Query

Active Filters

  • (-) Empa Laboratories = 204 Advanced Materials Processing
  • (-) Empa Authors = Ishizaki, Kotaro
Search Results 1 - 20 of 24
Select Page
Developing an in situ EXAFS experiment of microwave-induced gelation
Cozzo, C., Ishizaki, K., Pouchon, M. A., & Vaucher, S. (2016). Developing an in situ EXAFS experiment of microwave-induced gelation. Journal of Sol-Gel Science and Technology, 78(3), 507-513. https://doi.org/10.1007/s10971-016-3992-5
Real-time material's response to high power microwave irradiation revealed by in-situ synchrotron radiation methods
Vaucher, S., Cervellino, A., Casati, N., Mokso, R., Ishizaki, K., Stir, M., … Nicula, R. (2015). Real-time material's response to high power microwave irradiation revealed by in-situ synchrotron radiation methods. In 2015 1st URSI atlantic radio science conference (URSI AT-RASC) (p. 7303067 (1 p.). https://doi.org/10.1109/URSI-AT-RASC.2015.7303067
Dynamic high-temperature monitoring of microwave energy absorption and heating of materials with ultrafast <em>in situ</em> synchrotron X-Ray tomographic microscopy and powder diffraction techniques
Vaucher, S., Mokso, R., Ishizaki, K., Stir, M., & Nicula, R. (2014). Dynamic high-temperature monitoring of microwave energy absorption and heating of materials with ultrafast in situ synchrotron X-Ray tomographic microscopy and powder diffraction techniques. In D. Bernard, J. Y. Buffière, T. Pollock, H. Friis Poulsen, A. Rollett, & M. Uchic (Eds.), Proceedings of the 2nd international congress on 3D materials science (pp. 105-110). https://doi.org/10.1007/978-3-319-48123-4
Characterization of free falling drops inside a microwave cavity
Cabanes-Sempere, M., Cozzo, C., Catalá-Civera, J. M., Peñaranda-Foix, F. L., Ishizaki, K., Vaucher, S., & Pouchon, M. A. (2012). Characterization of free falling drops inside a microwave cavity. In Microwave, MTT-S international symposium. 2012 IEEE/MTT-S international microwave symposium digest (p. 6259757). https://doi.org/10.1109/MWSYM.2012.6259757
Development of microwave micro-plasma jet system for removing contamination in scanning electron microscopes
Ishizaki, K., Fahlbusch, S., Catavala-Civera, J. M., Vaucher, S., & Utke, I. (2012). Development of microwave micro-plasma jet system for removing contamination in scanning electron microscopes. Presented at the Carbon contamination of optics 2012. St. Aubin, France.
Magnetic microwave heating of magnetite–carbon black mixtures
Ishizaki, K., Stir, M., Gozzo, F., Catala-Civera, J. M., Vaucher, S., & Nicula, R. (2012). Magnetic microwave heating of magnetite–carbon black mixtures. Materials Chemistry and Physics, 134(2-3), 1007-1012. https://doi.org/10.1016/j.matchemphys.2012.03.104
Applicability study of classical and contemporary models for effective complex permittivity of metal powders
Kiley, E. M., Yakovlev, V. V., Ishizaki, K., & Vaucher, S. (2012). Applicability study of classical and contemporary models for effective complex permittivity of metal powders. Journal of Microwave Power and Electromagnetic Energy, 46(1), 26-38. https://doi.org/10.1080/08327823.2012.11689821
Novel approach for the rapid thermal processing of polymer-metal composites using 2.45 GHz microwave radiation
Nicula, R., Wurm, A., Schick, D., Ishizaki, K., Stir, M., Vaucher, S., … Schick, C. (2012). Novel approach for the rapid thermal processing of polymer-metal composites using 2.45 GHz microwave radiation. Presented at the 40th annual conference of the North American thermal analysis society - NATAS 2012. Orlando, Florida, USA.
Applicability study of classical and contemporary models for effective complex permittivity of metal powders
Kiley, E. M., Yakovlev, V. V., Ishizaki, K., & Vaucher, S. (2011). Applicability study of classical and contemporary models for effective complex permittivity of metal powders. In J. Tao (Ed.), Microwave and RF power applications. 13th international conference AMPERE. Toulouse 2011 (pp. 314-317). Cépadués.
