Query

Active Filters

  • (-) Empa Laboratories = 302 Cellulose & Wood Materials
Search Results 1 - 20 of 764

Pages

  • RSS Feed
Select Page
Printed humidity sensors from renewable and biodegradable materials
Aeby, X., Bourely, J., Poulin, A., Siqueira, G., Nyström, G., & Briand, D. (2023). Printed humidity sensors from renewable and biodegradable materials. Advanced Materials Technologies, 8(5), 2201302 (8 pp.). https://doi.org/10.1002/admt.202201302
Thermally insulating cellulose nanofiber aerogels from brewery residues
Ahmadi Heidari, N., Fathi, M., Hamdami, N., Taheri, H., Siqueira, G., & Nyström, G. (2023). Thermally insulating cellulose nanofiber aerogels from brewery residues. ACS Sustainable Chemistry and Engineering, 11(29), 10698-10708. https://doi.org/10.1021/acssuschemeng.3c01113
Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine
Amoroso, L., De France, K. J., Kummer, N., Ren, Q., Siqueira, G., & Nyström, G. (2023). Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine. International Journal of Biological Macromolecules, 242, 124869 (12 pp.). https://doi.org/10.1016/j.ijbiomac.2023.124869
The colloidal properties of nanocellulose
Benselfelt, T., Kummer, N., Nordenström, M., Fall, A. B., Nyström, G., & Wågberg, L. (2023). The colloidal properties of nanocellulose. ChemSusChem, 16(8), e202201955 (38 pp.). https://doi.org/10.1002/cssc.202201955
Digital manufacturing of personalised footwear with embedded sensors
Binelli, M. R., van Dommelen, R., Nagel, Y., Kim, J., Haque, R. I., Coulter, F. B., … Briand, D. (2023). Digital manufacturing of personalised footwear with embedded sensors. Scientific Reports, 13(1), 1962 (11 pp.). https://doi.org/10.1038/s41598-023-29261-0
3D bioprinting of diatom-laden living materials for water quality assessment
Boons, R., Siqueira, G., Grieder, F., Kim, S. J., Giovanoli, D., Zimmermann, T., … Studart, A. R. (2023). 3D bioprinting of diatom-laden living materials for water quality assessment. Small. https://doi.org/10.1002/smll.202300771
Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils
Bourdon, M., Lyczakowski, J. J., Cresswell, R., Amsbury, S., Vilaplana, F., Le Guen, M. J., … Helariutta, Y. (2023). Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Nature Plants, 9(9), 1530-1546. https://doi.org/10.1038/s41477-023-01459-0
Phase behavior, self-assembly, and adhesive potential of cellulose nanocrystal-bovine serum albumin amyloid composites
De France, K. J., Kummer, N., Campioni, S., & Nyström, G. (2023). Phase behavior, self-assembly, and adhesive potential of cellulose nanocrystal-bovine serum albumin amyloid composites. ACS Applied Materials and Interfaces, 15(1), 1958-1968. https://doi.org/10.1021/acsami.2c14406
Emerging engineered wood for building applications
Ding, Y., Pang, Z., Lan, K., Yao, Y., Panzarasa, G., Xu, L., … Hu, L. (2023). Emerging engineered wood for building applications. Chemical Reviews, 123(5), 1843-1888. https://doi.org/10.1021/acs.chemrev.2c00450
Passive climate regulation with transpiring wood for buildings with increased energy efficiency
Ding, Y., Dreimol, C. H., Zboray, R., Tu, K., Stucki, S., Keplinger, T., … Burgert, I. (2023). Passive climate regulation with transpiring wood for buildings with increased energy efficiency. Materials Horizons, 10(1), 257-267. https://doi.org/10.1039/D2MH01016J
Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine
