Query

Active Filters

  • (-) Empa Laboratories = 505 Materials for Renewable Energy
Search Results 1 - 20 of 277

Pages

  • RSS Feed
Select Page
Selective borohydride oxidation reaction on nickel catalyst with anion and cation exchange ionomer for high-performance direct borohydride fuel cells
Ko, Y., Lombardo, L., Li, M., Pham, T. H. M., Yang, H., & Züttel, A. (2022). Selective borohydride oxidation reaction on nickel catalyst with anion and cation exchange ionomer for high-performance direct borohydride fuel cells. Advanced Energy Materials, 12(16), 2103539 (11 pp.). https://doi.org/10.1002/aenm.202103539
High-throughput sizing, counting, and elemental analysis of anisotropic multimetallic nanoparticles with single-particle inductively coupled plasma mass spectrometry
Koolen, C. D., Torrent, L., Agarwal, A., Meili-Borovinskaya, O., Gasilova, N., Li, M., … Züttel, A. (2022). High-throughput sizing, counting, and elemental analysis of anisotropic multimetallic nanoparticles with single-particle inductively coupled plasma mass spectrometry. ACS Nano, 16(8), 11968-11978. https://doi.org/10.1021/acsnano.2c01840
dSupport-Dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction
Li, M., My Pham, T. H., Ko, Y., Zhao, K., Zhong, L., Luo, W., & Züttel, A. (2022). dSupport-Dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction. ACS Sustainable Chemistry and Engineering, 10(4), 1524-1535. https://doi.org/10.1021/acssuschemeng.1c06935
Complex hydrides for CO<sub>2</sub> reduction
Lombardo, L., Yang, H., Horike, S., & Züttel, A. (2022). Complex hydrides for CO2 reduction. MRS Bulletin, 47, 424-431. https://doi.org/10.1557/s43577-022-00316-3
Flexible core-sheath thermochromic phase change fibers for temperature management and electrical/solar energy harvesting
Niu, Z., Qi, S., Shuaib, S. S. A., Züttel, A., & Yuan, W. (2022). Flexible core-sheath thermochromic phase change fibers for temperature management and electrical/solar energy harvesting. Composites Science and Technology, 226, 109538 (7 pp.). https://doi.org/10.1016/j.compscitech.2022.109538
Enhanced electrocatalytic CO<sub>2</sub> reduction to C<sub>2+</sub> products by adjusting the local reaction environment with polymer binders
Pham, T. H. M., Zhang, J., Li, M., Shen, T. H., Ko, Y., Tileli, V., … Züttel, A. (2022). Enhanced electrocatalytic CO2 reduction to C2+ products by adjusting the local reaction environment with polymer binders. Advanced Energy Materials, 12(9), 2103663 (10 pp.). https://doi.org/10.1002/aenm.202103663
Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO<sub>2</sub> reduction in flow reactors
Zhang, J., Pham, T. H. M., Ko, Y., Li, M., Yang, S., Koolen, C. D., … Züttel, A. (2022). Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors. Cell Reports Physical Science, 3(7), 100949 (15 pp.). https://doi.org/10.1016/j.xcrp.2022.100949
Future Swiss energy economy: the dhallenge of wtoring renewable energy
Züttel, A., Gallandat, N., Dyson, P. J., Schlapbach, L., Gilgen, P. W., & Orimo, S. I. (2022). Future Swiss energy economy: the dhallenge of wtoring renewable energy. Frontiers in Energy Research, 9, 785908 (17 pp.). https://doi.org/10.3389/fenrg.2021.785908
Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid
Gao, X. X., Ding, B., Kanda, H., Fei, Z., Luo, W., Zhang, Y., … Nazeeruddin, M. K. (2021). Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2(7), 100475 (15 pp.). https://doi.org/10.1016/j.xcrp.2021.100475
