Query

Active Filters

  • (-) Empa Laboratories = 404 Biointerfaces
Search Results 1 - 20 of 404

Pages

  • RSS Feed
Select Page
Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine
Amoroso, L., De France, K. J., Kummer, N., Ren, Q., Siqueira, G., & Nyström, G. (2023). Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine. International Journal of Biological Macromolecules, 242, 124869 (12 pp.). https://doi.org/10.1016/j.ijbiomac.2023.124869
Resistance development in <em>Escherichia coli</em> to delafloxacin at pHs 6.0 and 7.3 compared to ciprofloxacin
Bösch, A., Macha, M. E., Ren, Q., Kohler, P., Qi, W., & Babouee Flury, B. (2023). Resistance development in Escherichia coli to delafloxacin at pHs 6.0 and 7.3 compared to ciprofloxacin. Antimicrobial Agents and Chemotherapy, 67(11), e01625-22 (18 pp.). https://doi.org/10.1128/aac.01625-22
Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use
Geueke, B., Groh, K. J., Maffini, M. V., Martin, O. V., Boucher, J. M., Chiang, Y. T., … Muncke, J. (2023). Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Critical Reviews in Food Science and Nutrition, 63(28), 9425-9435. https://doi.org/10.1080/10408398.2022.2067828
3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications
Giubilini, A., Messori, M., Bondioli, F., Minetola, P., Iuliano, L., Nyström, G., … Siqueira, G. (2023). 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules, 24(9), 3961-3971. https://doi.org/10.1021/acs.biomac.3c00263
Hydrodynamic treadmill reveals reduced rising speeds of oil droplets deformed by marine bacteria
Hickl, V., Pamu, H. H., & Juarez, G. (2023). Hydrodynamic treadmill reveals reduced rising speeds of oil droplets deformed by marine bacteria. Environmental Science and Technology, 57(37), 14082-14089. https://doi.org/10.1021/acs.est.3c04902
2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers
Kummer, N., Huguenin-Elie, L., Zeller, A., Chandorkar, Y., Schoeller, J., Zuber, F., … Nyström, G. (2023). 2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers. Nanoscale Advances, 5(19), 5276-8285. https://doi.org/10.1039/d3na00370a
Surface chemistry dictates the osteogenic and antimicrobial properties of palladium-, platinum-, and titanium-based bulk metallic glasses
Lackington, W. A., Wiestner, R., Pradervand, E., Schweizer, P., Zuber, F., Ren, Q., … Rottmar, M. (2023). Surface chemistry dictates the osteogenic and antimicrobial properties of palladium-, platinum-, and titanium-based bulk metallic glasses. Advanced Functional Materials. https://doi.org/10.1002/adfm.202302069
Topical application of <em>Lactobacilli</em> successfully eradicates <em>Pseudomonas</em> <em>aeruginosa</em> biofilms and promotes wound healing in chronic wounds
Li, Z., Zhang, S., Zuber, F., Altenried, S., Jaklenec, A., Langer, R., & Ren, Q. (2023). Topical application of Lactobacilli successfully eradicates Pseudomonas aeruginosa biofilms and promotes wound healing in chronic wounds. Microbes and Infection, 105176 (11 pp.). https://doi.org/10.1016/j.micinf.2023.105176
Quaternary ammonium-based coating of textiles is effective against bacteria and viruses with a low risk to human health
Meier, P., Clement, P., Altenried, S., Reina, G., Ren, Q., Züst, R., … Wick, P. (2023). Quaternary ammonium-based coating of textiles is effective against bacteria and viruses with a low risk to human health. Scientific Reports, 13, 20556 (12 pp.). https://doi.org/10.1038/s41598-023-47707-3
Current advances in niosomes applications for drug delivery and cancer treatment
Moammeri, A., Mirzaei Chegeni, M., Sahrayi, H., Ghafelehbashi, R., Memarzadeh, F., Mansouri, A., … Ren, Q. (2023). Current advances in niosomes applications for drug delivery and cancer treatment. Materials Today Bio, 23, 100837 (20 pp.). https://doi.org/10.1016/j.mtbio.2023.100837
Encapsulation of Thymol in gelatin methacryloyl (GelMa)-based nanoniosome enables enhanced antibiofilm activity and wound healing
