Using Isotopic Fingerprintsto Trace Nitrous Oxide in the Atmosphere

Eliza Harris*, Lukas Emmenegger, and Joachim Mohn*

Correspondence: Dr. E. Harris, Dr. J. Mohn, Laboratory of Air Pollution/Environmental Technology, Empa Dübendorf, Überlandstrasse 129, CH-8600 Dübendorf, E-Mail: Eliza.Harris@rubik.ac.at, Joachim.Mohn@empa.ch. *Present address: Plant, Soil and Ecosystems Processes Research Group, Institute for Ecology, University of Innsbruck, Steinwartstr. 15, A-6020 Innsbruck.

Keywords: Greenhouse gas · Isotope · Nitrous oxide · Spectroscopy

Nitrous oxide (N\textsubscript{2}O) is an important greenhouse gas and a dominant contributor to stratospheric ozone destruction. Anthropogenic N\textsubscript{2}O emissions arise from a range of activities, in particular, agriculture, fertilizer use, wastewater treatment, and energy production. The variability and partitioning of N\textsubscript{2}O emissions between different source types is poorly understood, making it difficult to develop policies to efficiently reduce emissions.

Isotopic composition of N\textsubscript{2}O is a tracer to distinguish between different emission processes and pathways, as well as constraining the stratospheric N\textsubscript{2}O sink. N\textsubscript{2}O is a linear molecule with four different ‘isotopocules’: 14N15O\textsubscript{16}O (99%), 14N16O\textsubscript{15}O (\textalpha, 0.4%), 15N16O\textsubscript{15}O (\textbeta, 0.4%) and 14N18O\textsubscript{16}O (0.2%). N\textsubscript{2}O(\textalpha) and N\textsubscript{2}O(\textbeta) differ only in the position of the 15N atom, and the difference in their abundance – known as site preference (SP) – can be a particularly powerful indicator for different N\textsubscript{2}O production mechanisms.

We developed a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for N\textsubscript{2}O isotope measurements. QCLAS is inherently selective due to differences in fundamental rovibrational bands, even for molecules with the same mass. This procedure thereby surpasses isotope ratio mass spectrometry, which does not allow for direct measurement of site-specific 15N isotopic composition.[1] QCLAS allows real-time measurement and can be coupled to preconcentration for field-deployable monitoring of ambient air.

We applied QCLAS to measure N\textsubscript{2}O isotopic composition in a number of studies, e.g., to identify N\textsubscript{2}O production pathways from a pilot-scale partial nitritation-anammox wastewater treatment system.[2] If N\textsubscript{2}O production from these systems is minimized, wastewater treatment can be carbon-neutral. Since April 2014, we have been measuring N\textsubscript{2}O isotopic composition at the high alpine site Jungfraujoch using QCLAS with preconcentration. The results show unexpectedly strong seasonal variability in site preference at this remote site, which is not captured by current models. Within an ongoing project, we plan to confirm this intra-annual variability by continuing the measurements.

QCLAS offers the potential for high-precision analysis of N\textsubscript{2}O isotopic composition in a wide range of applications, to trace emission and consumption pathways.

Received: November 10, 2016

Can you show us your analytical highlight?
Please contact: Dr. Veronika R. Meyer, Unterstrasse 58, CH-9000 St. Gallen
Tel.: +41 71 222 16 81, E-mail: VRMeyer@bluewin.ch