Query

Active Filters

  • (-) Empa Laboratories = 204 Advanced Materials Processing
Search Results 1 - 20 of 544

Pages

  • RSS Feed
Select Page
Fatigue crack propagation behavior of a micro-bainitic TRIP steel
Burda, I., Zweiacker, K., Arabi-Hashemi, A., Barriobero-Vila, P., Stutz, A., Koller, R., … Leinenbach, C. (2022). Fatigue crack propagation behavior of a micro-bainitic TRIP steel. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 840, 142898 (15 pp.). https://doi.org/10.1016/j.msea.2022.142898
Bragg edge tomography characterization of additively manufactured 316L steel
Busi, M., Polatidis, E., Malamud, F., Kockelmann, W., Morgano, M., Kaestner, A., … Strobl, M. (2022). Bragg edge tomography characterization of additively manufactured 316L steel. Physical Review Materials, 6(5), 053602 (8 pp.). https://doi.org/10.1103/PhysRevMaterials.6.053602
Polarization contrast neutron imaging of magnetic crystallographic phases
Busi, M., Polatidis, E., Sofras, C., Boillat, P., Ruffo, A., Leinenbach, C., & Strobl, M. (2022). Polarization contrast neutron imaging of magnetic crystallographic phases. Materials Today Advances, 16, 100302 (7 pp.). https://doi.org/10.1016/j.mtadv.2022.100302
Parameters development for optimum deposition rate in laser DMD of stainless steel EN X3CrNiMo13-4
Dalaee, M., Cerrutti, E., Dey, I., Leinenbach, C., & Wegener, K. (2022). Parameters development for optimum deposition rate in laser DMD of stainless steel EN X3CrNiMo13-4. Lasers in Manufacturing and Materials Processing, 9, 1-17. https://doi.org/10.1007/s40516-021-00161-3
Physical modelling of reinforced concrete at a 1:40 scale using additively manufactured reinforcement cages
Del Giudice, L., Wróbel, R., Katsamakas, A. A., Leinenbach, C., & Vassiliou, M. F. (2022). Physical modelling of reinforced concrete at a 1:40 scale using additively manufactured reinforcement cages. Earthquake Engineering and Structural Dynamics, 51(3), 537-551. https://doi.org/10.1002/eqe.3578
Physical modelling of reinforced concrete structures using small-scale additively manufactured specimens: results of cyclic tests
Del Giudice, L., Antonios, K., Michalis, V. F., Wrobel, R., & Leinenbach, C. (2022). Physical modelling of reinforced concrete structures using small-scale additively manufactured specimens: results of cyclic tests. In G. Gazetas & I. Anastasopoulos (Eds.), Proceedings of the international conference on natural hazards and infrastructure, ICONHIC 2022 (p. (10 pp.). National Technical University of Athens.
Anomalous wear behavior of UHMWPE during sliding against CoCrMo under varying cross-shear and contact pressure
Dreyer, M. J., Taylor, W. R., Wasmer, K., Imwinkelried, T., Heuberger, R., Weisse, B., & Crockett, R. (2022). Anomalous wear behavior of UHMWPE during sliding against CoCrMo under varying cross-shear and contact pressure. Tribology Letters, 70, 119 (13 pp.). https://doi.org/10.1007/s11249-022-01660-w
Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning
Drissi-Daoudi, R., Pandiyan, V., Logé, R., Shevchik, S., Masinelli, G., Ghasemi-Tabasi, H., … Wasmer, K. (2022). Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning. Virtual and Physical Prototyping, 17(2), 181-204. https://doi.org/10.1080/17452759.2022.2028380
Evaluating the applicability of classical and neural network interatomic potentials for modeling body centered cubic polymorph of magnesium
F. Troncoso, J., & Turlo, V. (2022). Evaluating the applicability of classical and neural network interatomic potentials for modeling body centered cubic polymorph of magnesium. Modelling and Simulation in Materials Science and Engineering, 30(4), 045009 (16 pp.). https://doi.org/10.1088/1361-651X/ac5ebc
Control of microstructure and shape memory properties of a Fe-Mn-Si-based shape memory alloy during laser powder bed fusion
Ferretto, I., Borzì, A., Kim, D., Della Ventura, N. M., Hosseini, E., Lee, W. J., & Leinenbach, C. (2022). Control of microstructure and shape memory properties of a Fe-Mn-Si-based shape memory alloy during laser powder bed fusion. Additive Manufacturing Letters, 3, 100091 (8 pp.). https://doi.org/10.1016/j.addlet.2022.100091
