
DISCUSSION FORUM

Repeatability: some aspects concerning the evaluation

of the measurement uncertainty
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Abstract Various publications stress the importance of

the repeatability (i.e. precision) of the calculation of the

measurement of uncertainty. We reveal by detailing an

example from production control in the pharmaceutical

industry that the effect of other influence quantities should

not be neglected, because their magnitude is even larger

than the contribution of repeatability. We review the role of

repeatability within the calculation of measurement

uncertainty for several common validation and day-to-day

measurement scenarios. They show that measurement

models need to consider the measurement sequences of the

various scenarios. Otherwise the size and effect of the

repeatability might be overestimated. At the end Monte

Carlo simulations were used to investigate the determina-

tion of the repeatability under certain restrictions. The

simulation uncovered a significant bias toward the common

formula for calculating the standard deviation when it is

based on a duplicated measurement of a sample.

Keywords Measurement uncertainty � Repeatability �
Standard deviation � Production control

Introduction

The most recent version of the ISO/IEC/EN 17025 [1]

standard demands that ‘‘Testing laboratories shall have and

shall apply procedures for estimating uncertainty of

measurement... (Clause: 5.4.6.2)’’. Furthermore, numerous

local accreditation bodies require more stringent imple-

mentation of those clauses. Therefore, many analytical

laboratories in industry have started their own efforts to

implement laboratory instructions for estimating the

measurement uncertainty. These calculations are based on

the description of their various measurement procedures [2].

ISO 17025 (2005) [1] suggests in note 3 of clause

5.4.6.3 that the reader use ISO 5725 [3] and the guide to the

expression of uncertainty in measurement (GUM) [4] for

further information. In addition, ILAC [5] recommends

that analytical laboratories use the Eurachem/CITAC guide

‘‘Quantifying Uncertainty in Analytical Measurement 2nd

(QUAM)’’ [6]. These guidelines place emphasis to a

greater or lesser extent on the repeatability, i.e. closeness of

the agreement between the results of repeat measurements

of the same measurand carried out under the same condi-

tions of measurement [7]. This overall performance figure

is often determined either during the method validation or

from the duplicated measurements of the same samples,

which are analysed in the daily routine. Various authors of

different publications point out that according to their

observations repeatability is often the most important

component of the calculation of measurement uncertainty

in analytical chemistry [2, 8–10]. Hence, it is quite

tempting to use only repeatability as a value for measure-

ment uncertainty with the argument that all other compo-

nents do not have a significant impact on the calculation of

the combined standard uncertainty [2]. This attempt is

quite attractive, especially for the industry, which has to
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fulfil new requirements, but wants to achieve them at

minimal costs. For this reason we think it is important to

take a closer look at some aspects of repeatability. Within

the current article we zero in on the detailed measurement

model to check the effect of which influence quantities are

covered by the measured repeatability of the analytical

procedure and which are not. For this purpose we elaborate

on the different details of an example from production

control in the pharmaceutical industry. In addition, we look

at basic statistical principles, which are often neglected for

the calculation of the standard deviation and which might

lead to a considerable underestimation of its value and with

it of measurement uncertainty.

Example: production control in the pharmaceutical

industry

Nowadays, pharmaceutical production often involves more

than ten synthesis steps to obtaining an active agent.

Hence, it is important to control the production efficiency

of each single step within close margins. In addition, the

content of the by-products needs tight monitoring to

exclude any side effects that might be caused by these

impurities. These and other safety risks have led to elab-

orate risk management within a strictly regulated envi-

ronment that places high demands on the validation of

methods and their implementation in the analytical labo-

ratories [11]. We elaborate within this section on a typical

example of an analytical method, which determines the

content of the main product and of all relevant by-products

obtained from a synthesis step.

Due to the highly competitive nature of pharmaceutical

production it is not possible for us to publish any actual

analytical procedures or any performance data, such as

repeatabilities etc. As an alternative we have utilised an

artificial analytical method that is based on numerous

similar methods. These have been examined in detail

during a major project to develop a software product,

which permits the bench chemist to easily calculate mea-

surement uncertainty within a reasonable amount of time

[12]—a much-needed tool, because a large company might

carry out a few thousand analytical procedures that fall

within the scope of ISO 17025.

