a coefficient of all tension

components [cf. Eq. (21)].

As opposed to patient-specific simulations (e.g., Jacobs

et al. 2014), where the complete material model is specifically

defined for each patient, the presented model can be applied

to any FM, with only μ̄0 as patient-specific input. The distri-

bution of μ̄0 contains the inter- and intra-patient variability

(see Fig. 6) and can be used to define a confidence interval

representative of the healthy term human amnion. This new

interpretation of the model parameter μ̄0 represents a first

step toward a less deterministic and more stochastic view of

the material modeling of human tissues. The possibility of

including in numerical simulations a prediction range repre-

sentative of the healthy human tissue will allow to evaluate

the response of amnion in different experimental protocols,

under physiological loading conditions (e.g., contractions)

or during medical procedures.

4.3 Limitations and future directions

Based on the parameter set reported in Table 1, the equibiax-

ial creep behavior under constant tension was simulated and

compared to the first cycle of the creep inflation experiments

in (Mauri et al. 2015c), the results of which were provided

in terms of d/d0, the accumulated apex displacement d of

the inflated membrane with respect to the displacement d0
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Fig. 7 Prediction of creep in planar equibiaxial tension based on the

parameters in Table 1 and comparison with the experimentally observed

ratio of apex displacement in creep inflation experiments (Mauri et al.

2015c)

at the beginning of the creep phase. Adjustment of μ̄0 and

a meaningful quantitative comparison of the model with the

test data is only possible by inverse FE analysis. As a first

approximation, however, d/d0 is comparable to the ratio

ε/ε0, where ε = λ − 1 denotes the in-plane strain in the

equibiaxially stretched membrane and, again, the subscript

0 refers to its value at the beginning of the creep phase. The

result shown in Fig. 7 indicates that the long-term accumu-

lation of biaxial creep strain is significantly overpredicted

by the model. While it is possible to avoid this discrepancy

by a more involved formulation of the dissipative rates Γ i
F

[cf. Eq. (22)], this optimization is beyond the scope of this

study, which aimed at the definition of a very simple model

formulation able to reproduce the interrelation of uniaxial

relaxation and creep behavior.

Generally, a modification of ΓM and Γ i
F , which are

presently given by simple phenomenological formulations,

bears great potential for an improvement of the model.

Although the model presented herein is not bi-phasic, a rela-

tion with the theory of porous media (TPM), see, e.g., (de

Boer 2000), may be drawn for ΓM, by rewriting (6) such that

Je trd = J̇e + ΓM. This states that the change of current vol-

ume of contained water with tissue volume is composed of

the change due to the actual (but very small) elastic compress-

ibility, and of ΓM, which can thus be attributed to a dissipative

flow of the water through the matrix. According to Darcy’s

law, the latter should be driven by the pressure gradient in

the tissue. Here, due to the membrane dimensions, the lat-

ter might be assumed to be dominated by the component in

thickness direction (cf. with assumptions in Taber and Puleo

1996). Further, the flow may be assumed constant through

the thickness, so that the pressure itself becomes the driving

force. Indeed, ΓM depends on the hydrostatic pressure term

trσMe in the present formulation. Seen from this perspective,

the power-law down-weighting ΓM with reducing volume in

(22) might be motivated with a changing permeability as was

realized in refined TPM models (Ehlers and Eipper 1999).

The constitutive model developed in the present study can

be used to investigate the deformation behavior, strength and

fracture properties of non-pathological tissue at the end of

gestation. Obviously, most clinical questions are related to

the mechanical response of amnion earlier in pregnancy or

in case of pathological conditions. Future investigations will

address preterm tissue and tissues subjected to deterioration

associated with biochemical agents (Moore et al. 2006). The

proposed model formulation might be used as a basis to define

corresponding constitutive equations to analyze pathological

conditions and to identify specific model parameter changes

associated with tissue deterioration and preterm rupture. Sys-

tematic investigation of the relation between the effect of

biochemical factors and mechanical properties will inform

corresponding modifications of the model formulation in

order to quantify the effect of, e.g., inflammatory processes

or decidual bleeding (Kumar et al. 2011) on the ability of

amnion to resist physiological loading conditions.

5 Conclusion

A compressible and time-dependent model for the human

amnion has been formulated and validated. A new approach

to the interpretation and definition of its parameters has

been presented, which allows representing the intra- and

inter-membrane variability with one single parameter. This

approach demonstrated the predictive capabilities of the

selected formulation for relaxation and creep in uniaxial and

biaxial loading states.
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Appendix

Experimental materials and methods

The experimental data published in Mauri et al. (2015c) were

used to calibrate and validate the proposed model. Additional

tests were performed to increase the number of R–U speci-

mens from different membranes to better evaluate the model.

For these additional amnion samples, after informed written

consent of the patients was given (Ethical Committee of the

District of Zurich Stv22/2006 and Stv07/07), preparation,

testing and post-processing were performed as described in
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Mauri et al. (2015c). All membranes were collected from

term elective cesarean sections. The model response under

different multiaxial relaxation and creep configurations was

computed with the time, force and local strain histories of

all experiments. The local in-plane stretches were extracted

from the images recorded with 4 Hz through the video exten-

someter system, similarly to Perrini et al. (2015). The holding

stretch in relaxation tests was defined by a target force (cf.

Mauri et al. 2015c), which resulted in different values for

the stretch due to the variability of the specimen proper-

ties. Therefore, the mean relaxation curve was calculated

after synchronizing the times for which the target force was

reached (times at peak). To simulate the complete deforma-

tion history of the experiment, an according representative

loading ramp with constant rate was generated from the aver-

age local stretch and the average time at the peak.
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