Query

Active Filters

  • (-) Empa Laboratories = 305 Computational Engineering
  • (-) Empa Authors = Weber, Robert
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties
Cabeza, L. F., Barreneche, C., Martorell, I., Miró, L., Sari-Bey, S., Fois, M., … Fernández, A. I. (2015). Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties. Renewable and Sustainable Energy Reviews, 43, 1399-1414. https://doi.org/10.1016/j.rser.2014.07.191
Unconventional experimental technologies used for phase change materials (PCM) characterization: part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties
Fernández, A. I., Solé, A., Giró-Paloma, J., Martínez, M., Hadjieva, M., Boudenne, A., … Cabeza, L. F. (2015). Unconventional experimental technologies used for phase change materials (PCM) characterization: part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties. Renewable and Sustainable Energy Reviews, 43, 1415-1426. https://doi.org/10.1016/j.rser.2014.11.051
Performance of the absorption process in a seasonal sorption heat storage prototype
Fumey, B., Stoller, S., Fricker, R., Weber, R., Gantenbein, P., Daguenet-Frick, X., & Dorer, V. (2015). Performance of the absorption process in a seasonal sorption heat storage prototype. In Solar energy and building physics laboratory (LESO-PB) & Ecole Polytechnique Fédérale de Lausanne (EPFL) (Eds.), Vol. II. Proceedings of CISBAT 2015 (pp. 639-643). https://doi.org/10.5075/epfl-cisbat2015-639-644
Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage
Daguenet-Frick, X., Gantenbein, P., Frank, E., Fumey, B., Weber, R., & Williamson, T. (2014). Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage. In A. Lentz & D. Renné (Eds.), Energy procedia: Vol. 57. 2013 ISES solar world congress (pp. 2426-2435). https://doi.org/10.1016/j.egypro.2014.10.251
Closed sorption heat storage based on aqueous sodium hydroxide
Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T., & Dorer, V. (2014). Closed sorption heat storage based on aqueous sodium hydroxide. In A. Häberle (Ed.), Energy procedia: Vol. 48. Proceedings of the 2nd international conference on solar heating and cooling for buildings and industry (SHC 2013) (pp. 337-346). https://doi.org/10.1016/j.egypro.2014.02.039
Development of a closed sorption heat storage prototype
Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T., & Dorer, V. (2014). Development of a closed sorption heat storage prototype. In EUROSOLAR (Ed.), Energy procedia: Vol. 46. 8th international renewable energy storage conference and exhibition (IRES 2013) (pp. 134-141). https://doi.org/10.1016/j.egypro.2014.01.166
Experience on the development of a thermo-chemical storage system based on aqueous sodium hydroxide
Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T., Dorer, V., & Carmeliet, J. (2014). Experience on the development of a thermo-chemical storage system based on aqueous sodium hydroxide. In A. Lentz & D. Renné (Eds.), Energy procedia: Vol. 57. 2013 ISES solar world congress (pp. 2370-2379). https://doi.org/10.1016/j.egypro.2014.10.245
Long-term heat storage with NaOH
Weber, R., & Dorer, V. (2008). Long-term heat storage with NaOH. Vacuum, 82(7), 708-716. https://doi.org/10.1016/j.vacuum.2007.10.018