A syntheses step should result in at least 98% of the

content of the key product and five by-products where the

content should not exceed 2% for one by-product, 0.5% for

two by-products and 0.2% for two by-products. High per-

formance liquid chromatography (HPLC) is the technique

of choice to quantify such compound bodies in pharma-

ceutical industry. The content of the key product is deter-

mined by weighing 100 mg of the product and 100 mg of

its reference substance and then diluting it with 100 ml of

the mobile phase.

The content of each of the 0.5% by-products is quanti-

fied with the same measuring solution of the product that

was used to determine the content of the key product. The

corresponding reference stock solution is produced from

50 mg of the reference standard, which was dissolved in

100 ml of the mobile phase. The measuring solution of the

reference was then produced by diluting 1 ml of the stock

solution with 100 ml of the mobile phase. For the other by-

product the concentration level of the measuring solution

of the reference was adjusted by increasing or decreasing

the amount of weighed reference substance. All the weight

measurements are rounded up or down to 0.1 mg.

Figure 1 shows the flow chart of the analytical proce-

dure. The left side summarises the operations with the

samples, whereas the right side describes the operations

with the reference substance. The additional steps for

diluting the reference solution, which are shown with

dashed lines, are only needed to quantify the by-products.

According to the given information in the specification we

derived the cause and effect diagram of the analytical

procedure using the equation used to calculate the mea-

surement result and the rules developed by Ellison et al.

(Fig. 2) [6, 13].

Before we continue with the discussion of repeatability

issues, we want to have a closer look at the current mea-

Fig. 1 Operating sequence of the analytical procedure to determine

the content of the product and by-products of a synthesis step. Boxes

with dashed lines represent the dilution steps that are needed for the

measurements of the content of the by-product
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surement model displayed as a cause and effect diagram.

The individual measurement operations, which are repre-

sented in the equation used to calculate the measurement

result by different variables, for instance volume, mass,

HPLC measurement and purity, follow all the same

measurement basics summarised in Fig. 3, i.e. comparison

of the sample value with the reference one. The reference

values for the measurement operations in our example,

with the exception of the HPLC measurements, were not

determined in the same laboratory. Therefore, those indi-

vidual models reflect temporal, local and operational dif-

ferences with additional influence quantities. For example,

the filling of the flask considers personal bias by the

operators and possible differences in the formation of the

meniscus due to a different solvent in comparison to the

water, which was used to calibrate the flask.

The HPLC measurements of the reference and sample

signal were made within the same series and on the same

instrument. This leads to a different measurement model,

where possible differences between the sample and refer-

ence measurement and all changes in the reference signal

over time are relevant [12], but no significant systematic

effects that are equal for the sample and reference mea-

surements. Furthermore, in this example both reference and

sample peaks are resolved to base line, which means that

there is no difference between the sample and reference

signal [12].

A feasible measurement scenario for the HPLC is shown

in Fig. 4. After performing the calibration at t = 0 h a

calibration control sample is measured at a given time

interval of t = x h. If the measured value of the calibration

control sample is within a given limit of the value found

during the calibration, then the sample measurements are

continued, otherwise a new calibration is made before

carrying on with the sample measurements.

A typical measurement sequence is displayed in Fig. 5,

where first a reference sample is measured followed by

duplicate measurements of the samples (samples 1, 2 etc.).

The two measurement solutions used for the duplicate

measurements on each sample have been prepared inde-

Fig. 2 Cause and effect

diagram according to the

information of the specification.

No influence quantities have yet

been rearranged. Dashed lines

represent parts of the diagram

that are only relevant for by-

product content determination

Fig. 3 General measurement principle: method for comparing the

sample measurement with the reference measurement

Fig. 4 Calibration control sample: the calibration (A(r) at t = 0)

remains valid as long as any control measurements (A(r) at t = x h)

stay within the given limits

Fig. 5 Measurement sequence for the product and by-product content

determination of a synthesis step
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pendently. Often the laboratories use repeatability, which

was determined from the variation in the duplicate mea-

surements of the same sample, for the calculation of

measurement uncertainty [2, 6]. This practice has direct

implications for the measurement model. We can only

combine those repeatability components of the individual

variables in the measurement equation that can vary

between duplicate measurements of the same sample. The

combination of the influence quantities ‘‘repeatability’’

results in a new branch ‘‘repeatability’’ representing the

overall variation in the results from measurements made of

the same sample. Figure 6 shows the modified cause and

effect diagram for such a measurement protocol. The

repeatability components of all measurement steps related

to the sample are combined to the new main branch

‘‘repeatability’’ in the diagram. Due to the reasons men-

tioned above all the other repeatability components, which

are indicated by a dashed box in the figure, remain with

their individual variables and stay attached to the corre-

sponding main branches. We are of the opinion that this is

an important refinement of the general procedure of com-

bining all repeatability components in the diagram, and has

been described in the Eurachem/CITAC guide [6]. Further

details will be discussed in the next section.

