Some Key Factors Influencing the Flame Retardancy of EDA-DOPO Containing Flexible Polyurethane Foams

Agnieszka Przystas¹, Milijana Jovic¹, Khalifah A. Salmeia¹, Daniel Rentsch², Laurent Ferry³, Henri Mispreuve⁴, Heribert Perler⁴, Sabyasachi Gaan¹*

¹Additives and Chemistry, Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
²Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
³Ecole des Mines d’Alès, Centre des Matériaux des Mines d’Alès (C2MA), 6 Avenue de Clavières, F-30319 Alès Cedex, France
⁴Foampartner, Fritz Nauer AG, Switzerland

*Correspondence: sabyasachi.gaan@empa.ch; +41587657611
All 1H, 13C and 31P NMR spectra were recorded on a Bruker Avance III 400 NMR spectrometer (Bruker Biospin AG, Fällanden, Switzerland) at 400.2, 100.6, and 162.0 MHz, respectively. The 1D NMR spectra, as well as the 1H-13C HSQC, 1H-13C HMBC, 1H-13C HSQC-TOCSY, 1H-H DQF-COSY, and 1H-31P HMBC 2D correlation NMR experiments used for the complete assignment of resonances were performed at 298 K using the Bruker standard pulse programs and parameter sets on a 5 mm CryoProbe™ Prodigy probe equipped with z-gradient applying 90° pulse lengths of 11.4 µs (1H), 10.0 µs (13C) and 12.0 µs (31P). 1H and 13C chemical shifts (δ) in ppm are calibrated to residual solvent peaks (DMSO-d6: δ = 2.49 and 39.5 ppm), the 31P chemical shifts were referenced to an external sample with neat H3PO4 at 0.0 ppm. Since all reported compounds consist of two inseparable diastereomers the coupling patterns of the 1H NMR spectra remain complex and no reliable J values could be extracted. Wherever possible, the 1H, 31P coupling constants are reported in Hz. For 13C NMR data multiplicities = quaternary carbon, d = CH, t = CH2, and q = CH3 are shown and 31P, 13C coupling constants are reported in Hz. Weak correlations observed in the 2D NMR experiments are assigned as "w". For EG-DOPO and ETA-DOPO nearly 1:1 mixture of diastereomers were found disabling the discrimination of the generally doubled set of 13C signals of the individual species by the heights of carbon resonances as it was possible for EDA-DOPO.

EG-DOPO (2 isomers, ca. 1:1)

1H NMR (400.2 MHz, DMSO-d6) δ (ppm): 8.19 (m, J(H,P) = 6.2, 2H, H-5); 8.14 (m, 2H, H-8); 7.71 (m, J(H,P) = 14.4, 2H, H-2); 7.53 (m, J(H,P) = 3.6, 2H, H-3); 7.41 (m, 2H, H-10); 7.30 (m, 2H, H-9); 7.18 (m, 2H, H-11); 4.18 (m, 4H, H-13).

13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 148.5 (sd, J(C,P) = 7.8, C-12); 136.2 (sd, J(C,P) = 7, C-6); 134.0 (dd, J(C,P) = 2.5, C-4); 130.8 (d, C-10); 129.7 (dd, J(C,P) = 9.4, C-2); 128.6 (dd, J(C,P) = 15.2, C-3); 125.8 (d, C-8); 125.0 (d, C-9); 124.6 (dd, J(C,P) = 11.8, C-5); 121.8 (sd, J(C,P) = 11.8, C-7); 121.3 (sd, J(C,P) = 179.4, C-1); 119.8 (dd, J(C,P) = 6.6, C-11); 65.2 (td, J(C,P) = 5.9/1.9, C-13).

31P NMR (162.0 MHz, DMSO-d6) δ (ppm): 9.9

1H-13C HMBC: H-2 → C-(1w, 4, 6); H-3 → C-(1, 4w, 5); H-4 → C-(2, 5w, 6); H-5 → C-(1, 3, 7); H-8 → C-(6, 10, 12); H-9 → C-(7, 11); H-10 → C-(8, 11w, 12); H-11 → C-(7, 9, 12); H-13 → C-(13); H-2 → C-(2, 4, 5); H-3 → C-(1, 3); H-4 → C-(2); H-5 → C-(1, 2, 6, 9); H-6 → C-(5, 7, 8, 9); H-8 → C-(6); H-9 → C-(5w, 6).

1H-H DQF-COSY: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-8 → H-(9); H-9 → H-(8, 10); H-10 → H-(9, 11); H-11 → H-(10); H-13 → H-(14).

