Analysis of spontaneous dehydrogenation reactions

E. Callini ${ }^{1}$, N. Stadie ${ }^{1}$, A. Borgschulte ${ }^{1}$, and A. Züttel ${ }^{1}$
${ }^{1}$ Empa, Materials Sciences and Technology, CH-8600 Dübendorf, Switzerland
For further information, please contact elsa.callini@empa.ch

Introduction

Metathesis and reactive milling are established methods to synthesize new compounds for energy storage materials. In many cases, intermediates and/or products formed are thermodynamically unstable. Their characterization and measurement as a function of time and temperature is a key problem for technologic transfer. We analyze the formation of intermediate species, studying the effect of different additives on the kinetics of LiBH_{4}, which does not emit diborane and releases hydrogen only above $300^{\circ} \mathrm{C}$, in 1 bar H_{2} flow.

Analysis of spontaneous dehydrogenation reactions

$$
3 \mathrm{LiBH}_{4}+\mathrm{TiCl}_{3} \rightarrow \mathrm{Ti}\left(\mathrm{BH}_{4}\right)_{3}+3 \mathrm{LiCl}
$$

Temperature (${ }^{\circ} \mathrm{C}$)

$3 \mathrm{LiBH}_{4}+\mathrm{VCl}_{3} \rightarrow \mathrm{~V}\left(\mathrm{BH}_{4}\right)_{3}+3 \mathrm{LiCl}$

Conclusions

Room temperature emission of diborane is the indirect proof that chlorides addition to LiBH_{4} induces metathesis reactions. However, only the metathesis products which are thermodynamically stable are directly detectable. Here we presented two examples: $\mathrm{Ti}\left(\mathrm{BH}_{4}\right)_{3}$ is identified via ex-situ IR, while unknown peaks, maybe assignable to V-B complexes, were found only via in-situ IR, during the ball milling. Identification of species in progress.

