Supporting Information

for Advanced Optical Materials, DOI: 10.1002/adom.201900019

Nanoprinted Quantum Dot–Graphene Photodetectors

Matthias J. Grotevent, Claudio U. Hail, Sergii Yakunin, Dmitry N. Dirin, Kishan Thodkar, Gabriela Borin Barin, Philippe Guyot-Sionnest, Michel Calame, Dimos Poulakakos, Maksym V. Kovalenko, * and Ivan Shorubalko*
Supporting Information

Nanoprinted Quantum Dot - Graphene Photodetectors

Matthias J. Grotevent, Claudio U. Hail, Sergii Yakunin, Dmitry N. Dirin, Kishan Thodkar, Gabriela Borin Barin, Philippe Guyot-Sionnest, Michel Calame, Dimos Poulikakos, Maksym V. Kovalenko, Ivan Shorubalko*

Table of Figures

Figure S1: QD layer thickness shrinkage after ligand exchange
Figure S2: Atomic-force-microscopy images of QD thin films
Figure S3: Sheet-conductivity vs. gate-voltage of GFET and QD/GFET
Figure S4: Sheet-conductivity vs. gate-voltage of QD/GFET in dark and illuminated
Figure S5: Responsivity vs. irradiance
Figure S6: Responsivity vs. wavelength
Figure S7: Absorbance spectrum of PbS QDs in solution
Figure S8: Responsivity vs. drain-voltage
Figure S9: Responsivity vs. drain-current
Figure S10: Hysteresis of sheet-conductivity measurements
Figure S11: Current-normalized responsivity and noise-current vs. frequency
Figure S12: Current-normalized responsivity vs. gate-voltage
Figure S13: Current-normalized noise-current vs. gate-voltage
Figure S1. Bar graph comparing QD layer thickness of each detector after printing and after the subsequent ligand exchange with 1,2-ethanediethiol.

Figure S2. Atomic-force-microscopy images of all QD/GFET detectors: before ligand exchange (top), and after ligand exchange with 1,2-ethanediethiol (bottom).
Figure S3. Sheet-conductivity as a function of applied gate-voltage before (solid black) and after (dotted red) QD deposition and ligand exchange. Charge carrier mobilities are approximately $500 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$.
Figure S4. Sheet-conductivity as a function of applied gate-voltage of QD/GFET detectors in dark (solid black), and after illumination (dotted red).

Figure S5. Responsivity (R) as a function of irradiance (E_0).
Figure S6. Responsivity as a function of wavelength.

Figure S7. Absorbance spectrum of PbS QDs dispersed in tetrachloroethylene (99 %, abcr) measured with a V670 Jasco Spectrometer.
Figure S8. Responsivity as a function of applied drain-voltage.

Figure S9. Responsivity as a function of applied drain-current.
Figure S10. Hysteresis during sheet-conductivity measurements (a) of GFET (solid black) and QD/GFET (dotted red) in dark, and (b) of QD/GFET in dark (solid black) and under illumination (dotted red).

Figure S11. Current-normalized responsivity as a function of frequency (top). Current-normalized noise-current as a function of frequency (black, bottom) with linear fitting of the current-normalized noise-current (red, bottom). Detector V was destroyed during the noise measurement and no noise-current could be obtained.
Figure S12. Current-normalized responsivity as a function of gate-voltage (black) and sheet-conductivity curves (red).

Figure S13. Current-normalized power spectral density (PSD) of the fitted 1/f noise at 3 Hz as a function of gate-voltage. The left axis shows the current-normalized PSD while the right axis shows the current-normalized noise-current (square root of current-normalized PSD). Detector V was destroyed during the noise measurement and no noise-current could be obtained.