Query

Active Filters

  • (-) Empa Laboratories = 501 Materials for Energy Conversion
Search Results 1 - 20 of 575

Pages

  • RSS Feed
Select Page
Hydroborate solid-state lithium battery with high-voltage NMC811 cathode
Braun, H., Asakura, R., Remhof, A., & Battaglia, C. (2024). Hydroborate solid-state lithium battery with high-voltage NMC811 cathode. ACS Energy Letters, 9, 707-714. https://doi.org/10.1021/acsenergylett.3c02117
A bridge between trust and control: computational workflows meet automated battery cycling
Kraus, P., Bainglass, E., Ramirez, F. F., Svaluto-Ferro, E., Ercole, L., Kunz, B., … Pizzi, G. (2024). A bridge between trust and control: computational workflows meet automated battery cycling. Journal of Materials Chemistry A. https://doi.org/10.1039/D3TA06889G
Influence of precursor morphology and cathode processing on performance and cycle life of sodium-zinc chloride (Na-ZnCl<sub>2</sub>) battery cells
Sieuw, L., Lan, T., Svaluto-Ferro, E., Vagliani, F., Kumar, S., Ding, W., … Heinz, M. V. F. (2024). Influence of precursor morphology and cathode processing on performance and cycle life of sodium-zinc chloride (Na-ZnCl2) battery cells. Energy Storage Materials, 64, 103077 (11 pp.). https://doi.org/10.1016/j.ensm.2023.103077
Enhancing C<sub>≥2</sub> product selectivity in electrochemical CO<sub>2</sub> reduction by controlling the microstructure of gas diffusion electrodes
Bernasconi, F., Senocrate, A., Kraus, P., & Battaglia, C. (2023). Enhancing C≥2 product selectivity in electrochemical CO2 reduction by controlling the microstructure of gas diffusion electrodes. EES Catalysis, 1(1), 1009-1016. https://doi.org/10.1039/D3EY00140G
Modification of NMC811 with titanium for enhanced cycling and high-voltage stability
Bizzotto, F., Dachraoui, W., Grissa, R., Zhao, W., Pagani, F., Querel, E., … Battaglia, C. (2023). Modification of NMC811 with titanium for enhanced cycling and high-voltage stability. Electrochimica Acta, 462, 142758 (11 pp.). https://doi.org/10.1016/j.electacta.2023.142758
Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries
Dachraoui, W., Pauer, R., Battaglia, C., & Erni, R. (2023). Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano, 17(20), 20434-20444. https://doi.org/10.1021/acsnano.3c06879
Disparate redox potentials in mixed isomer electrolytes reduce voltage efficiency of energy dense flow batteries
Davis, C. M., Waters, S. E., Robb, B. H., Thurston, J. R., Reber, D., & Marshak, M. P. (2023). Disparate redox potentials in mixed isomer electrolytes reduce voltage efficiency of energy dense flow batteries. Batteries, 9(12), 573 (9 pp.). https://doi.org/10.3390/batteries9120573
Mitigating first-cycle capacity losses in NMC811 via lithicone layers grown by molecular layer deposition
Egorov, K., Zhao, W., Knemeyer, K., Filippin, A. N., Giraldo, A., & Battaglia, C. (2023). Mitigating first-cycle capacity losses in NMC811 via lithicone layers grown by molecular layer deposition. ACS Applied Materials and Interfaces, 15(16), 20075-20080. https://doi.org/10.1021/acsami.2c23158
Li<sub>4</sub>B<sub>10</sub>H<sub>10</sub>B<sub>12</sub>H<sub>12</sub> as solid electrolyte for solid-state lithium batteries
Garcia, A., Müller, G., Černý, R., Rentsch, D., Asakura, R., Battaglia, C., & Remhof, A. (2023). Li4B10H10B12H12 as solid electrolyte for solid-state lithium batteries. Journal of Materials Chemistry A, 11(35), 18996-19003. https://doi.org/10.1039/D3TA03914E
Cell design strategies for sodium-zinc chloride (Na-ZnCl<sub>2</sub>) batteries, and first demonstration of tubular cells with 38 Ah capacity
Heinz, M. V. F., Sieuw, L., Lan, T., Turconi, A., Basso, D., Vagliani, F., … Battaglia, C. (2023). Cell design strategies for sodium-zinc chloride (Na-ZnCl2) batteries, and first demonstration of tubular cells with 38 Ah capacity. Electrochimica Acta, 464, 142881 (10 pp.). https://doi.org/10.1016/j.electacta.2023.142881
Elucidating the pressure-induced enhancement of ionic conductivity in sodium <em>closo</em>-hydroborate electrolytes for all-solid-state batteries