Table 1 summarises the combined standard uncertainty

for the main product and for the five by-product content

determinations assuming 0.35% overall repeatability and

0.3% standard deviation for the HPLC signal of the

measurement solution of the reference. The purity of the

main product can be determined with an expanded

uncertainty of 1.3% (95% confidence level). This means

that the purity of the main product in a given batch has to

be at least 99.3% to pass the requirement of better than

98% to take into account measurement uncertainty. The

expanded uncertainty of the by-product determinations

spans from 1.7 to 2.1% (95% confidence level) depending

on the weighed amount of the reference substance. The

expanded uncertainty with a level of 95% has been

obtained directly from the Monte Carlo distribution

counting from both sides to determine the value of the

appropriate confidence level [12, 14]. If the content of the

main component is calculated by summing the total by-

product content and subtracting it from 100% purity, then

its measurement uncertainty has approximately the same

magnitude as that with the direct content determination.

This value of measurement uncertainty is the combination

of the corresponding measurement uncertainty of all by-

product determinations.

The different contributions of the main branches in the

cause and effect diagram to the overall measurement

uncertainty are shown in Fig. 7. For all investigated cases

the overall repeatability is not the major contribution. It is

the overall performance of the measurements on the HPLC.

One major component is the repeatability of the measure-

ment of the HPLC signal of the reference solution and the

other is the size of the boundaries, which are set on the

control sample before a recalibration is required. It is

important to notice that this variation is not part of the

overall repeatability, because the measurement of the ref-

erence solution was performed only once (see Fig. 5). Its

size has to be determined independently. The pipetting step

to dilute the reference stock solution, which is needed for

the determination of the by-products, is a relevant contri-

bution, because its small volume of 1 ml requires the use of

a micropipette. The weighing of the sample and reference is

of minor importance, except for the content determination

of the lowermost by-product. Here only 20 mg of the ref-

erence standard is weighed to obtain a measurement solu-

tion of the reference within the proper target concentration

and the read-off value is rounded up or down to 0.1 mg.

Fig. 6 Cause and effect

diagram after rearranging some

influence quantities

(repeatabilities) to the new main

branch repeatability, which

represents the variation in the

analytical procedure under

repeatability conditions. Dashed

boxes highlight influence

quantities (repeatabilities),

which cannot be moved due to

the measurement sequence

Table 1 Combined standard uncertainty for the product and by-

products of a synthesis step

Product By-product

1% 0.5% 0.2%

u(c)a (%) 0.63 0.87 0.90 1.10

a Combined standard uncertainty
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Aspects of repeatability important for the evaluation

of measurement uncertainty

If we look at the example discussed in the previous section,

then one would expect to be able to develop other mea-

surement scenarios to reduce the value of measurement

uncertainty.

Scenario 1

In a first scenario the value for the repeatability of the

measurement results obtained using the measurement pro-

cedure that has been determined during an in-house vali-

dation study is used in the assessment of uncertainty of

routine measurements. One condition for using the vali-

dation data in this way is the equivalence of the perfor-

mance of the day-to-day measurements to that of the

measurements made during the validation study. There are

different approaches to achieving this objective [15].

The most important performance parameter is the

repeatability of the measurement result. Therefore, one

often observes in the industry the approach to multiplying

the value for the repeatability of the measurement result

determined during the validation study by a factor of 2.8

ð� 1:97 �
ffiffiffi

2
p

Þ: For the daily routine those duplicated

measurements are then repeated, where the difference be-

tween the two measured values is larger than this previ-

ously set limit. Of course, the measurement models of the

routine analysis and of the validation study have to be the

same for this comparison.

If the two measurement models are not equivalent then

the following pitfall might unintentionally be disregarded.