Shape recovery performance of a (V, C)-containing Fe-Mn-Si-Ni-Cr shape memory alloy fabricated by laser powder bed fusion
Ferretto, I., Kim, D., Mohri, M., Ghafoori, E., Lee, W. J., & Leinenbach, C. (2022). Shape recovery performance of a (V, C)-containing Fe-Mn-Si-Ni-Cr shape memory alloy fabricated by laser powder bed fusion. Journal of Materials Research and Technology, 20, 3969-3984. https://doi.org/10.1016/j.jmrt.2022.08.143
A ferroelectric multilevel non-volatile photonic phase shifter
Geler-Kremer, J., Eltes, F., Stark, P., Stark, D., Caimi, D., Siegwart, H., … Abel, S. (2022). A ferroelectric multilevel non-volatile photonic phase shifter. Nature Photonics, 16, 491-497. https://doi.org/10.1038/s41566-022-01003-0
Effect of oxide dispersoids on precipitation-strengthened Al-1.7Zr (wt %) alloys produced by laser powder-bed fusion
Glerum, J. A., De Luca, A., Schuster, M. L., Kenel, C., Leinenbach, C., & Dunand, D. C. (2022). Effect of oxide dispersoids on precipitation-strengthened Al-1.7Zr (wt %) alloys produced by laser powder-bed fusion. Additive Manufacturing, 56, 102933 (12 pp.). https://doi.org/10.1016/j.addma.2022.102933
Atomistic insight into heterogeneous stress states in Al<sub>2</sub>O<sub>3</sub> nanoparticles
Gramatte, S., Politano, O., Xomalis, A., Jeurgens, L., Baras, F., & Turlo, V. (2022). Atomistic insight into heterogeneous stress states in Al2O3 nanoparticles. Presented at the Psi-k 2022. Lausanne.
Single nanosized graphene/TiO<sub>x</sub> multi-shells on TiO<sub>2</sub> core via rapid-concomitant reaction pathway on metal oxide/polymer interface
Kato, K., Xin, Y., Vaucher, S., & Shirai, T. (2022). Single nanosized graphene/TiOx multi-shells on TiO2 core via rapid-concomitant reaction pathway on metal oxide/polymer interface. Scripta Materialia, 208, 114358 (6 pp.). https://doi.org/10.1016/j.scriptamat.2021.114358
High-temperature creep properties of an additively manufactured Y<sub>2</sub>O<sub>3</sub> oxide dispersion-strengthened Ni–Cr–Al–Ti γ/γ’ superalloy
Kenel, C., De Luca, A., Leinenbach, C., & Dunand, D. C. (2022). High-temperature creep properties of an additively manufactured Y2O3 oxide dispersion-strengthened Ni–Cr–Al–Ti γ/γ’ superalloy. Advanced Engineering Materials. https://doi.org/10.1002/adem.202200753
3D and 4D printing of complex structures of Fe-Mn-Si-based shape memory alloy using laser powder bed fusion
Kim, D., Ferretto, I., Leinenbach, C., & Lee, W. (2022). 3D and 4D printing of complex structures of Fe-Mn-Si-based shape memory alloy using laser powder bed fusion. Advanced Materials Interfaces, 9(13), 2200171 (11 pp.). https://doi.org/10.1002/admi.202200171
Effect of post-heat treatment conditions on shape memory property in 4D printed Fe-17Mn-5Si-10Cr-4Ni shape memory alloy
Kim, D., Ferretto, I., Kim, W., Leinenbach, C., & Lee, W. (2022). Effect of post-heat treatment conditions on shape memory property in 4D printed Fe-17Mn-5Si-10Cr-4Ni shape memory alloy. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 852, 143689 (11 pp.). https://doi.org/10.1016/j.msea.2022.143689
Influences of the process parameter and thermal cycles on the quality of 308L stainless steel walls produced by additive manufacturing utilizing an arc welding source
Le, V. T., Mai, D. S., Bui, M. C., Wasmer, K., Nguyen, V. A., Dinh, D. M., … Vu, D. (2022). Influences of the process parameter and thermal cycles on the quality of 308L stainless steel walls produced by additive manufacturing utilizing an arc welding source. Welding in the World, 66, 1565-1580. https://doi.org/10.1007/s40194-022-01330-4
Smart closed-loop control of laser welding using reinforcement learning
Le Quang, T., Meylan, B., Masinelli, G., Saeidi, F., Shevchik, S. A., Farahani, F. V., & Wasmer, K. (2022). Smart closed-loop control of laser welding using reinforcement learning. In M. Schmidt, F. Vollertsen, & B. M. Colosimo (Eds.), Procedia CIRP: Vol. 111. 12th CIRP conference on photonic technologies [LANE 2022] (pp. 479-483). https://doi.org/10.1016/j.procir.2022.08.074
 

Pages