1H-31P HMBC: H-(2, 3, 5, 13) → P

EDA-DOPO (2 isomers, ca. 1.2:0.8)

Major isomer (60%)

1H NMR (400.2 MHz, DMSO-d6) δ (ppm): 8.14 (m, J(H,P) = 3.1, 2H, H-5); 8.10 (m, 2H, H-8); 7.77 (m, J(H,P) = 22.1, 2H, H-2); 7.70 (m, 2H, H-4); 7.50 (m, J(H,P) = 3, 2H, H-3); 7.39 (m, 2H, H-10); 7.27 (m, 2H, H-9); 7.15 (m, 2H, H-11); 5.75 (m, J(H,P) = 11.8, 2H, NH); 2.85 (m, 4H, H-13).

13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 149.4 (sd, J(C,P) = 7.2, C-12); 135.9 (sd, J(C,P) = 6.7, C-6); 132.7 (d, C-4); 130.4 (d, C-10); 129.4 (dd, J(C,P) = 9.6, C-2); 128.3 (dd, J(C,P) = 14.3, C-3); 125.4 (dd, J(C,P) = 0.6, C-8); 125.2 (sd, J(C,P) = 161.9, C-1); 124.2 (d, C-9); 124.1 (dd, J(C,P) = 10.7, C-5); 121.9 (sd, J(C,P) = 11.5, C-7); 120.0 (dd, J(C,P) = 5.9, C-11); 41.7 (td, J(C,P) = 5.6, C-13).

31P NMR (162.0 MHz, DMSO-d6) δ (ppm): 15.2

1H-13C HMBC: H-2 → C-(1w, 4, 6); H-3 → C-(1, 2w, 5); H-4 → C-(2, 5w, 6); H-5 → C-(1, 3, 7); H-8 → C-(6, 10, 12); H-9 → C-(7, 11); H-10 → C-(8, 11w, 12); H-11 → C-(7, 9, 12); H-13 → C-(13); H-2 → C-(2, 4, 5); H-3 → C-(1, 3); H-4 → C-(2); H-5 → C-(1, 2, 6, 9); H-6 → C-(5, 7, 8, 9); H-8 → C-(6); H-9 → C-(5w, 6).

1H-H DQF-COSY: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-8 → H-(9); H-9 → H-(8, 10); H-10 → H-(9, 11); H-11 → H-(10); H-13 → H-(14).

1H-31P HMBC: H-(2, 3, 5, 13) → P
Supplementary information

Minor Isomer (40%)

1H NMR (400.2 MHz, DMSO-d₆) δ (ppm): 8.14 (m, J(H,P) = 3.1, 2H, H-5); 8.10 (m, 2H, H-8); 7.77 (m, J(H,P) = 22.1, 2H, H-2); 7.70 (m, 2H, H-4); 7.50 (m, J(H,P) = 3, 2H, H-3); 7.39 (m, 2H, H-10); 7.27 (m, 2H, H-9); 7.15 (m, 2H, H-11); 5.75 (m, J(H,P) = 11.8, 2H, NH); 2.85 (m, 4H, H-13).

13C NMR (100.6 MHz, DMSO-d₆) δ (ppm): 149.3 (sd, J(C,P) = 7.1, C-12); 136.0 (sd, J(C,P) = 6.8, C-6); 132.7 (d, C-4); 130.3 (d, C-10); 129.4 (dd, J(C,P) = 9.7, C-2); 128.3 (dd, J(C,P) = 14.3, C-3); 125.4 (dd, J(C,P) = 0.7, C-8); 125.2 (sd, J(C,P) = 161.9, C-1); 124.2 (d, C-9); 124.1 (dd, J(C,P) = 10.8, C-5); 121.9 (sd, J(C,P) = 11.5, C-7); 120.0 (dd, J(C,P) = 5.6, C-11); 41.7 (td, J(C,P) = 5.6, C-13).

31P NMR (162.0 MHz, DMSO-d₆) δ (ppm): 15.3

1H-13C HMBC: H-2 → C-(1w, 4, 6); H-3 → C-(1, 2w, 5); H-4 → C-(2, 3w, 6); H-5 → C-(1, 3, 7); H-8 → C-(6, 10, 12); H-9 → C-(7, 8w, 11); H-10 → C-(7, 9, 12); H-11 → C-(9, 11, 12); H-13 → C-(13); NH → C-(13w).

1H-1H DQF-COSY: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-8 → H-(9); H-9 → H-(8, 10); H-10 → H-(9, 11); H-11 → H-(10); H-13 → H-(14); NH → H-(13).