When performing the validation study all repeatability

contributions of the reference and sample branch (see

Fig. 1) are combined in the overall repeatability of the

measurement result. However, for daily routine work only

the sample branch is repeated when making the duplicated

sample measurement, which means that only the repeat-

ability components of the sample branch contribute to the

repeatability of the measurement result. In this case fewer

repeatability contributions are combined in the repeatabil-

ity of the measurement and therefore its value is most

likely smaller than that obtained during the validation

study. In other words, if we use now the value of the

repeatability of the measurement results determined during

the validation study as a benchmark, then for routine work

the combined repeatability contributions of the sample

branch, which add up to the repeatability of the measure-

ment, are allowed to vary more than during the validation.

This leads of course to a larger overall measurement

uncertainty compared with one calculated using the data

from the validation study. There is an additional pitfall for

this type of benchmarking, which will be discussed in the

last part of this article.

The other, more indirect approaches to ensuring a

similar performance during routine measurements and the

validation study cannot overcome the demand for equiva-

lent measurement models. They often have additional

drawbacks like the system suitability test [16, 17], which is

performed at the beginning of a measurement series and

therefore cannot detect any step by step or sudden deteri-

oration of the actual sample measurements.

Scenario 2

In a second scenario the repeatability of the measurement

result for an interlaboratory study of an analytical proce-

dure that has been determined according to ISO 5725 [3] is

utilised. Here similar arguments are relevant to those in the

previous scenario where the values for the evaluation of

measurement uncertainty were determined during an in-

house validation study. If a laboratory wants to use data
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from an interlaboratory test to derive its measurement

uncertainty, then the study report has to point out in detail

which influence quantities vary between the measurements

made by the individual participants. There needs to be a

detailed measurement model from all the participants

reflecting the measurement sequence and the way to cal-

culate their results. Only under these terms can a laboratory

use the within-laboratory standard deviation (sr) to control

the proper implementation of the validated analytical pro-

cedure. In order to comply with that requirement the lab-

oratory has to conduct the day-to-day analysis using the

same measurement model, which also includes the mea-

surement sequence and the method of calculating the

results. In addition, the same combination of sample and

reference measurements has to be used. If fewer reference

measurements are made then the benchmark repeatability

should be reduced, otherwise a larger standard deviation

could be accepted for fewer repeatability influence quan-

tities combined to form the new main branch representing

the repeatability of the measurement result (see Figs. 5, 6).

Furthermore, under this condition the value of the mea-

surement uncertainty of the day-to-day analysis could be

larger than that derived from the interlaboratory test, which

was conducted at the end of the validation study. It results

in a larger overall measurement uncertainty. We observe

here similar features to those described in the previous

scenario.

Scenario 3

The last scenario is shown in Fig. 8. Two or more reference

measurements, which have been determined over the whole

measurement series, are combined to a mean value ð �AðrÞÞ
before the results of the duplicated sample measurements

are calculated. The measurement model here is different

compared with the previous scenarios. Single influence

quantities, which describe the repeatability of individual

steps in the reference branch (see Fig. 1), can now be

moved to the new main branch ‘‘repeatability’’ in the cause

and effect diagram. If all measurement solutions are taken

from the same solution V(r) or V(rf) respectively, then only

the repeatability of the HPLC measurement (A(r)) can be

repositioned. On the other hand, if each measurement

solution of the reference is prepared from scratch using

reference material from at least two manufacturers, who

certify their reference substance independently, then all

influence quantities of the reference branch, which cover

the short-term variation, have to be relocated at the main

branch ‘‘repeatability’’ of the cause and effect diagram.

The current scenario is often representative of a thorough

validation study, which is performed in the specialist re-

search laboratories of a larger company. After that, the

analytical procedure is transferred to field laboratories,

which conduct the day-to-day measurements. The research

centres set up a number of limits that allow monitoring the

proper implementation of the transferred analytical proce-

dure to the field laboratories. One of these limits is set for

the overall repeatability of the measurement results and has

been taken from the extensive validation study. The field

laboratories try to carry out all their measurements at

minimal cost and for that purpose they reduce the total

number of measurements as much as possible by cutting

down the effort for the measurement of the reference

solution. These marginal conditions lead to a measurement

sequence that is most likely not comparable with the

thorough validation study, but with that described for the

example detailed in the previous section. Furthermore, the

measurement models for the day-to-day measurements in

the field laboratories are not the same as for the elaborate

validation study implemented at the research centres.

