Query

Active Filters

  • (-) Empa Laboratories = 203 Magnetic and Functional Thin Films
Search Results 1 - 20 of 419

Pages

  • RSS Feed
Select Page
A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters
Pan, F., Altenried, S., Scheibler, S., & Ren, Q. (2024). A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters. Nanoscale. https://doi.org/10.1039/d3nr05463b
Tuning of the magneto-caloric effects in Ni<sub>43</sub>Mn<sub>46</sub>In<sub>11</sub> magnetic shape memory alloys by substitution of boron
Saritaş, S., Çiçek, M. M., Kavak, E., Gurpinar, K., Yildirim, O., Yuce, S., … Emre, B. (2024). Tuning of the magneto-caloric effects in Ni43Mn46In11 magnetic shape memory alloys by substitution of boron. Journal of Physics: Condensed Matter, 36(7), 075801 (11 pp.). https://doi.org/10.1088/1361-648X/ad0a13
Hard X-ray photoelectron spectroscopy reveals self-organized structures of electrocatalytic nickel oxy-hydroxides
Longo, F., Billeter, E., Kazaz, S., Cesarini, A., Nikolic, M., Chacko, A., … Borgschulte, A. (2023). Hard X-ray photoelectron spectroscopy reveals self-organized structures of electrocatalytic nickel oxy-hydroxides. Surface Science, 739, 122397 (11 pp.). https://doi.org/10.1016/j.susc.2023.122397
Inducing in-plane uniaxial magnetic anisotropies in amorphous CoFeB thin films
Scheibler, S., Yildirim, O., Herrmann, I. K., & Hug, H. J. (2023). Inducing in-plane uniaxial magnetic anisotropies in amorphous CoFeB thin films. Journal of Magnetism and Magnetic Materials, 585, 171015 (5 pp.). https://doi.org/10.1016/j.jmmm.2023.171015
Investigation of the inverse magnetocaloric effect with the fraction method
Yuce, S., Kavak, E., Yildirim, O., Bruno, N. M., & Emre, B. (2023). Investigation of the inverse magnetocaloric effect with the fraction method. Journal of Physics: Condensed Matter, 35(34), 345801 (8 pp.). https://doi.org/10.1088/1361-648X/acd3ce
Magnetic force microscopy contrast formation and field sensitivity
Feng, Y., Mirzadeh Vaghefi, P., Vranjkovic, S., Penedo, M., Kappenberger, P., Schwenk, J., … Hug, H. J. (2022). Magnetic force microscopy contrast formation and field sensitivity. Journal of Magnetism and Magnetic Materials, 551, 169073 (8 pp.). https://doi.org/10.1016/j.jmmm.2022.169073
Quantitative magnetic force microscopy: transfer-function method revisited
Feng, Y., Mandru, A. O., Yıldırım, O., & Hug, H. J. (2022). Quantitative magnetic force microscopy: transfer-function method revisited. Physical Review Applied, 18(2), 024016 (17 pp.). https://doi.org/10.1103/PhysRevApplied.18.024016
A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy
Liu, H., Ahmed, Z., Vranjkovic, S., Parschau, M., Mandru, A. O., & Hug, H. J. (2022). A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy. Beilstein Journal of Nanotechnology, 13, 1120-1140. https://doi.org/10.3762/BJNANO.13.95
Investigation of the complex magnetic behavior of Ni<sub>46.86</sub>Co<sub>2.91</sub>Mn<sub>38.17</sub>Sn<sub>12.06</sub>(at%) magnetic shape memory alloy at low temperatures
Ylldlrlm, O., Yuce, S., Bruno, N. M., Doǧan, E. K., Yurtseven, H., Duman, E., & Emre, B. (2022). Investigation of the complex magnetic behavior of Ni46.86Co2.91Mn38.17Sn12.06(at%) magnetic shape memory alloy at low temperatures. Physica Scripta, 97(8), 085806 (12 pp.). https://doi.org/10.1088/1402-4896/ac7bb4
Tuning the coexistence regime of incomplete and tubular skyrmions in ferromagnetic/ferrimagnetic/ferromagnetic trilayers
Ylldlrlm, O., Tomasello, R., Feng, Y., Carlotti, G., Tacchi, S., Mirzadeh Vaghefi, P., … Mandru, A. O. (2022). Tuning the coexistence regime of incomplete and tubular skyrmions in ferromagnetic/ferrimagnetic/ferromagnetic trilayers. ACS Applied Materials and Interfaces, 14(29), 34002-34010. https://doi.org/10.1021/acsami.2c06608
Tuning the perpendicular magnetic anisotropy in Co/Pt multilayers grown by facing target sputtering and conventional sputtering
