Query

Active Filters

  • (-) Organizational Unit = 204 Advanced Materials Processing
Search Results 1 - 20 of 408

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Ductile compressive behavior of biomedical alloys
Affolter, C., Thorwarth, G., Arabi-Hashemi, A., Müller, U., & Weisse, B. (2020). Ductile compressive behavior of biomedical alloys. Metals, 10(1), 60 (11 pp.). https://doi.org/10.3390/met10010060
3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification
Arabi-Hashemi, A., Maeder, X., Figi, R., Schreiner, C., Griffiths, S., & Leinenbach, C. (2020). 3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification. Applied Materials Today, 18, 100512 (9 pp.). https://doi.org/10.1016/j.apmt.2019.100512
Grain orientation dependence of the forward and reverse fcc ↔ hcp transformation in FeMnSi-based shape memory alloys studied by <em>in situ</em> neutron diffraction
Arabi-Hashemi, A., Polatidis, E., Smid, M., Panzner, T., & Leinenbach, C. (2020). Grain orientation dependence of the forward and reverse fcc ↔ hcp transformation in FeMnSi-based shape memory alloys studied by in situ neutron diffraction. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 782, 139261 (11 pp.). https://doi.org/10.1016/j.msea.2020.139261
Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD)
Dalaee, M. T., Gloor, L., Leinenbach, C., & Wegener, K. (2020). Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD). Surface and Coatings Technology, 384, 125275 (12 pp.). https://doi.org/10.1016/j.surfcoat.2019.125275
Feasibility study in combined direct metal deposition (DMD) and plasma transfer arc welding (PTA) additive manufacturing
Dalaee, M., Cheaitani, F., Arabi-Hashemi, A., Rohrer, C., Weisse, B., Leinenbach, C., & Wegener, K. (2020). Feasibility study in combined direct metal deposition (DMD) and plasma transfer arc welding (PTA) additive manufacturing. International Journal of Advanced Manufacturing Technology, 106(9-10), 4375-4389. https://doi.org/10.1007/s00170-019-04917-2
Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting
Griffiths, S., Croteau, J. R., Rossell, M. D., Erni, R., De Luca, A., Vo, N. Q., … Leinenbach, C. (2020). Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting. Acta Materialia, 188, 192-202. https://doi.org/10.1016/j.actamat.2020.02.008
3D laser shock peening - a new method for improving fatigue properties of selective laser melted parts
Kalentics, N., Ortega Varela de Seijas, M., Griffiths, S., Leinenbach, C., & Logé, R. E. (2020). 3D laser shock peening - a new method for improving fatigue properties of selective laser melted parts. Additive Manufacturing, 33, 101112 (12 pp.). https://doi.org/10.1016/j.addma.2020.101112
Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys
Kürnsteiner, P., Bajaj, P., Gupta, A., Wilms, M. B., Weisheit, A., Li, X., … Raabe, D. (2020). Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys. Additive Manufacturing, 32, 100910 (13 pp.). https://doi.org/10.1016/j.addma.2019.100910
Impact of oxygen content in powders on the morphology of the laser molten tracks in preparation for additive manufacturing of silicon
Le Dantec, M., Güniat, L., Leistner, M., Figi, R., Bleiner, D., Leparoux, M., & Hoffmann, P. (2020). Impact of oxygen content in powders on the morphology of the laser molten tracks in preparation for additive manufacturing of silicon. Powder Technology, 361, 704-710. https://doi.org/10.1016/j.powtec.2019.11.052
In situ and ex situ characterization of the microstructure formation in Ni-Cr-Si alloys during rapid solidification - toward alloy design for laser additive manufacturing
Li, X., Zweiacker, K., Grolimund, D., Ferreira Sanchez, D., Spierings, A. B., Leinenbach, C., & Wegener, K. (2020). In situ and ex situ characterization of the microstructure formation in Ni-Cr-Si alloys during rapid solidification - toward alloy design for laser additive manufacturing. Materials, 13(9), 2192 (14 pp.). https://doi.org/10.3390/ma13092192
Re-solidification dynamics and microstructural analysis of laser welded aluminium
Meylan, B., Le-Quang, T., Olbinado, M. P., Rack, A., Shevchik, S. A., & Wasmer, K. (2020). Re-solidification dynamics and microstructural analysis of laser welded aluminium. International Journal of Materials Research, 111(1), 17-22. https://doi.org/10.3139/146.111838
Nanosecond pulsed laser-processing of CVD diamond
Mouhamadali, F., Equis, S., Saeidi, F., Best, J. P., Cantoni, M., Hoffmann, P., & Wasmer, K. (2020). Nanosecond pulsed laser-processing of CVD diamond. Optics and Lasers in Engineering, 126, 105917 (12 pp.). https://doi.org/10.1016/j.optlaseng.2019.105917
High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power
Polatidis, E., Čapek, J., Arabi-Hashemi, A., Leinenbach, C., & Strobl, M. (2020). High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power. Scripta Materialia, 176, 53-57. https://doi.org/10.1016/j.scriptamat.2019.09.035
Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
Shevchik, S., Le-Quang, T., Meylan, B., Vakili Farahani, F., Olbinado, M. P., Rack, A., … Wasmer, K. (2020). Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Scientific Reports, 10, 3389 (12 pp.). https://doi.org/10.1038/s41598-020-60294-x
Quest project. Direct 3D printing of dissimilar materials
Cui, D., Mohanta, A., Leparoux, M., Hoffmann, P., Favre, S., & Tortorici, P. (2019). Quest project. Direct 3D printing of dissimilar materials. Presented at the Medtronic science & technology conference. Minneapolis, USA.
The development of memory steel at Empa
Czaderski, C., Shahverdi, M., Ghafoori, E., Motavalli, M., Leinenbach, C., Arabi-Hashemi, A., … Scherer, J. (2019). The development of memory steel at Empa. In SMAR proceedings. Proceedings of SMAR 2019, fifth conference on smart monitoring, assessment and rehabilitation of civil structures (p. (8 pp.). Potsdam, Germany.
Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys
De Luca, A., Seidman, D. N., & Dunand, D. C. (2019). Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys. Acta Materialia, 165, 1-14. https://doi.org/10.1016/j.actamat.2018.11.031
Optimization of the calcination temperature for the solvent-deficient synthesis of nanocrystalline gamma-alumina
Ivas, T., Balaban, M., Dosen, V., Miyawaki, J., Ito, K., Vrankovic, D., … Zeljkovic, S. (2019). Optimization of the calcination temperature for the solvent-deficient synthesis of nanocrystalline gamma-alumina. Chemical Papers, 73(4), 901-907. https://doi.org/10.1007/s11696-018-0637-x
Healing cracks in selective laser melting by 3D laser shock peening
Kalentics, N., Sohrabi, N., Tabasi, H. G., Griffiths, S., Jhabvala, J., Leinenbach, C., … Logé, R. E. (2019). Healing cracks in selective laser melting by 3D laser shock peening. Additive Manufacturing, 30, 100881 (10 pp.). https://doi.org/10.1016/j.addma.2019.100881
A novel single-mode microwave assisted synthesis of metal oxide as visible-light photocatalyst
Kato, K., Vaucher, S., Hoffmann, P., Xin, Y., & Shirai, T. (2019). A novel single-mode microwave assisted synthesis of metal oxide as visible-light photocatalyst. Materials Letters, 235(000448000700031), 125-128. https://doi.org/10.1016/j.matlet.2018.09.132
 

Pages