These conditions can lead to an underestimation of the

overall measurement uncertainty for the day-to-day mea-

surements, when the variation in the duplicated measure-

ments of the same sample is monitored with the limit set by

the results of the validation study. Here we follow the same

arguments described for the previous scenarios.

Duplicated measurements

Finally, we look at the possible direct effects caused by the

determination of the standard deviation from the duplicated

measurements of the same samples on the measurement

uncertainty. It is crucial for the proper quantification of the

repeatability that the system has enough time to vary over

nearly its whole repeatability range between the individual

measurements, i.e. the interval between the two measure-

ments of a duplicate has to be at least as long as the period

of all the major frequencies that compose the repeatability

of the measurement result [18, 19]. If this requirement is

neglected, then the duplicated measurements might be

Fig. 8 Measurement sequence and quantification schema for dupli-

cated measurements of the same sample, which refer to more than one

measurement of the reference during the measurement series
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auto-correlated. Such a possible pitfall is the difference

between randomly arranged measurement solutions and a

sequence that was set up in chronological order. To illus-

trate this situation we ran a computer simulation, which is

outlined schematically in Fig. 9. In the simulation we

generate random numbers that follow a normal distribution

with a standard deviation of one. A first random number,

which represents the first measurement, is chosen. Its

location is given by the probability density function (PDF)

of a normal distribution. This normal distribution corre-

sponds to all major frequencies adding up to the repeat-

ability of the measurement result. Then a second random

number is selected, which has to be located within the

limits given by plus and minus half the range (r) from the

position of the first random number. If the second random

number is outside the range, then new random numbers are

generated until one lies inside the given limits. In this way

we simulate two measurements, which take place within a

short amount of time and therefore the whole system has no

chance to vary over the full extent of the normal distribu-

tion. Then the limiting range was broadened step by step

until the range covered six times the standard deviation,

which corresponds for a normal distribution to 99.7% of its

area. At this level the simulation corresponds to a Monte

Carlo method (MCM) of a normal distribution. The results

of the whole simulation process are summarised in Fig. 10.

First we noticed that the calculated mean standard devia-

tion ð�sÞ from the duplicated measurements of the same

sample (n = 2) grows gradually, but levels off to a value of

0.75. It never reaches the value of 1, which was used as

input for the standard deviation while generating the nor-

mally distributed random numbers. In other words the

1 million random numbers that form a normal distribution

result in a 25% smaller average standard deviation than the

input value, only because they were paired, and then the

mean standard deviation is calculated from the resulting

500,000 doublets. We repeated the same simulations for

n = 3, 4, 6, 10 and observed a steady approach towards the

expected value of 1. Since this behaviour was not expected,

we started looking for an obvious explanation. First, we

checked the implementation of the simulation in MatLab

[20], but did not find any error. Then we started looking at

some textbooks on statistics and we found in a number of

them [21–23] the explanation we were looking for. The

common formula (Eq. 1), which is generally used to cal-

culate the standard deviation, delivers a biassed estimate of

the standard deviation for small numbers of measurements.

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

I¼1

ðxI � �xÞ2
s

ð1Þ

with

sx biassed estimate of standard deviation of a single

measurement

n total number of measurements

xI I-th element in the number of measurements with the

value x

�x arithmetic mean of the n measurements with values x

The formula (Eq. 2) [22, 23], which delivers an unbiased

estimate of the standard deviation, is of special importance

to small numbers of measurements.

ŝx ¼
ffiffiffiffiffiffiffiffiffiffiffi

n� 1

2

r

Cðn�1
2
Þ

Cðn
2
Þ sx ð2Þ

with

ŝx unbiased estimate of the standard deviation

n total number of measurements

Fig. 9 Schema depicting the determination of the standard deviation

for a duplicated measurement whereby the second measurement has

to be located within given limits. By this means we simulate a system

with a shorter period between the two measurements than the main

variation of the investigated framework
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Fig. 10 Results of the Monte Carlo simulation to determine the mean

standard deviation for n = 2, 3, 4, 6, 10 (n = number of

measurements) with a restricted possibility to vary. The mean

standard deviation for duplicated measurement exhibits the largest

bias at r = 6, whereas it approaches step by step that for an increasing

number of measurements
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G(n) gamma function

sx biassed estimate of the standard deviation of a

single measurement

Table 2 summarises the correction factors that adjust the

values of the biased estimate of the standard deviation to

those of the unbiased one (see Eq. 2). It is strictly only

correct for normally distributed observations. (see Appen-

dix). We were surprised to find that this fact was not

described anywhere in the relevant ISO standards, espe-

cially in ISO 5725 [3].

