Analysis of spontaneous dehydrogenation reactions

E. Callini¹, N. Stadie¹, A. Borgschulte¹, and A. Züttel¹

¹Empa, Materials Sciences and Technology, CH-8600 Dübendorf, Switzerland

For further information, please contact elsa.callini@empa.ch

Introduction

Metathesis and reactive milling are established methods to synthesize new compounds for energy storage materials. In many cases, intermediates and/or products formed are thermodynamically unstable. Their characterization and measurement as a function of time and temperature is a key problem for technologic transfer. We analyze the formation of intermediate species, studying the effect of different additives on the kinetics of LiBH₄, which does not emit diborane and releases hydrogen only above 300 °C, in 1 bar H₂ flow.

Analysis of spontaneous dehydrogenation reactions

Conclusions

Room temperature emission of diborane is the indirect proof that chlorides addition to LiBH₄ induces metathesis reactions. However, only the metathesis products which are thermodynamically stable are directly detectable. Here we presented two examples: $Ti(BH_4)_3$ is identified via *ex-situ* IR, while unknown peaks, maybe assignable to V-B complexes, were found only via *in-situ* IR, during the ball milling. Identification of species in progress.