Yıldırım, O., Marioni, M. A., Falub, C. V., Rohrmann, H., Jaeger, D., Rechsteiner, M., … Hug, H. J. (2022). Tuning the perpendicular magnetic anisotropy in Co/Pt multilayers grown by facing target sputtering and conventional sputtering. Scripta Materialia, 207, 114285 (4 pp.). https://doi.org/10.1016/j.scriptamat.2021.114285
Interplay of Magnetic Properties and Doping in Epitaxial Films of h-REFeO<sub>3</sub> Multiferroic Oxides
Baghizadeh, A., Vaghefi, P. M., Huang, X., Borme, J., Almeida, B., Salak, A. N., … Vieira, J. M. (2021). Interplay of Magnetic Properties and Doping in Epitaxial Films of h-REFeO3 Multiferroic Oxides. Small, 17(11), 2005700 (12 pp.). https://doi.org/10.1002/smll.202005700
Growth dynamics and electron reflectivity in ultrathin films of chiral heptahelicene on metal (100) surfaces studied by spin-polarized low energy electron microscopy
Baljozović, M., Fernandes Cauduro, A. L., Seibel, J., Mairena, A., Grass, S., Lacour, J., … Ernst, K. H. (2021). Growth dynamics and electron reflectivity in ultrathin films of chiral heptahelicene on metal (100) surfaces studied by spin-polarized low energy electron microscopy. Physica Status Solidi B: Basic Research, 258(12), 2100263 (8 pp.). https://doi.org/10.1002/pssb.202100263
Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon
Dwivedi, N., Neogi, A., Patra, T. K., Dhand, C., Dutta, T., Yeo, R. J., … Bhatia, C. S. (2021). Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon. Nano Letters, 21, 8960-8969. https://doi.org/10.1021/acs.nanolett.1c01997
Graphene overcoats for ultra-high storage density magnetic media
Dwivedi, N., Ott, A. K., Sasikumar, K., Dou, C., Yeo, R. J., Narayanan, B., … Bhatia, C. S. (2021). Graphene overcoats for ultra-high storage density magnetic media. Nature Communications, 12(1), 2854 (13 pp.). https://doi.org/10.1038/s41467-021-22687-y
Mapping the structure of oxygen-doped wurtzite aluminum nitride coatings from <em>ab initio</em> random structure search and experiments
Gasparotto, P., Fischer, M., Scopece, D., Liedke, M. O., Butterling, M., Wagner, A., … Pignedoli, C. A. (2021). Mapping the structure of oxygen-doped wurtzite aluminum nitride coatings from ab initio random structure search and experiments. ACS Applied Materials and Interfaces, 13(4), 5762-5771. https://doi.org/10.1021/acsami.0c19270
Mapping the magnetic field of skyrmions and spin spirals by scanning probe microscopy
Hug, H. J. (2021). Mapping the magnetic field of skyrmions and spin spirals by scanning probe microscopy. In G. Finocchio & C. Panagopoulos (Eds.), Woodhead publishing series in electronic and optical materials. Magnetic skyrmions and their applications (pp. 99-142). https://doi.org/10.1016/B978-0-12-820815-1.00016-X
Scanning probe microscopy methods for imaging skyrmions and spin spirals with atomic resolution
Hug, H. J. (2021). Scanning probe microscopy methods for imaging skyrmions and spin spirals with atomic resolution. In G. Finocchio & C. Panagopoulos (Eds.), Woodhead publishing series in electronic and optical materials. Magnetic skyrmions and their applications (pp. 143-180). https://doi.org/10.1016/B978-0-12-820815-1.00015-8
Can interface charge enhance selectivity in tunnel layer passivated contacts? Using negatively charged aluminium oxide capped with dopant free PEDOT or boron doped polysilicon
Kaur, G., Dutta, T., Sridharan, R., Zheng, X., Danner, A., & Stangl, R. (2021). Can interface charge enhance selectivity in tunnel layer passivated contacts? Using negatively charged aluminium oxide capped with dopant free PEDOT or boron doped polysilicon. Solar Energy Materials and Solar Cells, 221, 110857 (9 pp.). https://doi.org/10.1016/j.solmat.2020.110857
Scanning probe microscopy. The lab on a tip
Meyer, E., Bennewitz, R., & Hug, H. J. (2021). Scanning probe microscopy. The lab on a tip. Graduate texts in physics (2nd ed.). https://doi.org/10.1007/978-3-030-37089-3
 

Pages