We have to recall that often bench chemists use the

mean standard deviation of duplicated sample measure-

ments as repeatability of the measurement result (e.g.

Eurachem/CITAC QUAM2002 example 4 [6]) and this

value is biassed according to the results presented above.

Therefore, the effect of the biassed estimate of the standard

deviation on the calculation of measurement uncertainty

should be thoroughly investigated in the near future. As

elaborated previously, the repeatability of an analytical

procedure is an important component, but not the only one,

of the calculation of measurement uncertainty. If the value

of the repeatability is based on a biassed estimate of the

standard deviation due to duplicated measurements of a

sample, and if it builds the largest contribution to the

overall measurement uncertainty, then the combined stan-

dard uncertainty is up to 25% too small, leading to an

expanded uncertainty (k = 2) that is also 25% too small.

This fact has a direct impact on compliance testing and has

considerable consequences when the results are compared

with the given limits of other results. All effects and

resulting consequences of the biassed estimate might not be

that obvious in all cases. For example, the repeatability of

an analytical procedure was determined during an in-house

validation study of ten repeated measurements. The vali-

dation study was designed in such a way that it followed

the same measurement model as that for the day-to-day

measurements of duplicated samples. Hereby, the design

obeys the demands that have been elaborated in the pre-

vious sections of this article. But still the measurement

uncertainty of the day-to-day measurements might be

considerably larger than that calculated from the validation

data, because the biased estimate of the standard deviation

allows the duplicated sample measurements to vary by up

to 22% (see Table 2) more than one would expect from a

limit set up according to the results of the validation study.

Finally, we look at the primary objectives of the simu-

lation after its unexpected aspects have been explained. All

the mean standard deviations (see Fig. 10) show a steady

increase with the increasing size of the range, which limits

the possible location of the second (n = 2) measurement or

each subsequent measurement (n = 3, 4, 6, 10). The lim-

iting value of the mean standard deviation is approximated

to a size of the range r equals four, which corresponds to a

variation between minus and plus two standard deviations.

This means that the interval between the two measurements

of each duplicated sample has to be long enough to allow a

full variation over the whole distribution of the results.

Otherwise, the determined standard deviation is too small

and its value gets larger or even smaller if the timing of the

measurement sequence is prolonged or shortened respec-

tively. This leads to widened boundaries for the acceptance

of results from individual samples. Currently, there are no

propositions or models that allow that effect to be incor-

porated into the calculation of measurement uncertainty.

Conclusion

A number of publications stress the fact that the repeat-

ability of the measurement result obtained using an ana-

lytical procedure is a major contribution to its measurement

uncertainty. A typical example representing production

control in the pharmaceutical industry reveals that other

contributions are at least as important as the repeatability

of the measurement result and that their omission leads to a

significant underestimation of the overall measurement

uncertainty. Furthermore, the standard deviation of an

analytical procedure covers only those influence quantities

that had the possibility to vary during the period of the

individual measurements of the same sample. For this

reason the model of the measurement, which can be elab-

orated as a cause and effect diagram, has to consider the

measurement sequence during the validation study and the

day-to-day measurements. Otherwise, the size of the

measurement uncertainty might be underestimated con-

siderably because performance parameters of a different

nature are compared. Those characteristics are illustrated

describing a number of common validation and day-to-day

measurement scenarios.

Monte Carlo simulations, which were started to

determine the behaviour of the standard deviation from

the duplicated measurement of the same samples under

certainty restrictions, displayed unexpected results. They

Table 2 Correction factor to

adjust the biassed standard

deviation of a given sample size

(n)

Sample size

(n)

Correction

factor

2 1.253314

3 1.128379

4 1.085402

5 1.063846

10 1.028109

15 1.018002
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highlighted the fact that the mean standard deviation

determined from just two measurements of the same

samples is strongly biassed. This bias might lead to an

underestimation of the expanded uncertainty (k = 2) of

up to 25%. In addition, we were able to show with the

help of the simulation that the period between the indi-

vidual measurements of the same sample needs to be

long enough so that the influence quantities, which

comprise the overall repeatability of the analytical pro-

cedure, have enough time to vary over the full range.
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Appendix

Estimate of the standard deviation

The following deduction was added, because it is relatively

difficult to find it in most textbooks about statistics, and it

is mainly based on [22].

