| (Bi)carbonate Precipitation and Gas Diffusion Electrode Stability Coexist during Pulsed Electrochemical CO<sub>2</sub> Reduction
Bernasconi, F., Mirolo, M., Plainpan, N., Wang, Q., Zeng, P., Drnec, J., … Battaglia, C. (2025). (Bi)carbonate Precipitation and Gas Diffusion Electrode Stability Coexist during Pulsed Electrochemical CO2 Reduction. ACS Energy Letters, 10(2), 635-638. https://doi.org/10.1021/acsenergylett.4c03042 |
| Impact of thermal electrode activation on electrocatalyst performance in KCrPDTA/K<sub>4</sub>Fe(CN)<sub>6</sub> flow batteries
Echeverria, T., Bernasconi, F., Ziemiański, P. P., & Reber, D. (2025). Impact of thermal electrode activation on electrocatalyst performance in KCrPDTA/K4Fe(CN)6 flow batteries. Batteries and Supercaps, e202400696 (7 pp.). https://doi.org/10.1002/batt.202400696 |
| Multiscale manufacturing of recyclable polyimide composite aerogels
Li, M., Wu, T., Zhao, Z., Li, L., Shan, T., Wu, H., … Zhao, S. (2025). Multiscale manufacturing of recyclable polyimide composite aerogels. Advanced Materials, 37(5), 2411599 (10 pp.). https://doi.org/10.1002/adma.202411599 |
| Electrolyte tank costs are an overlooked factor in flow battery economics
Reber, D. (2025). Electrolyte tank costs are an overlooked factor in flow battery economics. Nature Energy, 10, 23-27. https://doi.org/10.1038/s41560-024-01677-6 |
| Niobium oxide anode materials with suppressed activity toward hydrogen evolution reaction for aqueous batteries
Becker, M., Bernasconi, F., Egorov, K., Svaluto-Ferro, E., Kühnel, R. S., & Battaglia, C. (2024). Niobium oxide anode materials with suppressed activity toward hydrogen evolution reaction for aqueous batteries. Energy Storage Materials, 71, 103613 (7 pp.). https://doi.org/10.1016/j.ensm.2024.103613 |
| <em>Operando</em> observation of (Bi)carbonate precipitation during electrochemical CO<sub>2</sub> reduction in strongly acidic electrolytes
Bernasconi, F., Plainpan, N., Mirolo, M., Wang, Q., Zeng, P., Battaglia, C., & Senocrate, A. (2024). Operando observation of (Bi)carbonate precipitation during electrochemical CO2 reduction in strongly acidic electrolytes. ACS Catalysis, 14(11), 8232-8237. https://doi.org/10.1021/acscatal.4c01884 |
| Hydroborate solid-state lithium battery with high-voltage NMC811 cathode
Braun, H., Asakura, R., Remhof, A., & Battaglia, C. (2024). Hydroborate solid-state lithium battery with high-voltage NMC811 cathode. ACS Energy Letters, 9, 707-714. https://doi.org/10.1021/acsenergylett.3c02117 |
| Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy
Dachraoui, W., Kühnel, R. S., Battaglia, C., & Erni, R. (2024). Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy. Nano Energy, 130, 110086 (12 pp.). https://doi.org/10.1016/j.nanoen.2024.110086 |
| Reconstructing inorganic-rich interphases by nonflammable electrolytes for high-voltage and low-temperature LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> cathodes
Fan, X. Y., Liu, M., Chen, T. L., Hao, W., Cao, Z., Jiang, N., … Wang, P. F. (2024). Reconstructing inorganic-rich interphases by nonflammable electrolytes for high-voltage and low-temperature LiNi0.5Mn1.5O4 cathodes. Advanced Functional Materials, 34(34), 2400996 (12 pp.). https://doi.org/10.1002/adfm.202400996 |
| From CO<sub>2</sub> to sustainable aviation fuel: navigating the technology landscape
Hirunsit, P., Senocrate, A., Gómez-Camacho, C. E., & Kiefer, F. (2024). From CO2 to sustainable aviation fuel: navigating the technology landscape. ACS Sustainable Chemistry and Engineering, 12(32), 12143-12160. https://doi.org/10.1021/acssuschemeng.4c03939 |