Surface oxygenate species on TiC reinforce cobalt-catalyzed fischer-tropsch synthesis
Jiang, Q., Luo, W., Piao, Y., Matsumoto, H., Liu, X., Züttel, A., … Liu, Y. (2021). Surface oxygenate species on TiC reinforce cobalt-catalyzed fischer-tropsch synthesis. ACS Catalysis, 11(13), 8087-8096. https://doi.org/10.1021/acscatal.1c00150
Near ambient-pressure X-ray photoelectron spectroscopy study of CO&lt;sub&gt;2&lt;/sub&gt; activation and hydrogenation on indium/copper surface
Li, M., Luo, W., & Züttel, A. (2021). Near ambient-pressure X-ray photoelectron spectroscopy study of CO2 activation and hydrogenation on indium/copper surface. Journal of Catalysis, 395, 315-324. https://doi.org/10.1016/j.jcat.2021.01.010
Revealing the surface chemistry for CO<sub>2</sub> hydrogenation on Cu/CeO<sub>2- x</sub> using near-ambient-pressure X-ray photoelectron spectroscopy
Li, M., Pham, T. H. M., Oveisi, E., Ko, Y., Luo, W., & Züttel, A. (2021). Revealing the surface chemistry for CO2 hydrogenation on Cu/CeO2- x using near-ambient-pressure X-ray photoelectron spectroscopy. ACS Applied Energy Materials, 4(11), 12326-12335. https://doi.org/10.1021/acsaem.1c02146
Direct CO<sub>2</sub> capture and reduction to high-end chemicals with tetraalkylammonium borohydrides
Lombardo, L., Ko, Y., Zhao, K., Yang, H., & Züttel, A. (2021). Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angewandte Chemie International Edition, 60(17), 9580-9589. https://doi.org/10.1002/anie.202100447
Hydrogen storage by reduction of CO<sub>2</sub> to synthetic hydrocarbons
Zhao, K., Luo, W., Gallandat, N., Zhang, J., & Züttel, A. (2021). Hydrogen storage by reduction of CO2 to synthetic hydrocarbons. Chimia, 75(3), 156-162. https://doi.org/10.2533/CHIMIA.2021.156
Electrospun nanofibers for electrochemical reduction of CO&lt;sub&gt;2&lt;/sub&gt;: a mini review
Zong, X., Jin, Y., Liu, C., Yao, Y., Zhang, J., Luo, W., … Xiong, Y. (2021). Electrospun nanofibers for electrochemical reduction of CO2: a mini review. Electrochemistry Communications, 124, 106968 (8 pp.). https://doi.org/10.1016/j.elecom.2021.106968
Introduction to the hydrogen books
Züttel, A. (2021). Introduction to the hydrogen books. In M. Van de Voorde (Ed.), Energy, environment and new materials: Vol. 3. Utilization of hydrogen for sustainable energy and fuels (pp. 117-125). https://doi.org/10.1515/9783110596274-007
Introduction to the hydrogen books
Züttel, A. (2021). Introduction to the hydrogen books. In M. Van de Voorde (Ed.), Energy, environment and new materials: Vol. 1. Hydrogen production and energy transition (pp. 117-125). https://doi.org/10.1515/9783110596250-007
Introduction to the hydrogen books
Züttel, A. (2021). Introduction to the hydrogen books. In M. Van de Voorde (Ed.), Energy, environment and new materials: Vol. 2. Hydrogen storage for sustainability (pp. 117-125). https://doi.org/10.1515/9783110596281-007
CO&lt;sub&gt;2&lt;/sub&gt; hydrogenation over unsupported Fe-Co nanoalloy catalysts
Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., & Züttel, A. (2020). CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nanomaterials, 10(7), 1360 (12 pp.). https://doi.org/10.3390/nano10071360
Stable and high-efficiency methylammonium-free perovskite solar cells
Gao, X. X., Luo, W., Zhang, Y., Hu, R., Zhang, B., Züttel, A., … Nazeeruddin, M. K. (2020). Stable and high-efficiency methylammonium-free perovskite solar cells. Advanced Materials, 32(9), 1905502 (9 pp.). https://doi.org/10.1002/adma.201905502
 

Pages