Query

Active Filters

  • (-) Empa Laboratories = 501 Materials for Energy Conversion
Search Results 1 - 20 of 547

Pages

  • RSS Feed
Select Page
Hydroborate-based solid electrolytes for all-solid-state batteries
Asakura, R., Remhof, A., & Battaglia, C. (2022). Hydroborate-based solid electrolytes for all-solid-state batteries. In R. K. Gupta (Ed.), ACS symposium series: Vol. 1413. Solid state batteries. Volume 1: emerging materials and applications (pp. 353-393). https://doi.org/10.1021/bk-2022-1413.ch014
Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes
Becker, M., Zhao, W., Pagani, F., Schreiner, C., Figi, R., Dachraoui, W., … Battaglia, C. (2022). Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes. ACS Applied Energy Materials. https://doi.org/10.1021/acsaem.2c01722
A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries
Fu, C., Homann, G., Grissa, R., Rentsch, D., Zhao, W., Gouveia, T., … Battaglia, C. (2022). A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries. Advanced Energy Materials. https://doi.org/10.1002/aenm.202200412
Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries
Landmann, D., Svaluto-Ferro, E., Heinz, M. V. F., Schmutz, P., & Battaglia, C. (2022). Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries. Advanced Science, 9(17), 2201019 (8 pp.). https://doi.org/10.1002/advs.202201019
Study of the temperature- and pressure-dependent structural properties of alkali hydrido-<em>closo</em>-borate compounds
Moury, R., Łodziana, Z., Remhof, A., Duchêne, L., Roedern, E., Gigante, A., & Hagemann, H. (2022). Study of the temperature- and pressure-dependent structural properties of alkali hydrido-closo-borate compounds. Inorganic Chemistry, 61(13), 5224-5233. https://doi.org/10.1021/acs.inorgchem.1c03681
Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells
Nilsson, V., Liu, S., Battaglia, C., & Kühnel, R. S. (2022). Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells. Electrochimica Acta, 427, 140867 (6 pp.). https://doi.org/10.1016/j.electacta.2022.140867
Mediating anion-cation interactions to improve aqueous flow battery electrolytes
Reber, D., Thurston, J. R., Becker, M., Pach, G. F., Wagoner, M. E., Robb, B. H., … Marshak, M. P. (2022). Mediating anion-cation interactions to improve aqueous flow battery electrolytes. Applied Materials Today, 28, 101512 (11 pp.). https://doi.org/10.1016/j.apmt.2022.101512
Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries
Reber, D., Borodin, O., Becker, M., Rentsch, D., Thienenkamp, J. H., Grissa, R., … Kühnel, R. ‐S. (2022). Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Advanced Functional Materials, 32(20), 2112138 (13 pp.). https://doi.org/10.1002/adfm.202112138
Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries
Seidl, L., Grissa, R., Zhang, L., Trabesinger, S., & Battaglia, C. (2022). Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Advanced Materials Interfaces, 9(8), 2100704 (10 pp.). https://doi.org/10.1002/admi.202100704
Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond
Sheima, Y., von Szczepanski, J., Danner, P. M., Künniger, T., Remhof, A., Frauenrath, H., & Opris, D. M. (2022). Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond. ACS Applied Materials and Interfaces, 14(35), 40257-40265. https://doi.org/10.1021/acsami.2c05631
Highly reversible Li<sub>2</sub>RuO<sub>3</sub> cathodes in sulfide-based all solid-state lithium batteries
Wu, Y., Zhou, K., Ren, F., Ha, Y., Liang, Z., Zheng, X., … Yang, Y. (2022). Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 15(8), 3470 (13 pp.). https://doi.org/10.1039/d2ee01067d
Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm<sup>-2</sup> electrodes
Zhao, W., Zou, L., Zhang, L., Fan, X., Zhang, H., Pagani, F., … Battaglia, C. (2022). Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm-2 electrodes. Small, 18(14), 2107357 (10 pp.). https://doi.org/10.1002/smll.202107357
Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries
Asakura, R., Duchêne, L., Payandeh, S., Rentsch, D., Hagemann, H., Battaglia, C., & Remhof, A. (2021). Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries. ACS Applied Materials and Interfaces, 13, 55319-55328. https://doi.org/10.1021/acsami.1c15246
Analysis of c-lattice parameters to evaluate Na<sub>2</sub>O loss from and Na<sub>2</sub>O content in β''-alumina ceramics
Bay, M. C., Heinz, M. V. F., Danilewsky, A. N., Battaglia, C., & Vogt, U. F. (2021). Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β''-alumina ceramics. Ceramics International, 47(10), 13402-13408. https://doi.org/10.1016/j.ceramint.2021.01.197
The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes
Becker, M., Rentsch, D., Reber, D., Aribia, A., Battaglia, C., & Kühnel, R. S. (2021). The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes. Angewandte Chemie International Edition, 60, 14100-14108. https://doi.org/10.1002/anie.202103375
Towards size-controlled deposition of palladium nanoparticles from polyoxometalate precursors: an electrochemical scanning tunneling microscopy study
Bock, N., De Clercq, A., Seidl, L., Kratky, T., Ma, T., Günther, S., … Esch, F. (2021). Towards size-controlled deposition of palladium nanoparticles from polyoxometalate precursors: an electrochemical scanning tunneling microscopy study. ChemElectroChem, 8(7), 1280-1288. https://doi.org/10.1002/celc.202100131
Changes of pd oxidation state in PPd/Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; catalysts using modulated excitation drifts
Chiarello, G. L., Lu, Y., Agote-Arán, M., Pellegrini, R., & Ferri, D. (2021). Changes of pd oxidation state in PPd/Al2O3 catalysts using modulated excitation drifts. Catalysts, 11(1), 116 (13 pp.). https://doi.org/10.3390/catal11010116
In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes
Fan, X., Ou, X., Zhao, W., Liu, Y., Zhang, B., Zhang, J., … Yang, Y. (2021). In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nature Communications, 12, 5320 (13 pp.). https://doi.org/10.1038/s41467-021-25611-6
A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries
Fu, C., Iacob, M., Sheima, Y., Battaglia, C., Duchêne, L., Seidl, L., … Remhof, A. (2021). A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 9(19), 11794-11801. https://doi.org/10.1039/D1TA02689E
Structural and dynamic studies of Pr(<sup>11</sup>BH<sub>4</sub>)<sub>3</sub>
Gigante, A., Payandeh, S., Grinderslev, J. B., Heere, M., Embs, J. P., Jensen, T. R., … Hagemann, H. (2021). Structural and dynamic studies of Pr(11BH4)3. International Journal of Hydrogen Energy, 46(63), 32126-32134. https://doi.org/10.1016/j.ijhydene.2021.06.232
 

Pages