Query

Active Filters

  • (-) Empa Laboratories = 402 Advanced Fibers
Search Results 1 - 20 of 575

Pages

  • RSS Feed
Select Page
Recycling of flame retardant polymers: current technologies and future perspectives
Bifulco, A., Chen, J., Sekar, A., Klingler, W. W., Gooneie, A., & Gaan, S. (2024). Recycling of flame retardant polymers: current technologies and future perspectives. Journal of Materials Science and Technology. https://doi.org/10.1016/j.jmst.2024.02.039
Sol-gel chemistry approaches for the manufacturing of innovative functional composites for the aerospace sector
Bifulco, A., Imparato, C., Passaro, J., Malucelli, G., Gaan, S., & Aronne, A. (2024). Sol-gel chemistry approaches for the manufacturing of innovative functional composites for the aerospace sector. In Journal of physics: conference series: Vol. 2716. 13th EASN international conference on: innovation in aviation & space for opening new horizons (p. 012035 (8 pp.). https://doi.org/10.1088/1742-6596/2716/1/012035
Mechanical recycling of PET containing mixtures of phosphorus flame retardants
Chen, J., Dul, S., Lehner, S., Jovic, M., Gaan, S., Heuberger, M., … Gooneie, A. (2024). Mechanical recycling of PET containing mixtures of phosphorus flame retardants. Journal of Materials Science and Technology, 194, 167-179. https://doi.org/10.1016/j.jmst.2024.01.035
Reusable magnetic mixture of CuFe<sub>2</sub>O<sub>4</sub>-Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> for photocatalytic degradation of pesticides in water
Danilian, D., Bundrück, F. M., Kikas, A., Käämbre, T., Mändar, H., Lehner, S., … Pärna, R. (2024). Reusable magnetic mixture of CuFe2O4-Fe2O3 and TiO2 for photocatalytic degradation of pesticides in water. RSC Advances, 14(18), 12337-12348. https://doi.org/10.1039/d4ra00094c
Bicomponent melt-spinning of filaments for material extrusion 3D printing
Dul, S., Perret, E., & Hufenus, R. (2024). Bicomponent melt-spinning of filaments for material extrusion 3D printing. Additive Manufacturing, 85, 104165 (13 pp.). https://doi.org/10.1016/j.addma.2024.104165
Enabling simultaneous reprocessability and fire protection via incorporation of phosphine oxide monomer in epoxy vitrimer
Huang, Z., Klingler, W. W., Roncucci, D., Polisi, C., Rougier, V., Lehner, S., … Gaan, S. (2024). Enabling simultaneous reprocessability and fire protection via incorporation of phosphine oxide monomer in epoxy vitrimer. Journal of Materials Science and Technology. https://doi.org/10.1016/j.jmst.2024.01.062
Core-shell DOPO/caramel nano-polymer with desirable UV shielding and flame retardancy for polyamide 6 fabric
Jin, W. J., Cheng, X. W., Ma, S. N., Li, L., Wu, R. K., & Guan, J. P. (2024). Core-shell DOPO/caramel nano-polymer with desirable UV shielding and flame retardancy for polyamide 6 fabric. Chemical Engineering Journal, 488, 151125 (9 pp.). https://doi.org/10.1016/j.cej.2024.151125
Alkali silica reaction in concrete - Revealing the expansion mechanism by surface force measurements
Leemann, A., Góra, M., Lothenbach, B., & Heuberger, M. (2024). Alkali silica reaction in concrete - Revealing the expansion mechanism by surface force measurements. Cement and Concrete Research, 176, 107392 (13 pp.). https://doi.org/10.1016/j.cemconres.2023.107392
Near-plasma chemical surface engineering
Navascués, P., Schütz, U., Hanselmann, B., & Hegemann, D. (2024). Near-plasma chemical surface engineering. Nanomaterials, 14(2), 195 (13 pp.). https://doi.org/10.3390/nano14020195
Polymerization mechanisms of hexamethyldisiloxane in low-pressure plasmas involving complex geometries
Navascués, P., Buchtelová, M., Zajícková, L., Rupper, P., & Hegemann, D. (2024). Polymerization mechanisms of hexamethyldisiloxane in low-pressure plasmas involving complex geometries. Applied Surface Science, 645, 158824 (9 pp.). https://doi.org/10.1016/j.apsusc.2023.158824
