Query

Active Filters

  • (-) Empa Laboratories = 205 nanotech@surfaces
  • (-) Empa Authors = Borin Barin, Gabriela
Search Results 1 - 20 of 33
Select Page
Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach
Darawish, R., Overbeck, J., Müllen, K., Calame, M., Ruffieux, P., Fasel, R., & Barin, G. B. (2024). Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach. Carbon, 218, 118688 (8 pp.). https://doi.org/10.1016/j.carbon.2023.118688
On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges
Borin Barin, G., Di Giovannantonio, M., Lohr, T. G., Mishra, S., Kinikar, A., Perrin, M., … Ruffieux, P. (2023). On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. Nanoscale, 15(41), 16766-16774. https://doi.org/10.1039/D3NR03736C
MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons
Bouwmeester, D., Ghiasi, T. S., Borin Barin, G., Müllen, K., Ruffieux, P., Fasel, R., & van der Zant, H. S. J. (2023). MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons. ACS Applied Nano Materials, 6(15), 13935-13944. https://doi.org/10.1021/acsanm.3c01630
Platinum contacts for 9-atom-wide armchair graphene nanoribbons
Hsu, C., Rohde, M., Borin Barin, G., Gandus, G., Passerone, D., Luisier, M., … El Abbassi, M. (2023). Platinum contacts for 9-atom-wide armchair graphene nanoribbons. Applied Physics Letters, 122(17), 173104 (6 pp.). https://doi.org/10.1063/5.0143663
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors
Lin, Y. C., Mutlu, Z., Borin Barin, G., Hong, Y., Llinas, J. P., Narita, A., … Bokor, J. (2023). Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors. Carbon, 205, 519-526. https://doi.org/10.1016/j.carbon.2023.01.054
Contact engineering for graphene nanoribbon devices
Mutlu, Z., Dinh, C., Borin Barin, G., Jacobse, P. H., Kumar, A., Polley, D., … Bokor, J. (2023). Contact engineering for graphene nanoribbon devices. Applied Physics Reviews, 10(4), 041412 (10 pp.). https://doi.org/10.1063/5.0172432
Contacting individual graphene nanoribbons using carbon nanotube electrodes
Zhang, J., Qian, L., Borin Barin, G., Daaoub, A. H. S., Chen, P., Müllen, K., … Perrin, M. L. (2023). Contacting individual graphene nanoribbons using carbon nanotube electrodes. Nature Electronics, 6, 572-581. https://doi.org/10.1038/s41928-023-00991-3
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
Double quantum dots in atomically-precise graphene nanoribbons
Zhang, J., Qian, L., Borin Barin, G., Chen, P., Müllen, K., Ruffieux, P., … Perrin, M. L. (2023). Double quantum dots in atomically-precise graphene nanoribbons. Materials for Quantum Technology, 3(3), 036201 (8 pp.). https://doi.org/10.1088/2633-4356/acfa57
Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture
Zhang, J., Braun, O., Borin Barin, G., Sangtarash, S., Overbeck, J., Darawish, R., … Calame, M. (2023). Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture. Advanced Electronic Materials, 9(4), 2201204 (8 pp.). https://doi.org/10.1002/aelm.202201204
Growth optimization and device integration of narrow‐bandgap graphene nanoribbons
Borin Barin, G., Sun, Q., Di Giovannantonio, M., Du, C. ‐Z., Wang, X. ‐Y., Llinas, J. P., … Ruffieux, P. (2022). Growth optimization and device integration of narrow‐bandgap graphene nanoribbons. Small, 18(31), 2202301 (10 pp.). https://doi.org/10.1002/smll.202202301
Optimized graphene electrodes for contacting graphene nanoribbons
Braun, O., Overbeck, J., El Abbassi, M., Käser, S., Furrer, R., Olziersky, A., … Calame, M. (2021). Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 184, 331-339. https://doi.org/10.1016/j.carbon.2021.08.001
Short-channel double-gate FETs with atomically precise graphene nanoribbons
Mutlu, Z., Lin, Y., Barin, G. B., Zhang, Z., Pitner, G., Wang, S., … Bokor, J. (2021). Short-channel double-gate FETs with atomically precise graphene nanoribbons. In International electron devices meeting (IEDM). 2021 IEEE international electron devices meeting (IEDM) (pp. 37.4.1-37.4.4). https://doi.org/10.1109/IEDM19574.2021.9720620
Edge disorder in bottom-up zigzag graphene nanoribbons: implications for magnetism and quantum electronic transport
Pizzochero, M., Borin Barin, G., Čerņevičs, K., Wang, S., Ruffieux, P., Fasel, R., & Yazyev, O. V. (2021). Edge disorder in bottom-up zigzag graphene nanoribbons: implications for magnetism and quantum electronic transport. Journal of Physical Chemistry Letters, 12(19), 4692-4696. https://doi.org/10.1021/acs.jpclett.1c00921
Quantum electronic transport across "bite" defects in graphene nanoribbons
Pizzochero, M., Čerņevičs, K., Borin Barin, G., Wang, S., Ruffieux, P., Fasel, R., & Yazyev, O. V. (2021). Quantum electronic transport across "bite" defects in graphene nanoribbons. 2D Materials, 8(3), 035025 (9 pp.). https://doi.org/10.1088/2053-1583/abf716
Exploring intramolecular methyl-methyl coupling on a metal surface for edge-extended graphene nanoribbons
Qiu, Z., Sun, Q., Wang, S., Borin Barin, G., Dumslaff, B., Ruffieux, P., … Fasel, R. (2021). Exploring intramolecular methyl-methyl coupling on a metal surface for edge-extended graphene nanoribbons. Organic Materials, 3(2), 128-133. https://doi.org/10.1055/s-0041-1726295
Production and processing of graphene and related materials
Backes, C., Abdelkader, A. M., Alonso, C., Andrieux-Ledier, A., Arenal, R., Azpeitia, J., … Garcia-Hernandez, M. (2020). Production and processing of graphene and related materials. 2D Materials, 7(2), 022001 (282 pp.). https://doi.org/10.1088/2053-1583/ab1e0a
Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors
El Abbassi, M., Perrin, M. L., Borin Barin, G., Sangtarash, S., Overbeck, J., Braun, O., … Calame, M. (2020). Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors. ACS Nano, 14(5), 5754-5762. https://doi.org/10.1021/acsnano.0c00604
Reversible dehalogenation in on-surface aryl-aryl coupling
Stolz, S., Di Giovannantonio, M., Urgel, J. I., Sun, Q., Kinikar, A., Borin Barin, G., … Widmer, R. (2020). Reversible dehalogenation in on-surface aryl-aryl coupling. Angewandte Chemie International Edition, 59(33), 1406-1410. https://doi.org/10.1002/anie.202005443