Query

Active Filters

  • (-) Empa Laboratories = 302 Cellulose & Wood Materials
Search Results 1 - 20 of 781

Pages

  • RSS Feed
Select Page
"Nanobeschichtungen" auf Holz – Erfahrungen im Außenbereich
Künniger, T., & Fischer, A. (2011). "Nanobeschichtungen" auf Holz – Erfahrungen im Außenbereich. In H. Venzmer (Ed.), Altbausanierung: Vol. 5. Oberflächentechnologien und Bautenschutz. 21. Hanseatische Sanierungstage vom 11. bis 13. November 2010 in Rostock-Warnemünde. Vorträge (pp. 111-120). Beuth.
2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers
Kummer, N., Huguenin-Elie, L., Zeller, A., Chandorkar, Y., Schoeller, J., Zuber, F., … Nyström, G. (2023). 2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers. Nanoscale Advances, 5(19), 5276-8285. https://doi.org/10.1039/d3na00370a
3D bioprinting of diatom-laden living materials for water quality assessment
Boons, R., Siqueira, G., Grieder, F., Kim, S. J., Giovanoli, D., Zimmermann, T., … Studart, A. R. (2023). 3D bioprinting of diatom-laden living materials for water quality assessment. Small, 19(50), 2300771 (13 pp.). https://doi.org/10.1002/smll.202300771
3D micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation
Forsberg, F., Mooser, R., Arnold, M., Hack, E., & Wyss, P. (2008). 3D micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. Journal of Structural Biology, 164(3), 255-262. https://doi.org/10.1016/j.jsb.2008.08.004
3D printed disposable wireless ion sensors with biocompatible cellulose composites
Kim, T., Bao, C., Hausmann, M., Siqueira, G., Zimmermann, T., & Kim, W. S. (2019). 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Advanced Electronic Materials, 5(2), 1800778 (7 pp.). https://doi.org/10.1002/aelm.201800778
3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management
Wu, T., Ganobjak, M., Siqueira, G., Zeng, Z., Li, M., Filimonova, E., … Zhao, S. (2023). 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Advanced Materials Technologies, 8(14), 2202155 (9 pp.). https://doi.org/10.1002/admt.202202155
3D printing of cellulose by solvent on binder jetting
Soutrenon, M., Billato, G., Bircher, F., & Geiger, T. (2018). 3D printing of cellulose by solvent on binder jetting. In NIP & digital fabrication conference. Printing for fabrication 2018 (pp. 166-169). https://doi.org/10.2352/issn.2169-4451.2018.34.166
3D printing of nano-cellulosic biomaterials for medical applications
Sultan, S., Siqueira, G., Zimmermann, T., & Mathew, A. P. (2017). 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2, 29-34. https://doi.org/10.1016/j.cobme.2017.06.002
3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels
Fourmann, O., Hausmann, M. K., Neels, A., Schubert, M., Nyström, G., Zimmermann, T., & Siqueira, G. (2021). 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 259, 117716 (11 pp.). https://doi.org/10.1016/j.carbpol.2021.117716
3D printing of strong lightweight cellular structures using polysaccharide-based composite foams
Voisin, H. P., Gordeyeva, K., Siqueira, G., Hausmann, M. K., Studart, A. R., & Bergström, L. (2018). 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams. ACS Sustainable Chemistry and Engineering, 6(12), 17160-17167. https://doi.org/10.1021/acssuschemeng.8b04549
3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications
Giubilini, A., Messori, M., Bondioli, F., Minetola, P., Iuliano, L., Nyström, G., … Siqueira, G. (2023). 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules, 24(9), 3961-3971. https://doi.org/10.1021/acs.biomac.3c00263
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
<I>Agrobacterium</I>-mediated transformation of the white-rot fungus <I>Physisporinus vitreus</I>
Schubert, M., Stührk, C., Fuhr, M. J., & Schwarze, F. W. M. R. (2013). Agrobacterium-mediated transformation of the white-rot fungus Physisporinus vitreus. Journal of Microbiological Methods, 95(2), 251-252. https://doi.org/10.1016/j.mimet.2013.09.001
<I>Physisporinus vitreus</I>: a versatile white rot fungus for engineering value-added wood products
Schwarze, F. W. M. R., & Schubert, M. (2011). Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products. Applied Microbiology and Biotechnology, 92(3), 431-440. https://doi.org/10.1007/s00253-011-3539-1
<em>In situ</em> SEM micro-indentation of single wood pulp fibres in transverse direction
Adusumalli, R. B., Raghavan, R., Schwaller, P., Zimmermann, T., & Michler, J. (2010). In situ SEM micro-indentation of single wood pulp fibres in transverse direction. Journal of Electron Microscopy, 59(5), 345-349. https://doi.org/10.1093/jmicro/dfq025
<em>In situ</em> elastic strain measurements - diffraction and spectroscopy
Spolenak, R., Ludwig, W., Buffiere, J. Y., & Michler, J. (2010). In situ elastic strain measurements - diffraction and spectroscopy. MRS Bulletin, 35(5), 368-374. https://doi.org/10.1557/mrs2010.569
A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy
Casdorff, K., Keplinger, T., Rüggeberg, M., & Burgert, I. (2018). A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy. Planta, 247(5), 1123-1132. https://doi.org/10.1007/s00425-018-2850-9
A discussion on the control of grading machine settings
Köhler, J., & Steiger, R. (2006). A discussion on the control of grading machine settings. In Working comission W18 - timber structures. Proceedings international council for research and innovation in building and construction - working commission W18 - timber structures, CIB-W18 (p. (17 pp.). Universitat Karlsruhe.
A flexible adhesive layer to strengthen glulam beams
Brunner, M., Lehmann, M., Kraft, S., Fankhauser, U., Richter, K., & Conzett, J. (2011). A flexible adhesive layer to strengthen glulam beams. In A. Pizzi & K. L. Mittal (Eds.), Wood adhesives (pp. 97-133). https://doi.org/10.1201/b12180-10
A flexible adhesive layer to strengthen glulam beams
Brunner, M., Lehmann, M., Kraft, S., Fankhauser, U., Richter, K., & Conzett, J. (2010). A flexible adhesive layer to strengthen glulam beams. Journal of Adhesion Science and Technology, 24(9), 1665-1701. https://doi.org/10.1163/016942410X507759
 

Pages