Query

Active Filters

  • (-) Empa Laboratories = 501 Materials for Energy Conversion
Search Results 1 - 20 of 524

Pages

  • RSS Feed
Select Page
Analysis of c-lattice parameters to evaluate Na<sub>2</sub>O loss from and Na<sub>2</sub>O content in β''-alumina ceramics
Bay, M. C., Heinz, M. V. F., Danilewsky, A. N., Battaglia, C., & Vogt, U. F. (2021). Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β''-alumina ceramics. Ceramics International, 47(10), 13402-13408. https://doi.org/10.1016/j.ceramint.2021.01.197
The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes
Becker, M., Rentsch, D., Reber, D., Aribia, A., Battaglia, C., & Kühnel, R. S. (2021). The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes. Angewandte Chemie International Edition, 60, 14100-14108. https://doi.org/10.1002/anie.202103375
Changes of pd oxidation state in PPd/Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; catalysts using modulated excitation drifts
Chiarello, G. L., Lu, Y., Agote-Arán, M., Pellegrini, R., & Ferri, D. (2021). Changes of pd oxidation state in PPd/Al2O3 catalysts using modulated excitation drifts. Catalysts, 11(1), 116 (13 pp.). https://doi.org/10.3390/catal11010116
A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries
Fu, C., Iacob, M., Sheima, Y., Battaglia, C., Duchêne, L., Seidl, L., … Remhof, A. (2021). A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 9(19), 11794-11801. https://doi.org/10.1039/D1TA02689E
Structural and dynamic studies of Pr(<sup>11</sup>BH<sub>4</sub>)<sub>3</sub>
Gigante, A., Payandeh, S., Grinderslev, J. B., Heere, M., Embs, J. P., Jensen, T. R., … Hagemann, H. (2021). Structural and dynamic studies of Pr(11BH4)3. International Journal of Hydrogen Energy, 46(63), 32126-32134. https://doi.org/10.1016/j.ijhydene.2021.06.232
Rational cathode design for high-power sodium-metal chloride batteries
Graeber, G., Landmann, D., Svaluto-Ferro, E., Vagliani, F., Basso, D., Turconi, A., … Battaglia, C. (2021). Rational cathode design for high-power sodium-metal chloride batteries. Advanced Functional Materials. https://doi.org/10.1002/adfm.202106367
Impact of protonation on the electrochemical performance of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> garnets
Grissa, R., Payandeh, S., Heinz, M., & Battaglia, C. (2021). Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS Applied Materials and Interfaces, 13(12), 14700-14709. https://doi.org/10.1021/acsami.0c23144
Characterization and estimation of dielectric constant of electrospun BaTiO&lt;sub&gt;3&lt;/sub&gt; nanofibers at different calcination temperatures using theoretical models
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Rasekh, S., Amirkhizi, P., … Clemens, F. J. (2021). Characterization and estimation of dielectric constant of electrospun BaTiO3 nanofibers at different calcination temperatures using theoretical models. Journal of the European Ceramic Society, 41(2), 1299-1309. https://doi.org/10.1016/j.jeurceramsoc.2020.09.072
Grain size effects on activation energy and conductivity: Na-β″-alumina ceramics and ion conductors with highly resistive grain boundary phases
Heinz, M. V. F., Bay, M. C., Vogt, U. F., & Battaglia, C. (2021). Grain size effects on activation energy and conductivity: Na-β″-alumina ceramics and ion conductors with highly resistive grain boundary phases. Acta Materialia, 213, 116940 (9 pp.). https://doi.org/10.1016/j.actamat.2021.116940
Na&lt;sub&gt;2&lt;/sub&gt;ZrCl&lt;sub&gt;6&lt;/sub&gt; enabling highly stable 3 V all-solid-state Na-ion batteries
Kwak, H., Lyoo, J., Park, J., Han, Y., Asakura, R., Remhof, A., … Jung, Y. S. (2021). Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Materials, 37, 47-54. https://doi.org/10.1016/j.ensm.2021.01.026
Lithium-ion transport in Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;O&lt;sub&gt;12&lt;/sub&gt; epitaxial thin films vs. state of charge
Pagani, F., Döbeli, M., & Battaglia, C. (2021). Lithium-ion transport in Li4Ti5O12 epitaxial thin films vs. state of charge. Batteries and Supercaps, 4(2), 316-321. https://doi.org/10.1002/batt.202000159
<em>Nido</em>‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries
Payandeh, S. H., Rentsch, D., Łodziana, Z., Asakura, R., Bigler, L., Černý, R., … Remhof, A. (2021). Nido‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries. Advanced Functional Materials, 31(18), 2010046 (12 pp.). https://doi.org/10.1002/adfm.202010046
Anion selection criteria for water-in-salt electrolytes
Reber, D., Grissa, R., Becker, M., Kühnel, R. S., & Battaglia, C. (2021). Anion selection criteria for water-in-salt electrolytes. Advanced Energy Materials, 11(5), 2002913 (10 pp.). https://doi.org/10.1002/aenm.202002913
Hydroborates as novel solid-state electrolytes
Remhof, A., & Černý, R. (2021). Hydroborates as novel solid-state electrolytes. In S. Schorr & C. Weidenthaler (Eds.), De Gruyter STEM. Crystallography in materials science. From structure-property relationships to engineering (pp. 265-289). https://doi.org/10.1515/9783110674910-008
Vapor transport deposition of methylammonium iodide for perovskite solar cells
Sahli, F., Miaz, N., Salsi, N., Bucher, C., Schafflützel, A., Guesnay, Q., … Jeangros, Q. (2021). Vapor transport deposition of methylammonium iodide for perovskite solar cells. ACS Applied Energy Materials, 4(5), 4333-4343. https://doi.org/10.1021/acsaem.0c02999
Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries
Seidl, L., Grissa, R., Zhang, L., Trabesinger, S., & Battaglia, C. (2021). Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Advanced Materials Interfaces. https://doi.org/10.1002/admi.202100704
Electrochemical CO&lt;sub&gt;2&lt;/sub&gt; reduction at room temperature: Status and perspectives
Senocrate, A., & Battaglia, C. (2021). Electrochemical CO2 reduction at room temperature: Status and perspectives. Journal of Energy Storage, 36, 102373 (7 pp.). https://doi.org/10.1016/j.est.2021.102373
Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography
Sun, F., Duchêne, L., Osenberg, M., Risse, S., Yang, C., Chen, L., … Chen, R. (2021). Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography. Nano Energy, 82, 105762 (5 pp.). https://doi.org/10.1016/j.nanoen.2021.105762
Integration of localized electric-field redistribution and interfacial tin nanocoating of lithium microparticles toward long-life lithium metal batteries
Ye, M., Zhao, W., Li, J., Yang, Y., Zhang, Y., Zhang, G., & Li, C. C. (2021). Integration of localized electric-field redistribution and interfacial tin nanocoating of lithium microparticles toward long-life lithium metal batteries. ACS Applied Materials and Interfaces, 13(1), 650-659. https://doi.org/10.1021/acsami.0c18831
Atomic-scale investigation of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> formation process in chemical infiltration <em>via in situ</em> transmission electron microscope for solid-state sodium batteries
Yu, T. H., Huang, C. Y., Wu, M. C., Chen, Y. J., Lan, T., Tsai, C. L., … Wu, W. W. (2021). Atomic-scale investigation of Na3V2(PO4)3 formation process in chemical infiltration via in situ transmission electron microscope for solid-state sodium batteries. Nano Energy, 87, 106144 (10 pp.). https://doi.org/10.1016/j.nanoen.2021.106144
 

Pages