Looking for the density h(s) of the random variable

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

I¼1

ðXI � �XÞ
s

:

The random variable Y ¼ ðn�1ÞS2
r
2 follows a Chi-squared

distribution with n –1 degrees of freedom for a normally

distributed random variable. According to [21] (Chap. IV,

Sect. 5.8.1) the random variable Y holds the density g(y) =

0 for y < 0 and

gðyÞ ¼ 1

2ðn�1Þ=2C n�1
2

� � expð� y

2
Þyðn�3Þ=2 for y � 0:

At first the density w(s2) of the random variable S2 is

determined. In this process s2 is the variable and not s. One

obtains from g(y) with substitution

y ¼ n� 1

r
2

s2; dy ¼ n� 1

r
2

ds2

wðs2Þ¼ 1

2
n�1
2 C

n�1
2

� �exp �ðn�1Þs2
2r2

� �
n�1

r
2
s2

� �ðn�3Þ=2
n�1

r
2

¼ ðn�1Þn�1
2

2ðn�1Þ=2C n�1
2

� �
r
n�1

exp �ðn�1Þs2
2r2

� �

ðs2Þðn�3Þ=2

One obtains from it using the substitution

s¼
ffiffiffiffi

s2
p

;s2¼ðsÞ2;ds¼2sds the density h(s) of the random

variable S in the form of

hðsÞ¼ ðn�1Þðn�1Þ=2

2ðn�1Þ=2C n�1
2

� �
r
n�1

exp �ðn�1Þs2
2r2

� �

sn�32s

¼ ðn�1Þðn�1Þ=2

2ðn�3Þ=2C n�1
2

� �
r
n�1

exp �ðn�1Þs2
2r2

� �

sn�2 for s[0

The expected value of the random variable is obtained

as

EðSÞ ¼
Z1

0

s hðsÞds

¼ ðn� 1Þn�1
2

2
n�3
2 C

n�1
2

� �
r
n�1

Z1

0

sn�1 exp �ðn� 1Þs2
2r2

� �

ds

This integral is transformed using the substitution

ðn�1Þs2
2r2

¼ z; s ¼
ffiffiffiffiffiffiffiffiffiffi
2z
n�1

r

q

;
ðn�1Þs
r
2 ds ¼ dz; ds ¼ rffiffiffiffiffiffi

n�1
p ffiffiffi

2z
p dz to

EðSÞ ¼ ðn� 1Þðn�1Þ=2

2ðn�3Þ=2C n�1
2

� �
r
n�1

Z1

0

2r2z

n� 1

� �
n�1
2

� expð�zÞ r

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ffiffiffiffiffi

2z
p dz

¼
ffiffiffi

2
p

r

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

C
n�1
2

� �

Z1

0

z
n
2
�1 expð�zÞdz

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Cðn
2
Þ

¼
ffiffiffi

2
p

C
n
2

� �

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

C
n�1
2

� � r\r

It follows based on the Stirling equation that

lim
n!1

C
n
2

� �

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

C
n�1
2

� � ¼ 1
ffiffiffi

2
p

It is for this reason that

lim
n!1

EðsÞ ¼ r

The estimating function S is for r asymptotically unbiased.

Its variance is

VarðSÞ ¼ EðS2Þ � ½EðSÞ�2

r
2 � 2C2 n

2

� �

ðn� 1ÞC2 n�1
2

� � r
2 ¼ 1� 2C2 n

2

� �

ðn� 1ÞC2 n�1
2

� �

 !

r
2

The estimating function
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Ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffi

n� 1

2

r

C
n�1
2

� �

C
n
2

� � S ¼ 1
ffiffiffi

2
p C

n�1
2

� �

C
n
2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðXI � �XÞ2
s

is unbiased with normally distributed random variables and

with any kind of sample size n

EðŜÞ ¼ r;

VarðŜÞ ¼ n� 1

2

C
2 n�1

2

� �

C
2 n

2

� � VarðSÞ ¼ n� 1

2

C
2 n�1

2

� �

C
2 n

2

� � � 1

 !

r
2

with

lim
n!1

n� 1

2

C
2 n�1

2

� �

C
2 n

2

� � ¼ 1:
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