Huang, Y., Černý, R., Battaglia, C., & Remhof, A. (2023). Elucidating the pressure-induced enhancement of ionic conductivity in sodium closo-hydroborate electrolytes for all-solid-state batteries. Journal of Materials Science, 58(17), 7398-7406. https://doi.org/10.1007/s10853-022-08121-8
AlCl<sub>3</sub>-NaCl-ZnCl<sub>2</sub> secondary electrolyte in next-generation ZEBRA (Na-ZnCl<sub>2</sub>) battery
Kumar, S., Ding, W., Hoffmann, R., Sieuw, L., Heinz, M. V. F., Weber, N., & Bonk, A. (2023). AlCl3-NaCl-ZnCl2 secondary electrolyte in next-generation ZEBRA (Na-ZnCl2) battery. Batteries, 9(8), 401 (18 pp.). https://doi.org/10.3390/batteries9080401
Planar sodium-nickel chloride batteries with high areal capacity for sustainable energy storage
Lan, T., Graeber, G., Sieuw, L., Svaluto-Ferro, E., Vagliani, F., Basso, D., … Heinz, M. V. F. (2023). Planar sodium-nickel chloride batteries with high areal capacity for sustainable energy storage. Advanced Functional Materials, 33(33), 2302040 (9 pp.). https://doi.org/10.1002/adfm.202302040
Multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene enables safe carbonate electrolyte for SiO<em><sub>x</sub></em>-graphite/NMC811 batteries
Liu, S., Becker, M., Huang-Joos, Y., Lai, H., Homann, G., Grissa, R., … Kühnel, R. S. (2023). Multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene enables safe carbonate electrolyte for SiOx-graphite/NMC811 batteries. Batteries and Supercaps, 6(7), e202300220 (10 pp.). https://doi.org/10.1002/batt.202300220
Stability of highly soluble ferrocyanides at neutral pH for energy-dense flow batteries
Reber, D., Thurston, J. R., Becker, M., & Marshak, M. P. (2023). Stability of highly soluble ferrocyanides at neutral pH for energy-dense flow batteries. Cell Reports Physical Science, 4(1), 101215 (19 pp.). https://doi.org/10.1016/j.xcrp.2022.101215
On the local structure in ordered and disordered <em>closo</em>-hydroborate solid electrolytes
Till, P., Asakura, R., Remhof, A., & Zeier, W. G. (2023). On the local structure in ordered and disordered closo-hydroborate solid electrolytes. Journal of Physical Chemistry C, 127, 987-993. https://doi.org/10.1021/acs.jpcc.2c07835
Eliminating flooding-related issues in electrochemical CO<sub>₂</sub>-to-CO converters: two lines of defense
Vesztergom, S., Senocrate, A., Kong, Y., Kolivoška, V., Bernasconi, F., Zboray, R., … Broekmann, P. (2023). Eliminating flooding-related issues in electrochemical CO-to-CO converters: two lines of defense. Chimia, 77(3), 104 (6 pp.). https://doi.org/10.2533/chimia.2023.104
Flexible and ultrathin waterproof conductive cellular membranes based on conformally gold-coated PVDF nanofibers and their potential as gas diffusion electrode
Yu, R., Senocrate, A., Bernasconi, F., Künniger, T., Müller, L., Pauer, R., … Wang, J. (2023). Flexible and ultrathin waterproof conductive cellular membranes based on conformally gold-coated PVDF nanofibers and their potential as gas diffusion electrode. Materials and Design, 225, 111441 (11 pp.). https://doi.org/10.1016/j.matdes.2022.111441
Interconnected metallic membrane enabled by MXene inks toward high-rate anode and high-voltage cathode for Li-Ion batteries
Zhang, C., Zhao, W., Park, S. H., Guo, T., Deng, S., Seral-Ascaso, A., … Nicolosi, V. (2023). Interconnected metallic membrane enabled by MXene inks toward high-rate anode and high-voltage cathode for Li-Ion batteries. Advanced Functional Materials, 33(14), 2213860 (9 pp.). https://doi.org/10.1002/adfm.202213860
Electrolyte optimization to improve the high-voltage operation of single-crystal LiNi<sub>0.83</sub>Co<sub>0.11</sub>Mn<sub>0.06</sub>O<sub>2</sub> in lithium-ion batteries
Zhao, W., Si, M., Wang, K., Brack, E., Zhang, Z., Fan, X., & Battaglia, C. (2023). Electrolyte optimization to improve the high-voltage operation of single-crystal LiNi0.83Co0.11Mn0.06O2 in lithium-ion batteries. Batteries, 9(11), 528 (11 pp.). https://doi.org/10.3390/batteries9110528
 

Pages