| A quasi-solid-state polymer lithium–metal battery with minimal excess lithium, ultrathin separator, and high-mass loading NMC811 Cathode
Homann, G., Wang, Q., Liu, S., Devincenti, A., Karanth, P., Weijers, M., … Battaglia, C. (2024). A quasi-solid-state polymer lithium–metal battery with minimal excess lithium, ultrathin separator, and high-mass loading NMC811 Cathode. ACS Applied Energy Materials, 7(21), 10037-10043. https://doi.org/10.1021/acsaem.4c02099 |
| A bridge between trust and control: computational workflows meet automated battery cycling
Kraus, P., Bainglass, E., Ramirez, F. F., Svaluto-Ferro, E., Ercole, L., Kunz, B., … Pizzi, G. (2024). A bridge between trust and control: computational workflows meet automated battery cycling. Journal of Materials Chemistry A, 12(18), 10773-10783. https://doi.org/10.1039/D3TA06889G |
| Building solid-state batteries: insights from Swiss research labs
Kravchyk, K. V., Battaglia, C., Siller, V., Lelotte, B., Kazzi, M. E., Morzy, J., … Kovalenko, M. V. (2024). Building solid-state batteries: insights from Swiss research labs. Chimia, 78(6), 403-414. https://doi.org/10.2533/chimia.2024.403 |
| Scaling of planar sodium-nickel chloride battery cells to 90 cm<sup>2</sup> active area
Lan, T., Svaluto-Ferro, E., Kovalska, N., Graeber, G., Vagliani, F., Basso, D., … Heinz, M. V. F. (2024). Scaling of planar sodium-nickel chloride battery cells to 90 cm2 active area. Batteries and Supercaps, e202400447 (11 pp.). https://doi.org/10.1002/batt.202400447 |
| Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)
Quérel, E., Biswas, S., Heiss, M. W., Gerchow, L., Wang, Q., Asakura, R., … Remhof, A. (2024). Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE). Journal of Materials Chemistry A, 13(3), 2275-2284. https://doi.org/10.1039/d4ta05112b |
| Parallel experiments in electrochemical CO<sub>2</sub> reduction enabled by standardized analytics
Senocrate, A., Bernasconi, F., Kraus, P., Plainpan, N., Trafkowski, J., Tolle, F., … Battaglia, C. (2024). Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics. Nature Catalysis, 7(6), 742-752. https://doi.org/10.1038/s41929-024-01172-x |
| Influence of precursor morphology and cathode processing on performance and cycle life of sodium-zinc chloride (Na-ZnCl<sub>2</sub>) battery cells
Sieuw, L., Lan, T., Svaluto-Ferro, E., Vagliani, F., Kumar, S., Ding, W., … Heinz, M. V. F. (2024). Influence of precursor morphology and cathode processing on performance and cycle life of sodium-zinc chloride (Na-ZnCl2) battery cells. Energy Storage Materials, 64, 103077 (11 pp.). https://doi.org/10.1016/j.ensm.2023.103077 |
| Enhancing C<sub>≥2</sub> product selectivity in electrochemical CO<sub>2</sub> reduction by controlling the microstructure of gas diffusion electrodes
Bernasconi, F., Senocrate, A., Kraus, P., & Battaglia, C. (2023). Enhancing C≥2 product selectivity in electrochemical CO2 reduction by controlling the microstructure of gas diffusion electrodes. EES Catalysis, 1(1), 1009-1016. https://doi.org/10.1039/D3EY00140G |
| Modification of NMC811 with titanium for enhanced cycling and high-voltage stability
Bizzotto, F., Dachraoui, W., Grissa, R., Zhao, W., Pagani, F., Querel, E., … Battaglia, C. (2023). Modification of NMC811 with titanium for enhanced cycling and high-voltage stability. Electrochimica Acta, 462, 142758 (11 pp.). https://doi.org/10.1016/j.electacta.2023.142758 |
| Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries
Dachraoui, W., Pauer, R., Battaglia, C., & Erni, R. (2023). Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano, 17(20), 20434-20444. https://doi.org/10.1021/acsnano.3c06879 |