Coumarin-DPPO a new bio-based phosphorus additive for poly(lactic acid): processing and flame retardant application
Roncucci, D., Augé, M. O., Dul, S., Chen, J., Gooneie, A., Rentsch, D., … Gaan, S. (2024). Coumarin-DPPO a new bio-based phosphorus additive for poly(lactic acid): processing and flame retardant application. Polymer Degradation and Stability, 223, 110737 (13 pp.). https://doi.org/10.1016/j.polymdegradstab.2024.110737
Drug delivery with melt-spun liquid-core fibers
Röthlisberger, M., Dul, S., Meier, P., Giovannini, G., Hufenus, R., & Perret, E. (2024). Drug delivery with melt-spun liquid-core fibers. Polymer, 298, 126885 (13 pp.). https://doi.org/10.1016/j.polymer.2024.126885
Applications and safety assessment of green fire retardants
Tang, W., Gu, X., Zhang, S., Roncucci, D., Gaan, S., Zhang, W., … Qian, L. (2024). Applications and safety assessment of green fire retardants. In P. Song, Y. Zhang, & X. Wen (Eds.), Green chemistry series: Vol. 82. Green fire retardants for polymeric materials (pp. 356-426). https://doi.org/10.1039/BK9781839169793-00356
Ambient catalytic spinning of polyethylene nanofibers
Wu, R., Lenz, T. M., Alfayez, F. A. S., Zhao, R., Rupper, P., Perret, E., … Heuberger, M. (2024). Ambient catalytic spinning of polyethylene nanofibers. Angewandte Chemie International Edition, 63(10), e202315326 (7 pp.). https://doi.org/10.1002/anie.202315326
Recent advances on reactive extrusion of poly(lactic acid)
Augé, M. O., Roncucci, D., Bourbigot, S., Bonnet, F., Gaan, S., & Fontaine, G. (2023). Recent advances on reactive extrusion of poly(lactic acid). European Polymer Journal, 184, 111727 (26 pp.). https://doi.org/10.1016/j.eurpolymj.2022.111727
Screw extrusion additive manufacturing of carbon fiber reinforced PA6 tools
Barera, G., Dul, S., & Pegoretti, A. (2023). Screw extrusion additive manufacturing of carbon fiber reinforced PA6 tools. Journal of Materials Engineering and Performance, 32, 9579-9597. https://doi.org/10.1007/s11665-023-08238-0
A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
Bifulco, A., Casciello, A., Imparato, C., Forte, S., Gaan, S., Aronne, A., & Malucelli, G. (2023). A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites. Polymer Testing, 127, 108175 (8 pp.). https://doi.org/10.1016/j.polymertesting.2023.108175
Hybrid strategies for the improvement of the flame retardancy of in-situ silica-epoxy nanocomposites cured with aliphatic hardener
Bifulco, A., Imparato, C., Gaan, S., Malucelli, G., & Aronne, A. (2023). Hybrid strategies for the improvement of the flame retardancy of in-situ silica-epoxy nanocomposites cured with aliphatic hardener. In Journal of physics: conference series: Vol. 2526. 12th EASN international conference on "Innovation in aviation & space for opening new horizons" 18/10/2022 - 21/10/2022 Barcelona, Spain (p. 012037 (8 pp.). https://doi.org/10.1088/1742-6596/2526/1/012037
In situ P-modified hybrid silica-epoxy nanocomposites via a green hydrolytic sol-gel route for flame-retardant applications
Bifulco, A., Avolio, R., Lehner, S., Errico, M. E., Clayden, N. J., Pauer, R., … Imparato, C. (2023). In situ P-modified hybrid silica-epoxy nanocomposites via a green hydrolytic sol-gel route for flame-retardant applications. ACS Applied Nano Materials, 6(9), 7422-7435. https://doi.org/10.1021/acsanm.3c00590
Insight into peculiar adhesion of cells to plasma‐chemically prepared multifunctional "amino‐glue" surfaces
Buchtelová, M., Blahová, L., Nečas, D., Křížková, P., Bartošíková, J., Medalová, J., … Zajíčková, L. (2023). Insight into peculiar adhesion of cells to plasma‐chemically prepared multifunctional "amino‐glue" surfaces. Plasma Processes and Polymers, 20(6), e2200157 (15 pp.). https://doi.org/10.1002/ppap.202200157
 

Pages