1H-31P HMBC: H-(2, 3, 5, 13, NH) → P

ETA-DOPO (2 isomers, ca. 1:1)

1H NMR (400.2 MHz, DMSO-d₆) δ (ppm): 8.24 (m, J(H,P) = 6.2, 1H, H-18); 8.18 (m, 1H, H-21); 8.14 (m, 1H, H-5); 8.12 (m, 1H, H-8); 7.89 (m, J(H,P) = 14.6, 1H, H-15); 7.83 (m, 1H, H-17); 7.71 (m, 1H, H-4); 7.65 (m, J(H,P) = 14, 1H, H-2); 7.61 (m, J(H,P) = 3.6, 1H, H-16); 7.45 (m, 1H, H-23); 7.44 (m, 1H, H-3); 7.40 (m, 1H, H-10); 7.32 (m, 1H, H-22); 7.28 (m, 1H, H-9); 7.27 (m, 1H, H-24); 7.12 (m, 1H, H-11); 5.83 (m, J(H,P) = 11.8, 1H, NH); 4.02 (m, 2H, H-26); 3.00 (m, 2H, H-13).

13C NMR (100.6 MHz, DMSO-d₆) δ (ppm): 149.3 (sd, J(C,P) = 7.1, C-12); 149.2 (sd, J(C,P) = 7.9, C-25); 136.2 (sd, J(C,P) = 7.1, C-19); 135.9 (sd, J(C,P) = 7, C-6); 134.0 (dd, J(C,P) = 2.4, C-17); 132.7 (d, C-4); 130.9 (d, C-23); 130.4 (d, C-10); 129.9 (dd, J(C,P) = 9.3, C-15); 129.4 (dd, J(C,P) = 9.7, C-2); 128.7 (dd, J(C,P) = 15.1, C-16); 128.3 (dd, J(C,P) = 14.3, C-3); 125.9 (d, C-21); 125.4 (dd, J(C,P) = 0.6, C-8); 125.3 (sd, J(C,P) = 162.9, C-1); 125.1 (d, C-22); 124.6 (dd, J(C,P) = 11.7, C-18); 124.3 (d, C-9); 124.1 (dd, J(C,P) = 10.7, C-5); 122.0 (sd, J(C,P) = 11.8, C-20); 121.9 (sd, J(C,P) = 11.6, C-7); 121.5 (sd, J(C,P) = 178.9, C-14); 120.1 (dd, J(C,P) = 5.9, C-11); 119.9 (dd, J(C,P) = 6.5, C-24); 66.1 (t, C-26); 40.4 (td, J(C,P) = 7.3, C-13).

31P NMR (162.0 MHz, DMSO-d₆) δ (ppm): 14.6 (P_a); 9.8 (P_b).

1H-13C HMBC: H-2 → C-(4, 6); H-3 → C-(1, 5); H-4 → C-(2, 6); H-5 → C-(1, 3, 7); H-8 → C-(6, 10, 12); H-9 → C-(7, 11); H-10 → C-(8, 12); H-11 → C-(7, 9, 12); H-13 → C-(26); NH → H-(13); H-15 → C-(17, 19); H-16 → C-(14, 18); H-17 → C-(15, 19); H-18 → C-(6, 14, 20); H-21 → C-(19, 23, 25); H-22 → C-(20, 24); H-23 → C-(21, 25); H-24 → C-(20, 22, 25); H-26 → C-(13).

1H-1H DQF-COSY: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-8 → H-(9); H-9 → H-(8, 10); H-10 → H-(9, 11); H-11 → H-(10); H-13 → H-(14); NH → H-(13).

1H-31P HMBC: H-(2, 3, 5, 13, NH) → P_a; H-(15, 16, 18, 26) → P_b.
Figure S1a. 1H, 13C and 31P NMR spectra of EG-DOPO (DMSO-d$_6$).

Figure S1b. Regions of interest of 1H-13C HSQC (A, B), 1H-13C HMBC (C), and 1H-1H DQF-COSY (D) NMR spectra of EG-DOPO (DMSO-d$_6$).
Figure S1c. 1H, 13C and 31P NMR spectra of ETA-DOPO (DMSO-d$_6$)

Figure S1d. Regions of interest of 1H-13C HSQC (A, B), 1H-13C HMBC (C) and 1H-1H DQF-COSY (D) NMR spectra of ETA-DOPO (DMSO-d$_6$).
Figure S1e. 1H, 13C, and 31P NMR spectra of EDA-DOPO (DMSO-d$_6$).

Figure S1f. Regions of interest of 1H-13C HSQC (A, B), 1H-13C HMBC (C), and 1H-1H DQF-COSY (D) NMR spectra of EDA-DOPO (DMSO-d$_6$).
Figure S2. TGA data of bridged DOPO compounds (N₂ atmosphere).

Figure S3. TGA data of PU foams containing 5% bridged DOPO compounds (N₂ atmosphere).