Moghtaderi, M., Bazzazan, S., Sorourian, G., Sorourian, M., Akhavanzanjani, Y., Noorbazargan, H., & Ren, Q. (2023). Encapsulation of Thymol in gelatin methacryloyl (GelMa)-based nanoniosome enables enhanced antibiofilm activity and wound healing. Pharmaceutics, 15(6), 1699 (16 pp.). https://doi.org/10.3390/pharmaceutics15061699
Functional fiber membranes with antibacterial properties for face masks
Natsathaporn, P., Herwig, G., Altenried, S., Ren, Q., Rossi, R. M., Crespy, D., & Itel, F. (2023). Functional fiber membranes with antibacterial properties for face masks. Advanced Fiber Materials, 5(4), 1519-1533. https://doi.org/10.1007/s42765-023-00291-7
Specific capture of <em>Pseudomonas aeruginosa</em> for rapid detection of antimicrobial resistance in urinary tract infections
Pan, F., Altenried, S., Scheibler, S., Anthis, A. H. C., & Ren, Q. (2023). Specific capture of Pseudomonas aeruginosa for rapid detection of antimicrobial resistance in urinary tract infections. Biosensors and Bioelectronics, 222, 114962 (8 pp.). https://doi.org/10.1016/j.bios.2022.114962
Stability criterion for the assembly of core-shell lipid-polymer-nucleic acid nanoparticles
Paris, J. L., Gaspar, R., Coelho, F., De Beule, P. A. A., & Silva, B. F. B. (2023). Stability criterion for the assembly of core-shell lipid-polymer-nucleic acid nanoparticles. ACS Nano, 17(17), 17587-17594. https://doi.org/10.1021/acsnano.3c07204
Chitosan -based nanoniosome for potential wound healing applications: synergy of controlled drug release and antibacterial activity
Pourseif, T., Ghafelehbashi, R., Abdihaji, M., Radan, N., Kaffash, E., Heydari, M., … Ren, Q. (2023). Chitosan -based nanoniosome for potential wound healing applications: synergy of controlled drug release and antibacterial activity. International Journal of Biological Macromolecules, 230, 123185 (13 pp.). https://doi.org/10.1016/j.ijbiomac.2023.123185
Growth factor-loaded sulfated microislands in granular hydrogels promote hMSCs migration and chondrogenic differentiation
Puiggalí-Jou, A., Asadikorayem, M., Maniura-Weber, K., & Zenobi-Wong, M. (2023). Growth factor-loaded sulfated microislands in granular hydrogels promote hMSCs migration and chondrogenic differentiation. Acta Biomaterialia, 166, 69-84. https://doi.org/10.1016/j.actbio.2023.03.045
Ibuprofen-loaded electrospun poly(ethylene-<em>co</em>-vinyl alcohol) nanofibers for wound dressing applications
Schoeller, J., Wuertz-Kozak, K., Ferguson, S. J., Rottmar, M., Avaro, J., Elbs-Glatz, Y., … Rossi, R. M. (2023). Ibuprofen-loaded electrospun poly(ethylene-co-vinyl alcohol) nanofibers for wound dressing applications. Nanoscale Advances, 5(8), 2261-2270. https://doi.org/10.1039/D3NA00102D
In situ investigation of <em>Pseudomonas aeruginosa</em> biofilm development: interplay between flow, growth medium, and mechanical properties of substrate
Straub, H., Zuber, F., Eberl, L., Maniura-Weber, K., & Ren, Q. (2023). In situ investigation of Pseudomonas aeruginosa biofilm development: interplay between flow, growth medium, and mechanical properties of substrate. ACS Applied Materials and Interfaces, 15(2), 2781-2791. https://doi.org/10.1021/acsami.2c20693
Identification of potential antimicrobial targets of <em>Pseudomonas aeruginosa</em> biofilms through a novel screening approach
Valentin, J. D. P., Altenried, S., Varadarajan, A. R., Ahrens, C. H., Schreiber, F., Webb, J. S., … Ren, Q. (2023). Identification of potential antimicrobial targets of Pseudomonas aeruginosa biofilms through a novel screening approach. Microbiology Spectrum, 11(2) (5 pp.). https://doi.org/10.1128/spectrum.03099-22
Microfluidics for biofilm studies
Yuan, L., Straub, H., Shishaeva, L., & Ren, Q. (2023). Microfluidics for biofilm studies. Annual Review of Analytical Chemistry, 16(1), 139-159. https://doi.org/10.1146/annurev-anchem-091522-103827
 

Pages