Ferreira, F. V., Souza, A. G., Ajdary, R., de Souza, L. P., Lopes, J. H., Correa, D. S., … Rojas, O. J. (2023). Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine. Bioactive Materials, 29, 151-176. https://doi.org/10.1016/j.bioactmat.2023.06.020
Water sorption in wood cell walls–data exploration of the influential physicochemical characteristics
Fredriksson, M., Rüggeberg, M., Nord-Larsen, T., Beck, G., & Thybring, E. E. (2023). Water sorption in wood cell walls–data exploration of the influential physicochemical characteristics. Cellulose, 30(4), 1857-1871. https://doi.org/10.1007/s10570-022-04973-0
Push-out tests of wet-process adhesive-bonded beech timber-concrete and timber-polymer-concrete composite conections
Füchslin, M., Grönquist, P., Stucki, S., Mamie, T., Kelch, S., Burgert, I., & Frangi, A. (2023). Push-out tests of wet-process adhesive-bonded beech timber-concrete and timber-polymer-concrete composite conections. In A. Q. Nyrud, K. A. Malo, K. Nore, K. W. L. Alsen, S. Tulebekova, E. R. Staehr, … W. Wuyts (Eds.), Vol. 5. World conference on timber engineering (WCTE 2023) (pp. 3241-3247). https://doi.org/10.52202/069179-0422
Maximierung der Verwendung von Holz im Bauwesen als Beitrag zu Netto-Null – das Forschungsprojekt «MainWood»
Ghazoul, J., Bugmann, H., Burgert, I., Hellweg, S., Schweier, J., Weinand, Y., & Rigling, A. (2023). Maximierung der Verwendung von Holz im Bauwesen als Beitrag zu Netto-Null – das Forschungsprojekt «MainWood». Schweizerische Zeitschrift für Forstwesen, 174(6), 40-43.
3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications
Giubilini, A., Messori, M., Bondioli, F., Minetola, P., Iuliano, L., Nyström, G., … Siqueira, G. (2023). 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules, 24(9), 3961-3971. https://doi.org/10.1021/acs.biomac.3c00263
Drying stresses to tune strength and long-range order in nanocellulosic materials
Greca, L. G., Klockars, K. W., Rojas, O. J., & Tardy, B. L. (2023). Drying stresses to tune strength and long-range order in nanocellulosic materials. Cellulose, 30(15), 8275-8286. https://doi.org/10.1007/s10570-023-05353-y
Microscale 3D printing and tuning of cellulose nanocrystals reinforced polymer nanocomposites
Groetsch, A., Stelzl, S., Nagel, Y., Kochetkova, T., Scherrer, N. C., Ovsianikov, A., … Schwiedrzik, J. (2023). Microscale 3D printing and tuning of cellulose nanocrystals reinforced polymer nanocomposites. Small, 19(3), 2202470 (12 pp.). https://doi.org/10.1002/smll.202202470
Hygroscopically-driven transient actuator for environmental sensor deployment
Heinrich, M., Wiesemuller, F., Aeby, X., Kaya, Y. F., Sivaraman, D., Nguyen, P. H., … Kovac, M. (2023). Hygroscopically-driven transient actuator for environmental sensor deployment. In 2023 IEEE 6th international conference on soft robotics (RoboSoft 2023) (p. (8 pp.). https://doi.org/10.1109/RoboSoft55895.2023.10122100
Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite
Klumpp, K., Marcolli, C., Alonso-Hellweg, A., Dreimol, C. H., & Peter, T. (2023). Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite. Atmospheric Chemistry and Physics, 23(2), 1579-1598. https://doi.org/10.5194/acp-23-1579-2023
Anisotropic wood-hydrogel composites: extending mechanical properties of wood towards soft materials' applications
Koch, S. M., Goldhahn, C., Müller, F. J., Yan, W., Pilz-Allen, C., Bidan, C. M., … Burgert, I. (2023). Anisotropic wood-hydrogel composites: extending mechanical properties of wood towards soft materials' applications. Materials Today Bio, 22, 100772 (10 pp.). https://doi.org/10.1016/j.mtbio.2023.100772
 

Pages