Microwave calorimetry using X-rays
Nicula, R., Stir, M., Wurm, A., Catalá-Civera, J. M., Ishizaki, K., Vaucher, S., … Schick, C. (2011). Microwave calorimetry using X-rays. Thermochimica Acta, 526(1-2), 137-142. https://doi.org/10.1016/j.tca.2011.09.007
Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating
Nicula, R., Ishizaki, K., Stir, M., Shen, Z., & Vaucher, S. (2011). Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating. Philosophical Magazine, 91(19-21), 2450-2457. https://doi.org/10.1080/14786435.2010.511601
Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum
Vaucher, S., Stir, M., Ishizaki, K., Català-Civera, J. M., & Nicula, R. (2011). Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum. Thermochimica Acta, 522(1-2), 151-154. https://doi.org/10.1016/j.tca.2010.11.026
Microwave sintering explored by X-ray microtomography
Ishizaki, K., Battabyal, M., Yamada Pittini, Y., Nicula, R., & Vaucher, S. (2010). Microwave sintering explored by X-ray microtomography. In R. K. Bordia & E. A. Olevsky (Eds.), Ceramic transactions: Vol. 209. Advances in sintering science and technology (pp. 211-217). https://doi.org/10.1002/9780470599730.ch21
Mechanisms of microwave energy absorption in metallic alloys revealed by &lt;em&gt;in-situ&lt;/em&gt; real-time synchrotron radiation experiments
Nicula, R., Stir, M., Ishizaki, K., & Vaucher, S. (2010). Mechanisms of microwave energy absorption in metallic alloys revealed by in-situ real-time synchrotron radiation experiments. Presented at the 11th Lähnwitzseminar on calorimetry. Rostock, Germany.
Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating
Nicula, R., Ishizaki, K., Stir, M., Shen, Z., & Vaucher, S. (2010). Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating. Presented at the 11th international conference on quasicrystals (ICQ11). Sapporo, Japan.
Microwave-induced electromigration in multicomponent metallic alloys
Vaucher, S., Bernau, L., Stir, M., Ishizaki, K., Català-Civera, J. M., & Nicula, R. (2010). Microwave-induced electromigration in multicomponent metallic alloys. In IEEE MTT-S international microwave symposium digest. 2010 IEEE MTT-S international microwave symposium (MTT) (pp. 1440-1443). https://doi.org/10.1109/MWSYM.2010.5517705
Microwave energy absorption driven by dynamic structural and magnetization states in Fe<SUB>85</SUB>B<SUB>15</SUB> metallic glass ribbons
Nicula, R., Ishizaki, K., Stir, M., Catala-Civera, J. M., & Vaucher, S. (2009). Microwave energy absorption driven by dynamic structural and magnetization states in Fe85B15 metallic glass ribbons. Applied Physics Letters, 95(17), 174104 (3 pp.). https://doi.org/10.1063/1.3257697
Nanocrystallization of amorphous alloys using microwaves: <I>in situ</I> time-resolved synchrotron radiation studies
Nicula, R., Stir, M., Ishizaki, K., Catalá-Civera, J. M., & Vaucher, S. (2009). Nanocrystallization of amorphous alloys using microwaves: in situ time-resolved synchrotron radiation studies. Journal of physics: conference series: Vol. 144. (p. 012109 (4 pp.). Presented at the 13th international conference on rapidly quenched and metastable materials. https://doi.org/10.1088/1742-6596/144/1/012109
Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating
Nicula, R., Stir, M., Ishizaki, K., Català-Civera, J. M., & Vaucher, S. (2009). Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating. Scripta Materialia, 60(2), 120-123. https://doi.org/10.1016/j.scriptamat.2008.09.019
Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave <I>E</I>-field maximum
Stir, M., Ishizaki, K., Vaucher, S., & Nicula, R. (2009). Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave E-field maximum. Journal of Applied Physics, 105(12), 124901 (4 pp.). https://doi.org/10.1063/1.3148264